RAGNAR FRISCH

On the use of difference equations in the study

of frequency distributions

Difference equations and differential equations have occasionally
been used in the analysis of frequency distributions. Certain parts
. of the theories of KarL, PEARSON and of CHARLIER are for instance
based 6n the use of such equations.

However, these applications are of a rather special character.
It does not seem that a systematic study of frequency distributions
has ever been attempted from the differential point of view until a
beginning in this direction was made by Professor GULDBERG’s beau-
tiful paper * On Discontinuous Frequency-Functions and Statis-
tical Series ”’ *) GULDBERG’s paper contains several examples showing
that the differential approach furnishes a strikingly simple solution
of several classical problems in frequency distributions, for instance
the problem of obtaining explicit expressions and recurrence formulae
for, the moments of the binominal, Poisson, Pascal, and hypergeomet-
ric distributions, and the problem of obtaining criteria that can
indicate whether a given -distribution belongs to a certain type or
not. In problems of this kind the differential equation of the distri-
bution seems to be a most natural and powerful tool of analysis. It
may therefore be worth while to attempt a more general analysis of
the subject, exhibiting the general nature of the principles involved,
pointing out some further possibilities and also showing the matural
limits of this tool in the study of frequency distributions. In the pre-
sent paper some remarks on such a general analysis shall be made.

(*) «Skandinavisk Aktuarietidskrift», 1931, p. 167.
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1. Tuz (P, Q) CLASS OF A FREQUENCY DISTRIBUTION.

Let 7, be a finite frequency function given in the enumerable
set of points x = 0, & 1, = 2... & ». For any given f. it is always
possible to indicate a set of numbers P, and @, such that the equation

(I'I) szx+Qx+rfx+l=0

holds good identically in x. It is even possible to select the num-
bers P and Q in such a way that there is no point x where both P,
and Q, ., vanish. A set of numbers P and Q satisfying this condi-
tion will be called a (P, Q) set for the frequency function /.

Inversely, if there is given a set of numbers P and Q such that
there is no point » where both P and (, , , vanish, these numbers may
be taken as defining, by the difference equation (1.1), a frequency .
function f. Of course the frequency furction is not uniquely deter-
mined by the numbers P and @, but its principal characteristics are
determined. More precisely expressed, if x = % is any point where f
is known, then f is by (1.1) determined upwards of x = % if Q, +:FoO
and downwards of x = 4 if P, - 0. We shall say that the frequency
function f thus determined belongs to the class (P, Q). If (P, Q.44 1s
a set of numbers defining a class of frequency functions, and if O
is any function that is different from zero in all the points #, then the
set (o, P, 0, 0, . ,) obviously defines the same class.

In a region where Q, . - does not vanish, the class may be deﬁn-
ed by the single function

P

R, = A
» Qz + 1
and the corresponding difference equation
(1.2) fer:+ R f=0.

And in a region where P, is different from zero, the class may be
defined by the ratio

Qz+!
S, =%

z

and the corresponding equation

(13) Sxfx+z +fx=0~,

But this way of characterizing / breaks down in points where P, or
Q. ., vanish. At the same time we notice that in order to characterize
a frequency function that is zero in certain points, say outside of the
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interval x = 0,1...s, we just nced to introduce numbers P, and 0,
that vanish in certain points. The frequency function that is zero
outside of the interval x = 5,1. . . s, but different from zero in x = o
and x = s is for instance characterized by P, = o, Q, +Fo for
x>sand Q, =0, P, 40 for x<o. In order toensure generality
we shall therefore consider the difference equation in the form
(1.1) rather than in the form (1.2) or (1.3).

2. THE TAIL EQUATION

Performing on (1.1) a summation over x from £ to » we get

@) Z (P40 =0k —Qutrlas 1.

T=t

In the following we shall assume that the numbers Q, are such
that
(2.2) LimQ,.f,=o0.
) . £—¥»
For any frequency function that is zero outside of a finite in-
- terval, Q may obviously always be selected so as to satisfy (2.2).
If (2.2) is fulfilled, we have

(2.3) | S (P, +0Q) =0t

=1

This equation we shall call the fail equation.

3. A CLASS OF INCOMPLETE MOMENTS THAT CAN BE EASILY DETERMINED. k

Let L_ be a given function of x. The expression

(3.1) . A== L

r=1
is called the incomplete moment of the frequency distribution f taken
over the function L. If (3.1) converges as ¢ —»—w, the expression

(32) L= 3 Ljf

z=—0m .
is called the complete moment of f taken 6ver L. There is a class of
incomplete moments whose explicit expression can be easily deter-
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mined by the tail equation. We now proceed to a study of these
moments.

If a frequency function f, is given, one of the corresponding
functions P, and Q, can be selected arbitrarily, with the proviso that it

- must be equal to zero in those points where the P function or the Q
- function respectively, of the given / must vanish in order to define f

correctly (if /,+ 0 and f, ., = o, we must for instance have P, = o).

If a particular function Q, is selected, the corresponding function P,

is by (1.1) determined in all points x where f, - 0. Iff = 0, we may
attribute an arbitrary non-zero value to P,. :
For every function @, which we select, the function -

(33) L,=P +0,

. may consequently be looked upon as well defined. Over an interval

where Q,,, 90, so that R, is finite, the expression for L, may for
instance: be written '

(34) ‘ Lz = Qz + Rz Qx+ 1 ‘
and over an interval where P, = o, so that S, is finite, we have
(35) Lz—i-x:vsx‘px'{'—Px-{-'x'\
* Now insert the expression for L, into the tail equation. This gives
(3.6 ELA=0Qf

which can also be written

67 E (0 4R Q)= 0

This means that fo every fumction Q, which we select, there cor-
responds. an incomplete moment whose explicit expression can be given.
And this holds good no matter what the particular nature of the
distribution f, is.

As an application of (3.6) consider the binominal distribution

~Orer amies
As a (P, Q) set for this frequency function we may select (1)

(3.8) P,=p(x—s3) Q=g

(1) GuLDBERG. loc. cit., p. 168. -
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~ Inserting (3.8) into (3.3) we get immediately L, = x —sp and
hence

d)

L (x—sp)f.=qtf,.

x=t
ment of the point bmormnal which I gawe in the Skandinavisk Aktua-
rietidskrift, 1924 (2). My original proof was rather an argument ad
hoc. The general tail equation exhibits in an interesting manner the
underlying reason why it is possible to give an exphc1t expression
for this incomplete moment.

- And by (3.7) we see that a whole class of other explicit formulae
for incomplete point binominal moments may be derived simply by
inserting an arbitrary function Q, into the formula '

- p(x—s) ) _
xi:t (Qz + m Qz—i—x/ fx - Qtft .

The above procedure suggests the following inversion problem :
If L, is a given function, can we determine the corresponding function
Q.. and thus by inserting Q, in the right member of (3.6) find an expli-
cit expression for the incomplete moment that is written in the left
member of (3.6). If so, the function Q, may be looked upon as a sort
of ““ solving kernel " for the problem.

For simplicity we confine the discussion of the inversion problem
to an interval where R, is finite. The function @, in question must
then be such that the right member of (3.4) is equal to the given func-
tion L, for all the points x that occur in the summation in (3.6). In
other words Q. must be a solution of the equation (3.4) considered as
a difference equation in Q,. The solution of such a difference equa-
tion is as a rule arbitrary to the extent that the value of the solution
may be selected in one point on the x scale. On the other hand we
only need to use one single value of Q,, namely Q,. Thisseems para-
doxical : Why not choose Q, as the arbitrary magnitude ? There must |
obviously be something wrong in this argument for the moment in
the left member of (3.6) is a perfectly determinate magnitude when
L, is given. The solution of the puzzle lies in the behaviour of the
coefficient R, in (3.4) when x approaches infinity. If f, is a frequency
function that is zero in a certain finite point, say x = s - 1, but dif-
ferent from zero in the preceding point x = s, then by (r.2) R, must

{2) p.‘ 161. See also. GﬁI.DBERG loc. cit., p. 17.
’ -~ 5
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be equal to zero. Consequently Q, = L, which shows that there is
no arbitrariness at all left in Q, when L_ is given. On the other hand
if R, does not become rigorously zero in any finite point but ap-
proaches a limit (positive or zero) as x approaches infinity, then we
have by (3.4)

. . L,

Lim Q, = Lim TR

which also puts a condition on the solution @, which we have to select.

Similarly over an interval where S, is finite, the solution of the
inversion problem would be given by the solution P, of (3-5).

(6 —> =)

z

The inversion problem as here stated can easily be solved by a -
direct application of the classical formulae for the solution of a li-
near difference equation.

In fact consider the two difference equations in ¥

(3-9) Y,=4, Y, .+ B,
and" - : .

(3.10) Y,=4, Yz+: + B, ‘
where the coefficients 4, and B, are finite, possibly zero in one or more
points. TLet x = % be an initial point with the given initial value Y.
In the general case where we do not exclude the vanishing of 4,. .
(3.9) only gives a meauns of determining Y, for x < % and (3.10) only
gives a means of determining V, for x = 2. In these determinations,
the values 4, and B, are not used. We may therefore attribute arbi-
trary values to these two numbers. For convenience we put 4, =o

and B, = the initial value Y, of Y. With this notation, the solutions
of (3.9) and (3.10) are respectively

(3.11) Y.= Z (A, 4,_,... 4y ). By
. x=£k
and
. k
(3.12) Y,= 2 (4,4,,,...4x_)) .By.
n=2x

where by convention A, A, ... 4y +: =1 for x =x and
A A,y . Ay, =1 for x = x. The formulae (3.11) and (3.12)
are easily verified by insertion in (3.9) and (3.10).
Applying this to the equation (3.4) we get
k

(313) Qz+1= % (_)x—x (Rx+1Rz+2"'RX)LK+~x

x=%

~ O
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-.where by convention R, | | R, ,,... R, =1 for x = x. We have seen

that if f,4-0 and f,,, = o, Q, must be determined in such a way
that Q, = L. '
This is obtained by putting & =s— 1 in (3.13) which gives

(3.14) . Q.=

x

(=" (R.R, .. Ry YLy~ -

E4

M

. where by convention R, R, ;... R._, =1 for x = x .

In the case where f, does not vanish in any finite point, it would
be necessary to study the convergency of (3.14) under the double
limiting process s —»«, x—»= but we shall not enter upon any such
discussion here. ' i

The formula (3.14) gives a direct solution of the inversion problem
in the case where f, vanishes outside of a finite interval. But the
result obtained by this direct procedure is not particularly useful be-
cause the formula to which it leads is not any simpler than the defi-
nition of the incomplete moment in question given by (3.1). Indeed,
for any » < x such that R,R,,,...R._, are finite, we deduce
from (1.2) .
fx = (_)x—z (Rz Rz+1 R Rx_.;) fx

so that f, times the expression (3:14) reduces to

O.f.= % Lifs.

X=1I
The practical usefulness of the inversion process therefore does
not lie in the direct determination of the @, that corresponds to a
given L,, but lies rather in the possibility of applying the method
wndirectly as a tool in the study of approximate solutions and the like.

4. CHARACTERISTIC MULTIPLIERS FOR A GIVEN DISTRIBUTION.

Let f, be a frequency function satisfying (1.1). Further let a
be a given real number, and consider the difference equation in H,

(41) - Ptz+x+an+xHx=o'

Apart from the constant factor 4, this equation is the adjoint equation
of the equation that holds good for the frequency function f, itself.

A solution H, of (4.1) we shall call a characteristic multiplier for
the frequency distribution f,, H, will be said to belong to the charac-
teristic number a.

~7~
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The characteristic muitiplier of a given distribution satisfies sev-
eral interesting formulae. First we see that by multiplying (4.1
by f, ., and (1.1) by aH, and subtracting the two equations, we get

Pz(Hz+x x+x_—afox)=0' .
Similarly by multiplying (4.1) by f, and (1.1) by H, ., we obtain

Qx-i—x (Hx+x x+t—aHxé)x\= 0.

Since by hypothesis at least one of the two numbers P, and
Q... is different from zero we have .

(4.2) Hx+,f,+x=aH,fx.

Extending to this equation a summation over % from £ to « we
get the proposition : If H, is a characteristic multiplier for the fre-
quency distribution f,, i. e. if H, is a function that satisfies (4.1), then

o .
(4-3) (I"‘a) Ethzfsztft_Hw+xfm+x'

_ This means that the incomplete moment of f taken over a char-
acteristic multiplier for f can always be expressed in a simple form.
I . Lim H, f,=o0

. ’ - T— 0 .
(which is certainly fulfilled when H, is finite and f, zero for x > s),
the equation (4.3) can also be written

(4.4) (t—a) S H,f,=H,f.

=1

Let H,, H ....H,, be a set of functions such that

”
(45) v PzHﬂ,z+1+Qx+x Zkanv HV,z=O
. v=0

where a,, is a set of real numbers. Such a set of functions H,,...H, "
we shall call a set of characteristic multipliers for the frequency dis-
tribution f,. H,,...H,, will be said to belong to the characteristic
numbers a,, .

Any frequency distribution possesses a characteristic multiplier.
To obtain one we only have to solve (4.2) with respect to H,. The
reason why it is nevertheless of interest to introduce also the notion
of a set of multipliers as defined by (4.5) is that it may be advanta- -
geous to impose certain conditions on the nature of the multipliers
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to suit the particular kind of the problem at hand. And if the mul-
tipliers shall belong to a certain class of functions, it may of course
happen that we are in a situation where a single function of the class
is not a multiplier for a given frequency distribution but where a set
of functions from the class does form a set of multipliers according
to (4.5). t
Consider for instance the case where P and QZ are polynoxmals :
in x, Q, of degree m, this degree being not lower than the degree of
P,. 1In this case we have the proposition: Let # be any integer
S m. Then any set of (n+1) linearly independent polynomials of degree
not higher than n, Hy, , (v = 0,I. . .1} form a set of multipliers provided
only that the last of them, namely, H, . contains Q, as a divisor. Since
the degree shall not exceed # and one of the polvnomials shall con-
tain Q, as a divisor, we must obviously have # < #.
 Indeedif H, ,=Q, H,_,, . where H' in any polynomial (of degree
zero or positive) we have

PxHx+x + Qx+x E an\l Hv,z =

v=20

n
‘“Qz-}-x z n——mx—l-x + 2 anv HV,x}'

v=20

The bracket in the last expression is a polynomial of degree not

" higher than #. And the (# + 1) coefficients a,, can be disposed of in

such a way as to make the bracket vanish. In fact, when the bracket
is ordered as a polynomial in x, the coefficient of \x" becomes equal to

(4.6) 2 e Hy + G

y=2o

where H, is the coeficient of #* in the polynomial H, ,, and

min [&, n—m]

C,= = P,_,H,

n—m,f
j=o0

P,and H,_, . being the coefficients of x in the polynomial P,
and H, _, , respectively. Since the polynomials Hy, are linearly
independent, the determinant ‘H vy 1s different from zero. It is
consequently always possible to select the coefﬁmen’cs a,,\, in such a
way that the expressions (4.6) vanish for 2 = o, 1.

If P, and Q, are polynomials, the degree m of Qx being not lower
than the degree of P,, we know from the above proposition that it

~ g ~



is always possible to select a set of linearly independent polynomial
multipliers if we allow the set to contain # 4+ 1 such polynomials,
none of the polynomials being of degree higher than  and H,, ,
being a constant times Q,. And we also see that if no further special
conditions are introduced, it will in general not be impossible to re-
strict the number of polynomials in the set any further,

A set of multipliers H, , satisfy several interesting formulae.
First let us multiply (4.5) by f, .., and introduce in the expression
obtained — P, f, for Q, ./, ., This gives

Px‘:Hn,z;x fx+r_"‘fx Z vy Hv,x:z =0.

. v=0

Similarly we multiply (4.5) by f. and introduce —Q, ., ..,
for P, f, which gives

Qx+r}- n,x+xfx+x—fz z a, Hv,z‘zo'
L R I
Since in any point x, at least one of the two numbers P, and Q,, r
is different from zero, we have in any point x

a,yH, .
o

(47) Hn,z+x fz-i-z = fx

v

4

Further let us us introduce the incomplete moments of f, taken
over the multipliers. We use the notation

(4-8) ’ MV(t,o)) = Z H,.f.

o being some conveniently chosen upper limit of the summation.
If (4.8) converges as o —» » (which is certainly the case forinstance
when the H, , are finite over any finite range and f, = o outside a
finite interval), then we may in partlcular consider the incomplete
moments :

- -]
(4.9) Mv,t = X Hv,z /:-

r=t
The moments (4.8) and (4.9) may be called the characteristic
moments for the given distribution.
Extending to (4.7) a summation over x from *x=1¢{ to x = o
we get ’ ' ‘

n—1I

(4.10) (1 —a,,) Mn(;,m) = Hn,; fi— Hn,m+x for:.+ Z a, Mv(:,m) .

y=20

~ 10 A



Further, if the moments converge for o —» » , which entails
(4.11) Lim H,,f,=o0,
. % —» ©
we get by extending to (4.7) a summation over x from £to =

7n—1I
(4~I2) (I - ann) *Mn,t == Hﬂ,t ft + X a,y Mv,t .
v=0
Thus: For any frequency distribution the incomplete moments
taken over the characteristic mutipliers satisfy the simple recurrence
formulae (4.10) and (4.12). ’
As an example consider the binomial distribution. 4 (P, Q) set

for this distribution is (3.8). And the functions

* 2
(4.13) H,, = s

(v=0.I..%n where n S 1), form a set of charactenstm multipliers.
Indeed.lf n = I the polynomial Q, . =g¢ (¥ + 1) is a divisor in
H,,..= (x + 1) so that the left member of (4.5) becomes

@) DP9 0 g E e o,

y=o0

And it is always possible to determine the numbers a,, in such a
way that the bracket in (4.14) vanish. We only have to put )

P < ( n—1 ) ( % — X ) )
v=—1{s — .
g v \ v—1I
For the binomial distribution the incomplete power moments
about the origin therefore satisfies (

M, —qH,,f,+?:§:< ("7 ’::f))

Any set (4.13) where # = 1 forms a set of characteristic multi-
pliers for the binomial distribution. But for # = o, we do nof get

. sucha set. That is to say a constant is nof a characteristic multiplier

for thenbinomial distribution. If it had been, we would have been

(1) The recurrence formulae for the incomplete power moments of the
point binomial were, so far as I know, first given by me in « Biometrika» 1925
p- 177 (moments about the mean). See also GULDBERG Loc. cit. p. 171. In -
the formula on the 7th line by GULDBERG there is a mzsprmt The factor
(1 —p) in the left member has dropped out.
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able to determine a simple explicit formula for the incomplete zero
order moment of the point binomial. This throws some light on the
well known fact that the exact value of the incomplete zero order
moment of the point binomial is, as it were, surrounded by a Chinese
wall in which it has not yet been possible to break any hole. (2).

We have seen that the incomplete characteristic moments of a
given distribution satisfy the recurrence formulae (4.10) and (4.12).
Inversely : If these recurrence formulae hold good, will the functions
H,, , form a set of characteristic multipliers for f ? The answer is
ves.  Indeed, subtracting from (4.10) the same equation for ¢ + 1

we get :

n—3

(I—ann)Hn,tft ft ni+1ft+x+ % anVHtht'

y=2¢

" That is to say

Hn,x+1 fx-{-x'_ fx p> A,y HV,:: = 0 .

Y =0
Multiplying this equation by P, and by @, , , we obtain by (1.1)"
respectively

iz+1(Panx+1+Qx+x 2 an\l Vz)_o

v=0
“and

fx (Px Hn,x+x + Qz+1 Z an\' Hv,x
y=0
In any point x where either f, or f, ., or both are different from
- zero, the set H, , must consequently satisfy (4.5). The equations
(4.5) and (4.10) can therefore be looked upon as eqmvalent ways of
defining the characteristic multipliers.
We may generalize (4.5) by considering the case where the right
member of the equation is not zero but some function W,, in other
words we consider a set of functions L ,... L, satisfying

”

» (415) Pz Ln,z+x + Qz+x z 'Cnv L‘J,x = I/Vz
where the C,, are constants.

{2) Upper and lower limits for the incomplete zero order moment of the
point binomial are given in my paper. Sur les semi-invariants et moments em-
ployés dans Uétude des distributions stalistigues. « Det Norske Videnskaps-
akademie II», 1926. No. 3. ' .
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This leads to the equations

,Px E:Ln,x-i—x fx-j—x”.—fz Z Cn‘l L‘J,xJ = IV: fx+x

y=0
Qx—{—: Ln,z+x fz+r—’—fx % CnV LV,xE = fox .
v v=o0
In other words
Wz
. " fo—i—x
(4.16) Lyviihoe=l B oo+ { "7
Qx+x fx

At least one of the numerators in the right member of (4.16) is dif- :

ferent from zero, and this expression is chosen. Performing a sum-

mation over x on (4.16) we get, assuming convergency

W,
#e1 fo+l-
417) (1—C, ,)]n;—Ln;f¢+ Z Cwly,+ Zt W
v=e == ’fx
) - i ( Qx+x
where' J,,, = E L, .f. For each x in the expression to the
x=t

extreme right in (4.17) that quantity is chosen for which the numera-
tor (P,or Q, . ,) is different from zero. Of course (4. Iz) is the special

case W, = o of (4.17).

- 5. IMPROPER MULTIPLIERS.

_ Suppose that there is given a set of characteristic multipliers

H, ..H, for the frequency distribution f,. Further let

- Ogo -« +« Lon
f (S’I) (a,'i) 8 TR )

be any non singular (n + 1) rowed matrix with constant elements.
This matrix has a reciprocal namely '




K
{a

where ¢&,; is (—)**7 times the expression obtained by leaving out
the j -th row and the ¢ -column in (5.1), taking the determinant
value of this # rowed matrix and finally dividing by the (# 4 1)
rowed determinant of (5.1). With this notation consider the linear

forms in the X, ,
' n
Ki,x = X &i,j jxe
) . j=o0 ]
The functions K; , have the property that the H, , may be expressed
as linear forms in the K, ,. We have indeed ’

(5.2) H,-"1= = 'Z oc”Ki’x .
j=o

Any set of such functions K, , that are linear forms in the X g
with constant coefficients forming a non-vanishing determinant, will
- be called a set of improper multipliers for f,. In distinction to the
improper multipliers, the functions H, , will be called proper multi-
pliers for f,..

The moments of f, taken over any set of improper multipliers -

also satisfy recurrence formulae similar to (4.10) and (4.12), however
~with different coefficients.

Let _
N,,= Z Kv,_zfz ‘

x=1t

and

w
Nypgo) = Z Ky .1

=

be the moments of the improper multipliers.
By (5.2) we have

”
Ma'(t,m):_z % Vg e
=0

(5.3) M, =Z N
Writing (4.12) in the form

Mn,t = n,tft +_Z am'Mi,t
and introducing the expression for the M, taken from (5.3) we get
, Zj?ani,;: mele T2 (82,0 N,

~I4~
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that is
(5-4) . Oan,tft +.Z bniNj,t
j=o
where
bni - Z am; aii'a”,i .

fi=0

Solving (5.4) with respect to N, , we get

(55) (ann'——.z dm'ain) Nn,t= n,t'ft + Z me I

i=o0 V=0
In particular if each H;, only contains the functions K,, ...K,, so
that «,, = 0 for i<, the coefficient of N,,in (5.5) reduces to
pn (I ) ‘ ‘

If the «; are equal to

0 (ifi % j)
I(ifi=7)
N ;¢ Teduces to M, , and the formula (5.5) reduces to (4.12). "

As an application of (5.5) consider again the point binomial.
Since the powers ¥ (v =0,1...%) for # < 1 form a set of proper
multipliers for the point binomial, any set of # + 1 linearly inde-
‘pendent polynomials K, , ... K, , forms a set of improper multipliers.
Any set of more than two polynomial moments in the point bino-

mial (taken over linearly independent polynomials) satisfies therefore
a recurrence formula of the kind (5.5). ‘

% == &y

6. THE COMPLETE MOMENTS.

If the incomplete moments M, , converge as {—»— =, we consi-
der the quantities

-~

+® '
(6.1) M,= % H,,f,.

T == -0

These quantities are called the complete characteristic moments.
The quantities (6.1) converge certainly if the H, , are finite over any
finite range, and /, zero outside of a given finite range. :

~15~




Similarly we consider the complete moments

= 2 K, .f. -
The complete moments M, and N, satisfy the recurrence for—
mulae

(1-a,) M = % a,, M, and

vy=0

(arm'— pX amdm) N = g an NV,

i=0 V=1

These formulae are obtained from (4.12) and (5.5) by lettl.nd ¢
tend towards —

7. THE DETERMINATION OF THE CHARACTERISTIC NUMBERS.

The characteristic numbers can be expressed in different ways.
Amongst others they can be expressed in terms of certain types of
complete moments of the dlstnbutlon

Let

@, (1=0,I...7)

‘be any set of # + 1 functions, such that the complete moment

‘ © i=0,T...%
oo U= a it (G201

PR, j=0,I...%
(7.2) Vi= 3% ¢, H,.[,(t=01...4%)

is different from zero.
Multiplying (4.7) by ¢, , and performm«y a complete summation
over x we obtain

(7:3) S Uga,=V, (i=0,I...n)




Since |U;| = o the system (7.3) may be solved with respéct
to the a,; which gives

™M=

(7-4) ' a,; =

1

OU,] v, .

where the (.I,-,. are the elements of the reciprocal of the matrix Uj.
We may also write the solution of (7.3) in another form which is more
convenient for the application we shall later make of the charac-
teristic numbers. Let B, ... B, be any set of numbers. Then we have

. 9oB,...B, |
i Vo'(]oo T U‘zmf Uoo * Uoni>
(7-5) ZauBi=— . |
: e VU .U,y U,...U,,

If we put all the coefficients B in (7.5) equal to zero, except the
special coefficient B;, we get back to the formula (7.4).

It is also possible to express the numbers a,; in terms of the
moments '

and

Inserting from (5.2) into (7.1) and (7.2) we get indeed

.

n
U£i= z ‘xijik
k=o

Vi =2 %nz Yik

k=0

8. LOCAL CRITERIA FOR THE NATURE OF THE DISTRIBUTION.

Let (P, Q) be a set of functions defining a class of frequency di-
stributions. Let F, be a numerically given frequency distribution.
We want a criteria expressing if F, can be looked upon as being ap-
proximately of the class (P, Q). We may consider two sorts of cri-
teria : Local and total criteria. The local criteria are expressed in
terms of the values of F, in the vicinity of a given point x, and the

~ i
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total criteria are expressed by certain parameters depending on the
totality of the values of F, as expressed by certain complete mo-
ments of F,.

In order to develop such criteria we shall again make use of a
set of characteristic multipliers for the class (P, Q). Let H,,
(v =0, 1...77) be such aset. These multipliers can be determined, pro-
vided only that the set of functions P, and @, is given, that is to
say the H,_ may be constructed once for all quite independently
of the particular numencally glven distribution F_ which it is wanted
to study. :

If the function F, belongs ngorously to the class (P Q) then the
function , :

”
’ ZayuH,,
IF . Fz v=20
* ‘F;K+x Hx,n-{—x

shall by (4.7) be identically equal to unity. It therefore seems plau-
sible to adopt the closeness with which ¥_ actually fluctuates around
unity as a criterion of how close F, belongs to the class (P, Q).

This is a generalization of the criterion which Professor Guldberg
has given for the special distributions considered by him. (1).

In order to construct ¥, we must fit the constants a,, to the
given distribution F,. A plausible fitting procedure is to require
that the general moments (7.1) and (7.2) shall coincide when comput-
ed for the ideal distribu’cion /. that belongs to the class (P,() and for
the given distribution F,. By (7.5) this leads to the following ex-
pression for ¥,

F, O0H,,.H,, :
81 T T FLH.. V.U, ..U Ty o U]

x+1 n,x+1I

o *e

The local criterion for the fact that F, belongs approximately
totheclass (P,, Q, ,,) may then be taken as expressed by the function
(8.1) oscillating closely around unity. The functions H,,... H,_ in
(8.1) are a set of characteristic multipliers for the class (P, Qx 1) and
V; and Uj; are the complete moments defined by (7.1) and (7.2),
~ where ¢, , (z = 0,I..n) is a set of functions that may be selected

(1) Loc. cit. 172.

~I8~
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arbitrarily with the only proviso that the determinant U, 7 shall
be different {rom zero.

If ¥, = 1, then we also have A, = 0, where

A =|0,H,. H

",z

V.U, ... U

on

VU, .. U

nn

®x being equal to

- | F,..H
(8.3) O, = SR mrRL

The criterion in question may therefore also be expressed by
saying that A, defined by (8.2) shall be close to zero for any x. Since
x ounly occurs in the first row of (8.2) we may formulate the crite-
rion by saying that the function @, defined by (8.3) shall be a linear
form in the H,,...H, , with constant coefficients. The last formula-
tion of the criterion is of course contained alreadyinthe formula
(4.7). What is obtained by (8.2) is that we have here an expression
for the coefficients of the form. '

As an example, consider again the binomial distribution. Here
we may select ' '

0,% 1, %

®=1 H =1 H . =x
Pozx = % Pz = x*
g and % being two non negative integers.
This gives -
‘ -]

M0=2fx M=Zx'fz

=00 F=—®
The matrix (U,) is now two rowed and equal to

M. M
Ui‘ — g g+z)
( 7 i MM, .

where we have put for brevity

M= %2 x.f1,.

z

8 R

-~ 1Q ~~

O



Further the moments V, and V, are
: —if8

A [k
=2 () M

So that -
0,1 %
(8-4) , A= V,M M,
' (, Vx ZVII; Mh 41
where
x+1)F,,,

The quantities in the second and third row of (8.4) are constants
independent of x. Quite generally we may therefore say that the
critevion for a binomial distribution is that the function @, defined by
(8.5) is approximately a straight line. The coeflicients of this straight

_line are determined by

66 @,= (Vth+x—V,Mg+x);(M)x
a d
where -
d=%MgMg+x§;{“
iMth+xi

The two expressions in parenthesis in the right member of {8.6)
ought to be independent of g and o Forg = o0, h = 1 we get V,=

M,V,=—M, + M,, and hence o
’ M o —M, ]
8.7) O, =—+ x .
223 Lz
where } - .
= Mz_M:

i, is the second power moment about the mean.
The formula (8.7) is the local criterion given by Guldberg (1)
for the case of the point binomial.

(1) Loc. cit. p. 172, the formula given at the bottom of the page.



~(9.3) D= V, M, M,

w
w

9. TOT:\L CRITERIA FOR THE NATURE OF THXE DISTRIBUTION.

A total criterion for the fact that a numerically given frequency
distribution F, belongs approximately to a given class may be ob-
tained from the formula

M,= % a, M,

v=o0

simply by introducing the expression for the characteristic numbers

taken from (7.5). This gives the general criterion that the number

M,M,... M,
v,U, ..U,

ought to be close to zero.

In the case of the point binomial we have with the notation of
the preceding section

M, M, M,

g+1:

V.M, M,

1

For g = o and /4 arbitrary the two first rows in (9.1) become equal.
The selection g = o does therefore not lead to any condition on F,.
For g == 1 and % arbitrary we get

M, M, M,
D= (—M, +M)M M,
: V! M B Alk +1
Subtracting here the last row from the first we get
o M, M,
D=}———JWI ﬂlx A{z
V.—M,, M, M

hR4+1;
that is to say '

D=M, (MM,  —MM)+(V.—M,, ) M,M—M).
- For h =1 this does not give any condition. For » =2 we
get, since M =1 ' -
(9.2)  D=M, (M,—M, M)+ (M,—2 M) (M,— M.

~ 2F
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The condition that this expression shall be equal to zero is the
same as Guldberg’s first total criterion (1) namely

{93} - Mop,=2pi— My,

¥

Indeed introducing in (9.3
w, = DI:’,_ Jli
w,=M,—3M, M, +3M;

we get the condition that the right member of (9.2) shall be equal
to zero. ’

10. FREQUENCY FUNCTIONS DEFINED BY A DIFFERENTIAL EQUATION.

The main ideas of the preceding analysis can be applied also to
the case where the frequency function is defined by a differential
equation, instead of by a difference equation. Since in the case of
a discrete frequency function, the difference equation (1.I) can be
written in the form

(Px‘*‘Qx—i—x) fx +Q‘x+lﬁlf"‘,:o .
where ) ‘
Af zfxﬁ-x——fx’

it seems natural to consider, in the continuous case the differential
equation : -

(ro.1) (P, +0)71+ Qx fa=o0

where
, _ G
fe="7

By integrating (10.1) over x from ¢ to  and noticing that

[0t dx =[Qu1] — [ Quludn, we get

©

f(Px +Qx‘—_‘Q,x) fxdx = Qtft_'_Qo) fo)

3

(1) Loc. cit. p. 173.

L~ 22~
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Consequently if Iim Q,/, =0
z P 0

(10.2) (@, +0,— 0 hax= 0.1,

!

This is the tail equation in the continuous case. Any function Q,
inserted in (10.2) furnishes the explicit expression for an incomplete
moment. As an example let us consider the Pearson class of fre-
quency functions.

This is the following special case of (10.1)

P, +0Q,—a,+ax
Qz=—(bo_¥—brx+bzx2)

where the a’s and &’s are constants. Consequently, for any frequency
function in the Pearson class there exists an incomplete power-moment
of the first order whose explicit expression can be immediately given
namely o '

[" @+ b + (@ +2b) %) fydx=— (b, + bt +b,8)f.
- ] . .

And, more generally, if Q, is an arbitrary function we have for
any frequency function of the Pearson class

® a, -+ arx , '__
-/; (bo"l‘bxx‘l"ngz Qz+Qz)fzdx——Qtft'

Let us put
R, = P,
Q.
The ratio R, is determined by the nature of the frequency distrib-
“tion. Introducing this ratio we see that the problem of determining
the incomplete moment

mezf:dx= Q.1

t

is equivalent with the problem of solving the differential equation
in Q,
Q,x = (I + Rx) Qz_l’z .
" In the continuous case we define a characteristic multiplier
belonging to the constant a, as a function H, satisfying
Q‘Hlx‘(Pz +an) Hz=0

~ 23 ~
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and we define a set of characteristic multipliers H,, (v=o0,I..%)
belonging to the constants a,,, and a set of functions satisfying
”n—I
(10'3) Qx H,n,z - (Pz + Ay n Qx) Hn,x = Qz Z 2,y Hv,x .
. v=0
Let us for brevity denote by @ the left member of the equation

obtamed from (10.3) by carrying all the terms over on the left side.
Then we have

“—1

(0.4 Q{ a1 t—a ) H, fo— [, a,,vHv,,}=f,®

y=0
and (P, + Q,) times the bracket in (10.4) is equal to — ', © .

. Hence: In any point x where either Q, + o and /, finite or P, 4- Q. 0
and f, finite, we have

d n-—1I
(10'5)' 5 (Hn,zfz) + (I - arm) Hn,xf f Z ﬂ”\, v,z
dx . . y=20

Let
vt'_/ V,zfzdx

be the incomplete moments taken over a set of characteristic multi-

pliers. If Lim H, , f, = o, the integration [ d x extended to (Io 5)
22— ©
gives
. n—1I
T—a,)M,,=H,,[+ Z a, MVt
y=0
This formula is analagous to (4.12).
In order to obtain an expression for the characteristic numbers
a,y in terms of the integral properties of the frequency function, we
introduce the complete moments

(10.6) U; =_f 9, .l d%

8

(10'7) Vi = [ (@i,z“?:‘,z) Hn,xfzdx

8

whete o, . ({=0, I...7) is any set of functions such that the deter-
minant U, is different from zero.. Let us multiply (r0.5) by o¢; ,

~ 24~
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and perform an integration over x between ¢ and w. If we use the
partial integration

© d ° ® | ‘
f?i,zd—_x (Hn,zfz) dx = [q)i,an,zfx]t ——‘f Cp’i,zH»,zfxdx
H

and then let £—» — » and w—»« we get, on the assumption that.

Lim cpi,an,xfz =0 when x—¥ -+ «

" (10.8) P2 Usa,,=V, (i=o0,1...m).

1=0
The system of linear equations (10.8) is the same as (7.3). The

whole analysis of Section 7 therefore applies also to the present con-
tinuous case, provided only that the moments U,; and V; are defined

- by (10.6) and {10.7) instead .of by (7.1) and (7.2).

. If F, is a numerically given frequency distribution, the local
criterion for the fact that F, belongs approximately to a given (P, Q)
class defined by the differential equation (10.1), can be formulated

* thus: Consider the function

;0 0,z M n,zé ’
- —1I g Vo Uao . Uon ’ ] Uﬂo Uoné
R TNV A N |
vu. ... s Un,

where

__dlog(H, ,F) dlogH,, n dlogF,

G’. dx T dx dx

The criterion is that ¥, shall fluctuate closely around unity.
Indeed, if F, belongs rigorously to the class (P,Q), ¥, must be equal
to unity. This is seen by expressing in (10.5) the constants a,, in

terms of the complete moments U; and V;by the same formulae as

those used in Section 7.

The total criteria takes on exactly the same form as in the case

of a discrete distribution, provided only that we conmsider, in the

- continuous case, U; and V; as being defined by (10.6) and (10.7).
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