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VORBEMERKUNG DES HERAUSGEBERS

Seit Henry L. Moore, vor nunmehr bald zwei Jahrzehnten
— ungeachtet aller Einwinde von Marshall und Edgeworth —
mutig die statistische Analyse von Nachfragekurven in Angriff ge-
nommen hat, ist ein neues Sondergebiet mathematisch-skonomi-
scher Forschung entstanden. DaB die Geltung des Gesetzes von
Nachfrage und Angebot an die Voraussetzung gekniipft ist, daB die
»ibrigen Bedingungen“ gleich bleiben, wuBite man sehr wohl und
tibersah auch keineswegs, daf diese Bedingungen in der Realitiit
nie erfiillt sein konnen. Feinsinnig ausgesponnene mathematisch- -
statistische Verfahren sollten iiber diese Schwierigkeiten hinweg-
helfen. Allein, wiewohl das Problem theoretisch klar gestellt war,
hat die mathematische Analyse gar zu oft zu Scheinlésungen ge-
fiihrt. Professor Ragnar Frisch sucht zu zeigen, welche Fall-
gruben des Forschers harren und wie der Gefahr einer Fehlanalyse
begegnet werden kann. ’ S

Die kritischen Auseinandersetzungen iiber Voraussetzungen
‘und Grenzen der einzelnen mathematisch-statistischen Verfahren
sind fast ausschlieBlich in der amerikanischen Literatur erfolgt.
In Deutschland haben diese die Fragen der praktischen Markt-
forschung eng berithrenden Diskussionen noch kaum einen Wider-
hall gefunden. Wir sind daher gendtigt, die Schrift von Professor
Ragnar Frisch in englischer Sprache herauszugeben.

Wir haben von Anfang an unsere besondere Aufmerksamkeit
der Analyse von Nachfragekurven gewidmet. Als Heft 2 unserer
Reihe ist die Untersuchung von Hans Staehle: »Die Analyse von
Nachfragekurven in ihrer Bedeutung fiir die Konjunkturforschung*
erschienen, die erste Arbeit iiber den Gegenstand in deutscher
Sprache iiberhaupt. In Heft 10 hat Henry Schultz, einér der be-
deutendsten Schiller von Henry L. Moore, unter dem Titel sDer
Sinn der statistischen Nachfragekurven® bereits eine umfassende
Darstellung der gesamten Problematik zu geben versucht, wihrend
M. Ezekiel in Heft. 9 gezeigt hat, wie die Analyse von Nachfrage-
kurven in den Dienst der »Ereisvoraussage bei landwirtschaftlichen .
Erzeugnissen gestellt werden kann. Wir hoffen in nichster Zeit
eine weitere Schrift iiber die Analyse von Nachfragekurven heraus-
bringen zu kdnnen, die auch dem mathematisch weniger bewander-
ten Leser die Moglichkeit geben wird, sich mit dem Aufgabenkreis
dieses besonders verheiBungsvollen Zweiges okonomischer For-
schung vertraut zu machen. : '

Frankfurt a. M., im Januar 1933

E.Altschul
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1. INTRODUCTION. FICTITIOUS DETERMINATENESS -
CREATED BY RANDOM ERRORS. o

- On the road to statistical demand and supply curves there are
many pitfalls. Some of them lie in the difficulty of knowing exactly
how reliable the data are and under what conditions they were
collected. Others are of a mathematical sort and are connected
with the variability type of the data. The object of -the present -
paper is to discuss some points regarding the latter aspect of the
problem. _ ‘ :

Some of the methods that have been proposed for the statisti-
cal construction of demand and supply curves involve a mathe-
matical apparatus of a very dangerous sort. I shall especially
consider a certain form of pitfall that occurs in this field in various
forms of disguise, and which we may characterize by the catch-
word ,fictitious determinateness created by random errors“. The
nature of this pitfall may be illustrated by the following simplified
example. Suppose there exists in (x, y) coordinates a straight line
‘whose angular coefficient ¢ we want to determine by observing
points on the line. Let (x,,y,) and (x,,y,) be two sets of obser-
~vations. The angular coefficient is then equal to '

(1.1) L e=T1Ts -
L X —x, ,

'I>‘his. furnishes a determination of ¢, provided the two
observations do not coincide, that is to say, pro- .
vided we do not have x,=x, and Y1==Y..- In this latter case

the right member of (1. 1) is of the form gand furnishes no deter-

mination of c¢. This will be the situation if the observations are
absolutely correct, not affected by errors of observation.




Now suppose that there are present errors of observation.
Suppose that each actual observatxon is of the form (X,Y) where

X=x-§ & &
. Y=y+u

x and y being the systematic variables and € and | being errors
of observation. The actually observed slope

C= Y, —Y,__(Gi—y)+0m """"Iz)
(= —x) G —

may or may not be an approximation to the correct slope. If we
are in a situation where x,=x, and y,=y., then C is of the
form: a random error divided by another random error. In other
words the slope computed is entirely meaningless although to the
appearance this slope is a determinate magnitude. And the
situation will be similar if the systematic displacements x,—xX,
and y,—y, are small as compared with the error differences
E,—E, and n,—n.. We may for brevity express this fact by
saying that the computed slope is meiningless whenever we are
nearly in a situation where x, =x, and y,=7Y..

In the above example the situation is so simple that no real
danger exists of fooling oneself. But when we come to more com-
plicated procedures a real danger of this sort arises. This is in
particular the case when we approach a statistical material with
the object of determining numerically the constants of certain
theoretical laws that we have worked out a priori.. In fact, in
such a case it will always be possible to deduce an infinity of
relations which the material must satisfy if it shall really be a
material that has emerged under the influence of our postulated
theoretical laws. There may for instance be sundry relations
connecting the moments of the material, or connecting certain
discrete values in the material etc. In.general these relations will

‘contain also the parameters we are attempting to determine. In

uch cases a nearly irresistible temptation arises to select a
number of these sundry relations, equalinnumberto the
unknown parameters, and consider these relations as
a statistical determination of the parameters. If it should be
found that the theory, as first conceived, was not general enough,
the temptation arises to generalize the theoretical concept at
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liberty, introdu'cihg new parameters and simply increasing
the number of equations used accordingly.

Such a procedure will be nonsense unless it can be definitely -
shown that the systematic variations exhibited in the .

material are such that they would produce a determinate solution

even though no random errors were present. But such "an in-.

vestigation of the natur_e of the systematic as distinguished from
the accidental variations in the material is a very subtle matter.

Sometimes it may for instance happen that the very assump- |

tions back of the theoretical scheme adopted, are incompatible
with the existence of a statistical material where the systematic
variations lead to a determinate solution. To these questions
there is frequently paid too little attention. And the appearance

of the numerical results themselves as obtained’ by this or that -

arbitrarily selected system of equations will as a rule contain no
warning signal by which to distinguish between significant deter-
minateness and indeterminateness. In practice the random ele-

- ment will indeed always be present and make the result appear

as if it should be quite determinate and significant. I believe that
much work that has been done in multiple correlation both on
prices and otherwise is meaningless for this reason.- The usual
computation of standard errors of the parameters involved will
in general not be a safeguard against the kind of indeterminateness
I have in mind. This question is related to the theory of cluster
types discussed in my paper ,,Correlation and Scatter in Statisti-
cal Variables®.?) s T ‘

In the present paper I shall not follow up this multiple corre-
lation aspect of the fictitious determinateness created by random
errors. Instead I shall take up the two-variable problems of
determining at the same time a neo-classical demand curve and
supply curve from the same price-quantity material. The present
analysis does not wind up with any definite demand and supply
curve method applicable under a variety of circumstances. But
it gives a discussion of various possible cases and shows how
various assumptions about the underlying situation leads
to certain values of the demand and supply elasticities. (See for

1) Nordic Statistical Journal 1929. See also a joint paper by Professor

Bruce D. Mudgett and me it the Journal of the American Statistical Asso-
ciation, December 1931. » B




instance formulae (3.13), (3. 14), (3. 18) and (3. 19)). And above
_all it attempts to point out the pitfalls that must be avoided.

To make the discussion concrete a considerable part of it will
be devoted to a criticism of a particular method which has been -

propagated in this field and which, in my opinion, is a characte-

ristic example of one of these ingenious methods that are funda-
mentally unsound for the above mentioned reasons. I mean Dr.
Leontief’s method of constructing demand and supply curves 3).
In many cases the coefficients obtained by this method are, I be-
lieve, entirely meaningless, their magnitude being determined
essentially by the random disturbances in the material. And in
those cases where they have a sense, they do not as a rule express
demand and supply elasticities, but simply express the historical
trend connection between price and quantity. :

The analytical tool I am using is more general than the one
used by Leontief. But at the same time it is more elementary. It
contains for instance no reference to the least square minimizing
procedures used by Leontief. These minimizing procedures are in
fact quite superfluous. They veil the true nature of the problem
-rather than shed light on it. All Leontief’s results can be obtained
simply by a few elementary considerations regarding the moments
of a sum. : :

2. STATEMENT OF ASSUMPTIONS AND DEF!NITION,OF THE
SYMBOLS USED. o ’

? .
. In works on the statistical determination of demand and supply
curves it is frequently assumed that the demand curve has an elasti-
. city which is constant all along the curve and also constant over
time. In other words, the demand curve is assumed to be such that
it appears as a straight line when pletted on a double logaritmic
scale. And the only change which takes place in this curve in the
course of time, is that the curve is shifted up or down, its slope
remaining unchanged. A similar assumption is often made for
the supply curve. In themselves these assumptions are perhaps

2) Weltwirtschaftliches Archiv, July 1929,
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questionable, but that i is an aspect of the problem which I shall not
discuss here. I simply grant the assumption of constant elasticitics.

These assumptions being adopted, we can write the demand
and supply functions:

2.1) x=u-}ap (Demand)

2.2) x=v-fp (Supply) -

Here x stands for the log of the quantity demanded and supplied
respectively, p stands for the log of the price, u and v are the shifts
(;;Niveauverschiebungen* in Leontief’s terminology), and e and B8
are the demand and supply elasticities respectively. The magnitu-
des x and p are directly observed as time series. The shifts u and
v we also conceive of as time series, but they are not directly obser-
vable. The problem is to determine the magnitudes of a and 8 from
the observation of x and p.

In order to characterize the four time series x, p, u and v we
introduce in the usual way their arithmetic means %, p, 4, ¥, taken
~over the interval of time considered. Further we introduce the mo-
ments

,>mn =X (x-— i)' ) Mgy = p) (11 - ﬁ)z
mpi,ZZ(p_;ﬁ)z : mw=2(v——v")2

M =2E—9-@—p my=3@—5 -9

" where the summation = is extended to all observations in the inter-

val of time considered. If we consider different materials, say the
materials Nos. 1.2.... we use the notation Mxx -y, Mxx-g, Mpp -y,
“ete. The magnitudes
I=_————-—andp=
Ve myp
are the coefﬁclents of correlation between x and p and between u
- and v respectively. The magmtudes

Muy

Vmuu Myv

1=T1/22 and A= |/

Mpp
may be called the relative ,,violences* in the set (x, p) and (u, v) res-
pectively. The number I expresses the intensity (the amplitude) of
the fluctuations in x as compared with the intensity of the fluctua-
tions in p. And A has a similar meaning for the set (u, v). For con-
venience we shall also introduce the ratios

11




H=d=22  E=pr=D2X
T Mpp Mpp ]

h = pA= = k= AP = e

v My

3. THE FUNDAMENTAL EQUATIONS.

: From (2. 1) and (2. 2) we deduce
@y . x—x)—al—p)=@—10)

(3.2) G—%)—Be—D=0—%) -

First we multiply (3.1) by (8.2) and perform a summation over.

time, then we square (3.2) and (8.1) and perform a summation
over time. This gives

33) - w— (24-B) msp - aBimgp = mer

' (3.4) ) mn—2ﬁmxp+§2mpp—-mvv
(3.5 Myx — 26 Myp -}~ @® Mpp == Mua -

Taking the ratio between (3.3) and (3.4) and also the ratio
" between (3. 4) and (3. 5), we get '

) (ap— h§2)—(a+ﬁ—2hﬁ)H+(1—-h)K__o
' (@ —kB)—2 (e —kB)H+ (1 — KK =0

The equations (3. 6) we shall call the fundamental equatlons They

form a system of two equation in the six parameters

, (e, B), (h,k) and (H, K). -
The equation obtained by taking the ratio between (3. 3) and (3. 5)
~ would not be a new independent equation in these prameters.
The solutions of the two equations (3. 6) with respect to “the
various parameters are -

. ¢3~(¢+5)H+K
@y F2pH K
‘ at—2aH+K
(3.8) k k=p—2:—_—§—ﬁ-m
(39 p= of—(a+B)HLK

+ V@ — 20+ K- —2fH+B)

12




@10) g=2—"C+Ph+pk

\ T1—2hFk
e x=fplge

| .‘3"_2_’,__ e 2h:-(k>+(§) T
(ang’”a_Jnta—ﬂﬁ:; |
(314) f3~-l(r=;=(,L ) 1——1’)

In the equations (3. 13) and (3. 14) we~may attribute to the square

root either the upper or the lower sign. This gives two sets (a, f),

which both satisfy the fundamental equation. Even if we knew,

not only the observed parameters r and I, but also ¢ and A, the

solution in (a, B) would therefore not be absolutely unique. But,

apart from the selection of the sign, (3. 13) and (8. 14) furnish a

solution in @ and B whenever we are in a situation where we have

reason for making a definite assumption about the correlation and a
about the relative violence in the shifts (u,v). - ’

'~ If the shifts are uncorrelated that is p =o, and l ﬁmte, the
equatlons (3.10) to (3 14) reduce to

L e} Bk
(3-1,5)'- E=Thrp
P L o .
(3.16) _ KfTFk—
. apk
S NGl
(3.18) a=1l(=+x1VI—19)
- (3.19) ’ B::l(rx%yl-——rz)

13
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4. THE COURNOT EFFECT AND THE TREND EFFECT.
CLASSIFICATION OF THE VARIOUS POSSIBLE CASES
ACCORDING TO THE NATURE OF THE SHIFT DISTRIBUTION.~

From the definition equations (2.1) and (2. 2) follows: -
' P —va ’
f—a
-—-—v
p—a

X =

p:

Therefore, to any given scatter diagram in (u, v) corresponds a

. uniquely determined scatter diagram in (x, p) and vice versa

(provided a 3= B). And the nature of this correspondence is just
determined by the two constants a and B. I propose to discuss
what the nature of the (x,p) distribution will be under various
assumptions regarding the nature of the (u, v) distribution.

The nature of the (u, v) distribution may best be described by B

distinguishing between the following four extreme cases: 1) De-
mand curve stability, i. e. A = o. 2) Supply curve stability, i. e.
X = oo. 3) Bilateral and uncorrelated shifts, i. e. A = o and finite,.
¢ == 0. 4) Bilateral and highly correlated shifts, i. e. A 3= o and
finite, 1. Between these extreme cases there are, of course,
intermediate cases, but for simplicity I shall here only discuss: the
»pure* types. The results of this discussion will in part exhibit
well known facts, and in part be novel. Since we here need a
complete classification, all cases must be discussed.

In the case of demand curve sta.blhty we have h = o0 and !
k= o, hence by (3. 6)

(RIS aﬁ-—(m+§)H+K 0
(42 | a?—2H}K=0

From the last of these equatlons we obtam
(4.3) a=H=x=VH—XK —‘l(r:tV—- l—r'*’))

This shows that 1f a real solution in a shall exist, r* must now be
equal to unity. Hence: In the case of demand curve stability, the
(x, p) diagram must be perfectly organized, i. e. r* = 1. This is
nothing but an algebraic statement of the fact which has been

14 : ’ -




pointed out so clearly in Elmer Workmgs fundamental paper?) of
1927. Furthermore, since r* = 1, we get from 4.3)

(EX)) : : a=c¢l

where € == sgn. r = - 1 or — 1 designates the SIgn of r. That is to
say the regression in (x,p) coordinates has just the slope a. The
elasticity f is now indeterminate, when the only available data are
the (x,p) observatlons From (4. 1) we see indeed that

B = eH —K _12—rla
T a—H. T rl—ea
so that in the present case wherer=—¢, a=<€tl.

2
B= = mdetermmate

In the case where we have exactly A = o, B will be exactly of the
form o And if we have nearly A == o, then f will be of the form:

random error divided by a random error. In both cases the value
of B is of course meaningless.

It should be noticed that the above discussion holds good re-
gardless of whether the case A = o is reached by a limiting process
such that ¢* tends towards zero or by a process such that ¢* tends
towards any number between 0 or 1, or even by a process such that
0® does not converge at all. We shall refer to the case of demand
curve stability by saying that the (x,p) diagram now exhxblts a
Cournot effect on the demand side.

Also in the case of supply curve stability, i. e. A = oo, >, the orga-
nization of the (x, p) diagram must be perfect, i. e. 1* = 1. It is now
B that can be determmed namely by the formula

p=c¢l : ‘
And « now becomes indeterminate. In this case we shall say that
the (x, p) diagram exkibits a Cournot-effect on the supply side.

To sum up we can say: In both the stability cases the organi-
zation in the observation diagram (x, p) must be perfect. And the
slope of the (x, p) regression line indicates in the demand stability

1) Quarterly Journal of Economics, February 1927. This paper gives
an exceedingly interesting expose of several points which have later come

into the foreground of the discussion. It studies for instance the possibility
of determing both the demand and the supply curve from the samo material
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case a (\uth B indeterminate), and in the supply stability case B
(mth a indeterminate).

In the case of bilateral, but uncorrelated shifts the appearance
of the (x, p) scatter diagram will depend essentially on the mag-
nitude of the relative violence in the shifts, i. e. on the parameter A.
Instead of A itself it will here be more convenient to consider its
square k ==2*. How will r depend on k? From (3. 17) we see that if
a==f, r* will be equal to I for any magnitude of k. This is a trivial
case without interest. If a %= B, r is a function of k. Let it be r(k).
For k =0, r==sgn. a. Assuming the demand elasticity to be nega-
tive we consequently have r(o)==—1. The derivative of r with
respect to k, a and B being constants, is equal to

ak) __ (@—Br ((—a)+ ) o

| (4.5) dk — 2(a?F (a2 POk - pKP)E

(3.17) in connection with (4. 5) show that if the demand elas-
ticity is negative and the supply elasticity is positive, r is increas-
ing monotonically from r(0) =-—1 to r(co) == -1 as k increases
from o to oo This gives a description of the may in which the
closeness of the organization in the (x, p) scatter diagram depends
on the relative violence in the fluctuations of the shifts u and v,
when these shifts are uncorrelated: There is high organization in
the (x, p) diagram.when either the demand or the supply curve is °

- relatively stable. Otherwise there is a lack of organization (or at

least this organization is far from rectilinear). From (8. 17) is seen

~‘that there is complete lack of correlatlon when the relatlve vio-

lence is equal to

N =
2=

~For a lower 2 there is a negative correlation. For a higher & a

positive correlation. The high correlation which we obtain in the
present case for A very small or A very high is obviously nothing
else than a Cournot effect of the kind discussed in the two stability
cases.

Not only the closeness of the organization, but also the slope
of the regression line in the (x, p) diagram will in the present case
depend on k. The absolute value I= } K of the slope of the

16




diagonal mean rcgressiop 1} in the ‘(x, p) diagram is now simplf
equal to the weighted square mean of the clasticities
a and B, the weights being the inverted squares of the standard
deviations of u and v. We get indeed from (3. 16)

L . U p2 . . '

oa ' oy

1 -1
it

Even if the shifts are uhcorrelated, the absolute value of the

(4'6) l= . (Whexi p= O) .

_. slope of the (x,p) regression does therefore not tell us anything

about the elasticities a and B. Trying to evaluate the elasticities
@ and P from the slope of the observed (x, p) regression and the ob-
served (x,p) correlation, without making any assumption
about the relative violence A, would be the same as trying to
evaluate the two parts of a cake by only knowing the size of the

~ whole cake: But, if we have some reason for making an assumption

about the relative violence in the shifts, that is about A, then the
elasticities @ and B may be determined, namely by (3. 18) and (3. 19).
This is one example showing the fundamental réle played in the
present problem by the relative violence between the fluctuations

in u and v. We shall later see other examples of the same thing.

We now come to the case where neither the demand nor the
supply curve is stable and where there exists a high correlation
between the shifts. This correlation may be due to a cyclical
‘connection between the shifts, or due to a trend connection be-
tween the shifts over the interval of time considered, or due to
some other cause. In the present study I shall most of the time
consider a high shift correlation as an expression for a trend reiation
between u and v. The case of a cyclical connection u and v I
hope to be able to take up in a later study. -

From (3. 12) we deduce when p=%1 =
@ - i (AFN @B

- ({CESVRCES .

1) By the diagonaf mean regression I understand the regression deter-
mined from the diagonal elements in the adjoint correlation matrix. (Sce
formula (4. 23) in my paper ,Correlation and Scatter ...* in Nordic Statistical

Journal 1929.) In two variables the diagonal mean regression is poetling clse
than the regression used by Lchfeldt (Economic Journal 1914).

-
2 Frisch, Pitlalls ; 17
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Thus, unless A=21 or A= +2Z ? (upper sxgn when e=++1, lover
czgn when ¢ =— 1), we must have

r_scn(lq:l)sgn(azppl)-—s
That is to say, apart from the specified exceptional cases, the
assumption of a high correlation between u and v entails a high
correlation between x and p. But this correlation between x and p
must be interpreted in quite a different way from the high corre-
lation between x and p occuring in the case of demand curve
stability or supply curve stability. The correlation now considered

-is indeed not a Cournot effect but a trend effect. It is the

trend in u and v, that produces a trend in x and p, and this fact
is responsible for the (x,p) correlation. The slope of the (,p)
regressxon therefore now expresses neither the demand elasticity,
nor the supply elasticity, but the historical trend relation between

x and p. This historical trend relation would become nearly equal - - -
~to the demand or the supply relation only if in addition to the

high correlation between the shifts we should have the situation
where one of the two curves shifts much more violently than the
other, i. e. either A==0 or A==o00. This is easily seen from the
explicit expression for the slope of the (x, p) regressxon Thls ex-.
pression now becomes

(4.8). : d=2FE2

Here, instead of considering separately the two formulae abtamed
from (4.8) by selecting successively the upper and lower sign,
corresponding respectively to @ = -4 1 and ¢ = — 1, we may
simply consider the function ‘ o
: __a—B2A
49 : = = |
but let A vary from — oo to + oo instead of from 0 tooo. A
negative A would then correspond to @ ==-— 1, and a positive A

~_to ==+ 1. The course of the function (4.9) is as follows: As 3
_increases from — oo the function decreases monotomcally from )

the (pos.) asymptotic level B, passmg zero for A= being equal

p’ .
to the (negative) magnitude a for A=o0 and" going down t0o ——co
for A=1. In-this “point of singularity the other branch comes

18




down from -+ oo and decreases monotonically towards the asymp-
totic (positive) level B as A increases from A =1 to A — oo, Thus,
also in the case of highly correlated shifts is it true that only when

A is near to o or oo will the observed. slope in the (z, p) diagram

have any significance as an expression for the demand or supply
elasticity. As an example we may consider the situation where,
the demand shift is always a definite fraction, but a very small
fraction of the supply shift. Here there would be a very high
(u, v) correlation, but the observed (x,p) diagram would never-
theless exhibit a pronounced Cournot effect on the demand side.

As a special case of bilateral shifts we may consider equi-
lateral shifts. This is the case where the fluctuations in u are
just as violent as the fluctuations in Vv, in other words A=1. The
case of equilateral shifts has a significance that is independent of
units of measurement. The magnitudes u and v are indeed com-
mensurable because they are both measured in the same units as x.
In the case of highly and positively correlated equilateral shifts
the slope of the (x, p) regression is infinite, as is seen from formula
(4. 9), assuming a = B, : S

5. CLASSIFICATION OF THE VARIOUS CASES "ACCORDING

TO THE NATURE OF THE OBSERVED DISTRIBUTION (x, p).

We mé,y also classify the various cases according to the appea-

_ rance of the observed diagram (x, p). Certain aspects of this ana-

lysis are already contained in the previous Section, but in order
to get a complete picture of the situation it will be well fo.look at
it also from the point of view of the (x, p) distribution. We shall
distinguish betwen the following two principal cases: 1),the corre-
lation in (x, p) is very high, 2) the correlation in (%, p) is very low.

If the observed correlation is perfect, i. e. r==¢ where ¢ is

" either -+ 1 or— 1, then by (8. 8) and 3.9)

| 1____}Ia'.-msl

.B—el

_ _(e—e)(@—s)
P= 3 2
T4 Ve G—ep
This shows that if a==¢l but = €1, then A=0. If B=c¢l but

atel, thenl=oc0o Andifaz=el,fd=el, then o] =1. The trival
case a=¢l, f==el, which entails a = B, is without interest in the

2.' : ’ ' . '7 19
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present analysis. Thus, if the observed correlation between x and
p is very high, there are three hypotheses to be considered:

1) The high (x,p) correlation is due to demand stability, in
which case the observed regression slope is the demand elasticity.

2) The high (x,p) correlation is due to supply stability, in
which case the observed regression slope is the supply elasticity.

3) The high (x, p) correlation is a trend effect in which case
the correlation between the shifts must have been very high. -

Which one of these three hypotheses is the correct one ean,
of course, not be decided only from the knowledge of the (x, P
distribution. But it is at least interesting to notice that if the
observed (x, p) correlation is high, then the above three hypotheses
are the only ones admissible. The case of bilateral and
uncorrelated shifts is for instance excluded.
) If we take account not only of the (x,p) distribution as re-
‘presented by the swarm of observation points in (x, p) coordinates,
but also take account of the shapes of the two time curves x
and p, we can frequently get some basis for further conclusions.
" For instance, if the (x, p) correlation is high and if both the x and
* the p series exhibit a pronounced tren d over the interval of time
considered, it is very probable that the observed high (x, p) corre-
lation is a trend effect, i. e. due to a high shift correlation, and is not
a Cournot effect. :

If the observed correlation between x and p is very low, it is
simpler to indicate those hypotheses that are n o t admissible. If
r=o0 we have by (3.8) and (3.9) o,

2 a2—~|-K‘ K aB+K v
= p=
+ V@ +Kp+K)

F+K

The formula for A shows that if both a and B are finite and diffe-
rent from zero, and if the observed K is finite, then A must be
finite and different from zero. And the formula for @ shows that,
- apart from the trivial case where a =f and the case where K==0
or oo, ¢* must be different from unity. Possibly we may have ¢ = o,
and if this is the case, I= V(—a)B. This shows that if there is
very little correlation between x and p, then we know that:

1) We cannot have demand stability.

2) We cannot have supply stability.
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3) We cannot have the trend situation.

4) But we may have the case of bilateral and uncorrelated
shifts.

w
6. LEONTIEF’S PROBLEM AS IT APPEARS WHEN STRIPPED
OF IRRELEVANT COMPLICATIONS.

Let us again start from the definitions (2. 1) and (2. 2). From
these we deduce immediately (3.1) and (8.2). Multiplying these

latter equations together and performing a summation over time -

‘we get (3. 3). Hence if u and v are uncorrelated, that is Moy =0

| (6.1) ‘2f—(a+B)H+K=0. e

This equation is all that is needed in order to deduce Leontief’s

results. (6. 1) shows in particular that if one of the two elasticities

@ and B is given, then the other is determined. It is even a simple
rational function of the first, as is seen from (6. 1). And this holds

good provided only that the shifts u and v areuncorrelated

1. e. ¢ == 0, which is, of course, a much less severe restriction, than
the assumption of their independence involved in the
minimizing procedure which Leontief uses to show that one of the
elasticities can be determmed from the other in the case where
e=0. _ -

-

If we have two statistical materials Nos 1 and 2, both having
~the same a and B, and u and v bemg uncorrelated in both ma-

terials, then

| S—tPE+E=0
T 0 o - .

where H,, H, and K,, K, are the magnitudes H and K as determined
in the materials Nos.1 and 2. (6.2) holds, of course, good re-
gardless of whether the two materials are partly overlapping or
not. The system (6. 2) is a linear system by which the two magni-
tudes (a 4 B) and aff may be determined. And furthermore, the two
magnitudes (a 4 B) and aff are obviously the coefficients in the
second degree polynominal whose roots are @ and B. Now, solving
the linear system (6. 2) with respect to the two magnitudes (a 4 f)
and of, and using these two magnitudes as coefficients in a second
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degree polynominal, we find that @ and B are the two roots of the -
equation in 7 :
1 H K

(6.3) ' 1 H, K|=
: 19 7
In other words the two ,elasticities* 1, and n, in Leontiefs theory
(determined by the formulae on pp. 30* and 31* of his paper) can
be nothing else than the two roots of the equation (6.3). This follows
from the above argument, and we can also check it by comparing
with Leontief’s formulae. Indeed, Leontief’s magmtudes X and Z
are in my notation ,
X, =YK X=YK
Z, =YH Z =Y2H2 .
and his magnitude Y stands for the square moment ofp. In othet
words Y, =my,.; and Yy =my,. 2 o
~ Further Leontief’s magnitudes a, b,care . .- .~
=XY, —Z2=Y2(K, —H? . 7
b=X Y, XY, Sz, — VX0 K — 2H,Hy) -
Ce=X,Y,— 7,7 Y22(Kz Hy%)
Now, Leontief expresses the elasticity 'q by means of his parameter -
- A thus :

AZ, —a
©-4 n= in — aﬂzf2
where 2 sati_sﬁeé :
(6.5) o —bl+ac—o
The two roots X give the two values of 1. In order to show that
Leontief’s two magnitudes 1 are the same as the two.roots of my
equation (6. 3) we therefore only have to show that if we ‘express .
% by 1 by means of (6.4) and insert this in 6. 5), we are led to an
cquation which is equivalent with (6. 3). Carrymg out the- sub-
stitutions indicated we get
* [aY —bY, Y, 4 cY,?] — y[22Y,Z, — b(Y 1Zg+ Y Zl) ~+ 2cY121]

+[aZ,* —vZ,Z, 4-cZ, = o
And inserting here the e\presclons fora, b, ¢, Y, Z, in terms of my
symbols we get -
— Y Y, — 1) (], —H,)ye —(K — K- (XK, H,— KHI)]_o
w lmh iz the (qumon (6. 3). : :

ST




)

From now on I shall leave Leontief’s formulae and handle his
coefficients by means of the equation (6. 3). This reduction of the
problem is a great help. It brings the problem back to its natural
and simple form. The equation (6. 3) enables us to see much clearer
on what properties of the material the results of the computation
depend. Equatlon (6.3) we shall call the two-material equation.
Its explicite éxpression can be written in the form

(o) 7 =B =Ko VE K IEE —BE 6 —H)
2(H,—Hy)

If H,=H, and K, =XK,, the roots are not determmate Other-

wise they are. The behaviour of the roots in the vicinity of a

situation where H,_—Hz and Kl_-K2 will be discussed in the

next Section. :

7. THE SIMILARITY CASE: ONE ROOT OF THE TWO-
MATERIAL EQUATION EXPRESSING THE ENMPIRICAL
' REGRESSION SLOPE IN (x, p). ]

If we approach a situation where the magnitudes H and K in
~ the two-material equation (6. 3) are such that H, = H, and K, = K.,
the roots of the equation become nearly of the form g Does there
still attach a meaning to the roots and if so what is this meaning?
- For brevity we shall say that we areina similarity situa-
tion if H,=H, and K,=K,. If we are exactly in such a
* situation, the numerical computation according to the formula
(6. 6) would not lead to any determination of the roots at all, unless
in the course of the computation we had introduced either some
direct mistake or some slight inaccuracy due to the neglecting of
decimals. However, this is not the question in which we are here
primarily interested. In practice we will never have a situation
where exactly H;=H, and K,=X, From an economic and
statistical point of view the pertinent question is what the signifi-
cance of the-roots are when we are nearly in a similarity situa-
tion, that is, when H, is nearly equal to H, and K, nearly equal
to K.,.
If we have exactly @,==0,==0 and the assumption about
constant elasticities is exactly fulfilled while there exists some
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slight difference between H, and H, or between K, and K, (or
both), the equation furnishes the correct roots a and B. But again,
-in practice this is never the situation. There may perhaps be some
reason for assuming that ¢, and @, are magnitudes very close to
the zero, but it would be absurd to assume that they are rigo-
rously equal to zero. Even if there is no systematic variation
tending to produce a positive @* the erratic element in u and v
will always create some deviation of ¢ from zero. Therefore,
if we are nearly in a similarity situation we must reckon with the .
possibility that ¢,—@,, H,—H, and K,—K, are small quantities
ofthesameorderofmagnitude. That is why we need a
closer discussion of the roots of the equation in the vicinity of a si-
milarity situation. In the present Section I shall discuss what fea-
tures of the observed (x,p) distribution the two roots are ex-
pressions for when approximately H,==H, and K,=K,. The
results thus obtained will then in the next Section be interpreted
further in the light of possible assumptions about the (u, v) distri-
bution.

A situation where H1 =H, and K,_.K is the same thing
_ as a situationi where the two violences !, and 7, are equal and also
the two correlations r; and I, are equal. This means that I, and 7,

x

become nearly equal to the ratio lzg-— that holds good for the

» 7 ;
whole material considered as a unity, and r; and r, become equal -
to the correlation r that ex1sts in the whole matenal Indeed, if
l, =1, we have

le—p2 o Mxx.i _ Myx.2 mxx.1+mxx.2t__l,4
2 =1 —
Mp.1  Mpp.2 Mpp.1-Mpp.2

And if further I =T, we ‘have

‘ Mxp.1 +mx'p '

mex.l Mpp .1 +mex.2 . Mhpp .2~

The denominator in the last expression is equal to
ll‘mpn-l‘i‘lz‘mpp-2:l(mpp-l+mpp-2)
- V (mxx.l +mxx 2) (mpp l+mPP 2)

o that r,=r.==r. Thus, as we approach a similarity situation,
all the il”U]lLf.( 15 1, I, T, and r. tend towards well defined values.

r1=r2:
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On the other hand when we approach a s:mxlanty situation,
the parameter -

51
N r r_n—r l
7.1 8 — 2.
] ]

approaches a —g'form The magnitude of s éipresses =

the nature of the approach to the mmxlanty
situation, s expresses how that little divergency is con-’
 stituted that separates the situation from being exactly a simi- -
larity situation. More precisely: s expresses whether the actual
material may be looked upon as one where the rapidity with
which I, and 7, tend towards each other is less than or larger
than the rapidity with which r, and r, tend towards each other.
The magnitude s expresses just the relation
between these two rapidities. And this relation has
an important influence on the two roots (6. 6). ,
If the actual material i$ such that'l, and I, lie much closer -
together than r, and r,, then we get an approximate expression
for the roots by letting first 7, tend towards 7, and then r, towards -
r, in (6.6). On the contrary, if the actual material is such that
r, and 1, lie closer together than I, and I, then the approximate
expression for the roots is obtained by first letting r, tend towards
r, and then I, towards 1,. These two 'limiting processes do not
give the same result. Indeed, the first process leads to *
(72 n==l
~And the qecond process leads to

(1.3) ‘ n-———(l:l:Vl—-r’) S

If r?is clo<9 to unity, the two roots (7 3) will be nearly equal,
both of them becoming mnearly equal to the slope of the dmgonal
mean regression. -

In terms of the parameter s the case leading to (7.2) is cha-
racterized by s==1% oo, and the case leading to (7.3) is cha-
racterized by s=0. More generally if we arc in situation where
s is neither very large nor very small, the approximate expression
for the roots must be computed by taking account of the actual
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size of s. How do the roots depend on s? This is seen as follows:
Dividing the first row in (6 3) by I, and the second ‘row by l,
we get

1 l.

E irl )

;— p Li=o
3

1 7 7

From the second row in this determinant we subtract the first row.
Then we divide the second row by l,—1,. This glves -

1
L. ! A
L=y 1T
1 7 7
If we now let [, >l > 1 and r, > 1, > 1, the equation takes on
the form - L e
S P -
! =
1. ’
(4 -1 st 1l =o
~ l .
1 o o

i And the explicit solution of this equation is

, . 1=+x I/I---r“—l—r’s2
(1.5) n= . =l )
The formulae (7.2) and (7.8) are, of course, the specxal cases
s=2%ooand s=o of (I.5).

The formula (7. 5) shows that the roots of the two material
equation in the similarity case are approximately equal to the
product of the absolute value I of the slope of the diagonal mean:.
regression in the total material and a factor, which is a functxon
only of r and s, namely the two-branched functlon ’ ‘ ‘

(7 9 39 =1E 'I}I;I;J” s

The whole problem of studying the roots in the similarity

case is thus reduced to the problem of studying the function of
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»(7.7) o -r‘.__.{sll—-s

two variables defined by (7. 6), where r is the correlation coelfi-
cient between x and p in the total material 'md E is the parameter
defined by (7. 1). .

Let us first consxder the case where the (x,p) correlation is
very high, i. e. where we have approximately r=¢, ¢ being cither
+ 1or -—1 Putting r=¢ in (7.5) we get

I

Consequently If the total (x,p) correlation is very
high and if we have approximately H;=H, and
K,=K,, one of the roots of the two material
equation is virtually independent of s, and is
simply equal to the slope €I of the diagonal

mean regression in the total material

In order to study  as a function of s for values of r diffe--
rent from &, we first notice that if r changes sign, the only effect
is that also ¥ changes sign. It will therefore be sufficient to con-
sider the function ¥ when r is between 0 and --1. Furthermore,
if s changes sign, each new root is obtained by dividing the other

old roots into unity. In other words we have

: 1+V1-—-r’+r’s’_ 1'(1—8) ;
r(1+s) T1—V1—r st
Multlplymg this equation out we get indeed the 1dentxty
1—(1—r24-rs?) = r*(1 — s?)

‘ -Thxs fact is of help in plotting the function 3. Such a plot is given

in Fig.1 for r==1, 0.99, 0.95, 0.9, 0.8 and 0. 1. Fig. 1 shows

very clearly the situation that arises when the correlation is not

perfect but still fairly high.

For instance, if we follow the P curve for r= 0 9 we see that
o1ie of the two branches is nearly alwa}s very close to Y=+ 1.
To the left of the point s==o0 it is the branch obtained by attri-
buting the sign minus to the square root, that is close to unity.
To the right of this point it is the other branch that is close to
unity. To the left of s==10 the first branch is lying between 0.9
and 1. And tho the right of s==o0 the second branch is lying
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Fig. 1
between 1 and 019 A similar remark applies tho the curve r=0. 8
only are the limits here 0.8 and 1 and 1 and 018 respectlvely

Quite generally we see from (7. 6) in conjunction with Fig. 1 that
one (and, incidentally, only one) of the magnitudes ¢ is always

(thét is for any s) lying between r and % Forr=20.99,0. 95, 70. 9
and 0. 8 only that branch is plotted in Fig. 1 which is near to unity.

Since rl and i—are the slopes of the two elementary regres-

sions, i. e. the regressions obtained by minimizing the sum squares
of the deviation in the x and p directions respectively, we have the
proposition: -In the similarity.case there exists
always (i.e. whatever the magnitude of s) onerootofthe
two-material equation wh1ch gives a slope.
between the slopes of the two elementary re-
gressions. Thus if the (x,p) correlation is so high that the
regrgssion slope in (x, p) is clearly defined, one root of the equation
has a meaning, namely this regression slope. But as the value
of r* decreases towards zero the regression slope loses its meaning.
That i, there is now a great difference between the slopes of the
two elementary regressions and also between these slopes and the
slope of the diagonal mean regression. And , naturally, the agreement
between any of these slopes and the regression slope defined by
one root of the two-material equation also becomes less exact.
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| ‘ In terms of the parameter s this latter point is characterized by the
[ fact that there is now a considerable s-range, namely around
: s ==0, where the root in question depends essentially on’s. See for

instance the dotted lines r==0. 1 in Fig. 1.
On the other hand we see from (7.6) and Fig.1 that the
other branch of y is essentially dependent on s, even if r* is close

_ to unity.
. Even if one root of the two-material equatlon has a meanmg
B . as the slope of the (x, p) regression, it need not have any meaning in
terms of the elasticities @ and . As a matter of fact, so far I have -
not yet discussed the significance of the roots in terms of a and ﬁ
" atall. To this I now proceed.

8. A GENERAL DISCUSSION OF THE ROOTS OF THE
TWO-MATERIAL EQUATION.

Utilizing the results of the last Sections we shall now study
quite generally under what conditions the roots of the two-material
equation, i. e. equation (6. 8), have a meaning and what this
meaning is. In the classification of the various cases we shall use
the nature of the (x, p) distribution as a primary principle of classi-
fication and the nature of the (u, v) distribution as a secondary
principle. In other words the main classes will be determined by
the parameters Z,, ,, ¥, and r,. And the subclasses will be deter-

- mined by 4,, 2., 0, and @,. In terms of these parameters the situation

_ is as expressed in Table 1.
- proximately equal to“. In the case (1) of Table 1, we have a simila-
o rity situation, and the (x,p) correlation is IOW. Both roots will
consequently depend essentially on the parameter s, as we have
seen in Section 7. But s depends essentially on the small terms
that express the deviation of I,—1I, from zero and the deviation
of ry—r, from zero. On what features of the (u, v) distribution -
~ will these small deviations depend? It will be sufficient to study
1, —1,. The analysis of r;—r, is similar. And since l,—1l,=

, K, __l_fﬁ, we may Just as well study K; —K.,. By (3. 11) we have
1
(8.1) (1——2h +L1) (1—2hy4-ky) (K, —K,) = at A-—Hi2 B— 2aBC
where
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Nature of the solution of the two-material equation.

Tab. 1

e

e

When the observed ratio between the intensity (amplitude) of the qusnmy ﬂnrf .
tuations and the intensity of the price fluctuiations is

Nearly equal in the two materials (, = &)

Bignificantly different in the two
materials (4 == 4)

ry)

Noarly oqua! in the two materials (r,

2o © (1) (5) )

B % , Il | Both roots mesninglessthrough indeterminateness. | One root infinite the other zero.
2 87§ & The shifts may or may not be correlated. Even | Both of them meaningless.
:-,g': /I /i they are approximately uncorrelated the roots | The assumption about uncorre-
;“é & jjare meaningless. lated shifts not admissible,

‘Very high in both materials (r;=1r,==z=1)

(2)

One root is meaningless through indetermina-
teness, the other root is determinate and is
simply the slope of the (x, p) regression fitted
to the total material. If there is a specific reason
for assuming the high (x, p) correlation to be a
Cournot effect on the demand side (i.e. A ;=% ;=0),
the slope of the (x, p) regression represents the
demand elasticity in which case no conclusion
can be drawn about the supply elasticy. It the
high (x, p) correlation is a Cournot effect on the
supply side (i e. % ; = A, == O0), the regression
represents the supply elasticity, in which case
no conclusion can be drawn about the demand
elasticity. If the high correlation is not a Cournot
effect it must be a trend effect (i. e. Py==P,=—=1)
in which case no conclusion can be drawn either
about the demand elasticity or about the supply
elasticity.

The fact that the high (x, p) correlation is a
Cournot effect does not exclude the existence of
a high trend correlation between the shifts. But
this trend correlation will nmot appreciably in-
fluence the (X, p) regression slope when we have
& pronounced stability case.

(6)

Both roots determinate. One gives
the slope of the (x, p) regression
in the first material, the other the
slape of the (x, p) regression in
the second material. The assamp-
tion about uncorrelated shifts is
now admissible only in com-
junction with the assumption that
the observed high (x, p) corre-
lation in one material is & Cour-
not effect on the demznd side,
and in the other material &
Cournot effect on the supply side.
In this extraordinary case the
regression slopes give the elasti-
cities. Otherwise the roots of the
equation have no meaning in
terms of elasticities, but will
express the slope of the historical
trend relation between x and p
in the two materials,

Neither

very low
nor very
high .

(3)
Bimilar to the case (2), but the slope of the
{x, p) regression is now less clearly defined.

0 .
Similar to the case (6) but the
slopes of the two (x, p) re-
gressions are Dow less cleu-ly
defined.

When the observod quantity price correlation is

30

Signiticantly difforent
in the two matorials (r, == 1y)

{

Both roots determinate. One gives the slope of
the diagonal mean regression fitted to the total
(%, p) matena! and the other root gives minus
this slope.

The assumption about nncorrelated shifts is now
admissible only in conjunctior with the assump-
tion that both elasticities are egual in absolute
value, but of opposite sign. If these assumptions

can be meade, the elasticities are given by the

(x, p) regression slope. Otberwise the slope of

the (x, p) regression expresses neither the de-

mand elasticity) nor the supply elasticity mor
the trend effect, but must simply be locked npon
as an empirical fit to the actually observed (x, p)
scatter, this scatter being the composite effect
of clasticities and shift characteristics. The only
exception is the extraordinary case where both
materials show high observed correlations, one
positive the other negative (and regression slopes
of cqual absolute value), and this can be inter-
preted as due to a trendconnection that has been
exactly reversed from one material to the other.

@ .
As a rule both roots determinate
The shifts may or may not be
correlated, 1f they are uncorré-
lated the two roots give the
demand and supply elasticities
correctly. Otherwise the two
roots are meaningless.



A=2( —b)—(k —k) B=k —k —2(h, —hk,)
C=h; —h, — (k;h, —k,hl)

IfH,=H, and 0, — 0. =0, we have by (3. 15) (k, —k,) (@—B)
= 0, that is k, = k;, since we may disregard the trivial case a ==§.
In other words, if we are in case (1), and if we make the assumption
that the shifts are nearly uncorrelated, then k, and k, must be
approximately equal. But if k, and k, are approximately equal,
we see from (8. 1) that the size of (K; —K,) depends essentially
on the size of the small deviations from zero which-g, and 0,

_actually exhibit. This means that in case (1) the roots of the two

material equation will depend essentially on whether the closeness
with which @, and @, come to being equal to zero is more perfect '
or less perfect than the closeness with which 7, equals I, and r, -

.and r, equals o. It is clear that in any practical case it would be

absurd to make any assumption about this relative closeness. The
case (1) in Table 1 must therefore be characterized as a case where
both roots are meaningless through indeterminateness.

In case (2) the roots of the equation are determined by (7.7)
or with a better approximation by (7.5). From the discussion
attached to these formulae we know that one of the roots has now
a definite meaning which is virtually independent of s; it represents
the slope of the total regression. What is the meaning of this total
regression in terms of the elasticities @ and B? This cannot be
deduced only from the nature of the observed (x,p) distribution.

- It depends on the nature of the (u, v) distribution. In this respect

we have just the three cases discussed in Section 5: The high (x, p)
correlation may be either a Cournot effect on the demand side,
or a Cournot effect on the supply side or a trend effect. If we want
to interprete the first root of the equation in terms of the elasti-
cities, we have therefore the three possibilities indicated under (2)
in the table.

The fact that we have a Cournot effect in case (2) does not
prevent the existence of a high (u, v) correlation. From the discus-
sion connected with (4.4) we have indeed scen that we get a
Cournot cffect no matter what the shift corrclation is, provided
only that we have cither demand stability or supply stability. And
in connection with (4.9) we have particularly studied the Cournot
effect when there exists 2 high (u, v) correlation.
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The other root in the case (2) depends essentially on s.
Obviously s always gives an expression for a certain feature in

1 . .
the actually observed matenal namely the ratlo ll-' _12 ~. But

" this in itself is without interest in the present connection. We
" are here interested to know if s has any meaning in terms of the

elasticities @ and B. This it cannot have unless approximately
0, = 0, = 0, because this was the condition under which the two-
material equation was derived. (We may disregard the case where
the condition @, = @,==o0 is not fulfilled, but where the roots of
the equation nevertheless by coincidence give the correct
value of the elasticities). Therefore s and consequently the second
root in the case (2) is meaningless unless we have approximately
0, = 0,=o0. And if we have approximately ¢,==g,==0 we are
again in the situation studied under case (1), namely the situation
where the root depending on s is essentially influenced by the

size of the small deviations from zero which ¢, and e, actually

exhibit. The second root in the case (2) is therefore always

- meaningless. .-

From the discussion and the graph of the functlon (7. 6)

‘follows that the case (3) is similar to case (2) except for the fact

that the (x,p) regression slope is now less clearly defined. -

In case (4) the nature of the roots is best seen directly from
(6.6). If r, and r, are significantly different while I, and I, are
nearly equal, the two roots simly become * I. (Compare also (7. 2))
That is to say one root is simply the slope of the diagonal mean -
regression, and the other root is minus this slope. What is now the
meaning of the regressmn slope in terms of the elasticities?

From (3.18) we see that if the shifts are uncorrelated in both

materials, and if I, = I, we must have (a® — ﬁ’) k, —k,)=o0. We
may exclude the case a=p, which is a concretely inplausible

~ case. The possibility k,=Xk, is also excluded because this byl"

(8. 17) would entail r; =r,. Thus, in the case (4) the assumption
0;=0.=0 entails a= if we have the situation
0, =0, =0 and a=—§, then by (3.16) a? = fB? =1 so0 that the
elasticities can now be determined by the diagonal regression slope.
On the other hand if the shifts are correlated in the case (4),

the regression slope in the total material will still be determined
by one of the roots, but this slope cannot have any significance in
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terms of the elasticities (except by coincidence). And it cannot as
a rule represent a trend effect either. Indeed, the trend effect
situation is the one where there is a very high correlation between
the shifts, entailing a high observed (%, p) correlation. In the case
(4) this can only happen if the observed correlation in one of the
materials is near to <+ 1 and in the other material near to—1. We
assume indeed in the case (4) that the observed correlations are
significantly different. Therefore, case (4) cannot represent a trend
situation except in the extraordinary case where both materials
show high observed correlations, one positive the other negative
(and regression slopes of equal absolute value) and where there
is a definite reason for interpreting this as due to a trend connec-
tion that has been exactly reversed from one material to the other.

Now, consider the case ®). L L but r,=r,=r, we get
from (6. 6)

ll
: 1____
o liz/

where

b+l
L= 2
This shows that in the case (5), where apprommately r=0
@8 3) o _ { 0
T g 1)

In this case the assumption about uncorrelated shifts is not
admissible, because if ¢,==@,=0 and r,==r1,==0 we must by
(6.1) have [,* =1, (== —a ). Therefore, in the case (5) the tw
roots (8. 3) have no meaning in terms of the elasticities. And since
there is no organization in the (x, p) scatter they have no meaning
in terms of the (x, p) regression slope either.

In case (6) the roots will be determinate. And their values
are easily determined from (8.2). If rx =r=t (where € is either
+1 or — 1), (8.2) gives

8 : N
8.4) 1=,
In other words the first root is the regression

slope inthe first material and the sccondroot
theregressionslopeinthesccond material
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Do these two slopes have any meaning in terms of the elasti-
cities @ and P? If we are in the extraordinary situation where
one of the materials exhibits a pronounced Cournot effect on the

demand side and the other a pronounced Cournot effect on the .

supply side, obviously the two regression slopes considered would
have a meaning in terms of @ and B. But otherwise the roots

will have no such meaning. In particular if the high correlation .

in the two materials is a trend effect, the difference in the (x, p)
regression slope in the first and second material would simply
‘express the fact that the historical trend connection between x and
p has changed from the first to the second material. B

Also in the more general case (7) we have a similar situation:

If the correlations in the two materials are fairly high, so that the
regression slope is fairly distinct in both. materials, and if the
shifts are really uncorrelated, then the demand elasticity must be
- something near the regression slope in one of the materials and

the supply elasticity something near the regression slope in the = .-

other material. In fact if 91_ Q.= =0 and rl-_ r2 =r, we have
by (6.1) .
: czfi—(a-{—ﬁ)rl,—l—ll =0
af — (@ B)rl, + 1.2 =0

Thls shows that !, and I, must be the two ‘roots of the equatxon

‘af—(@+ Bl +P=o0

In other words, we must have .
o ea—pB\ 1-—r12
l:r[ +ﬁ:§:}/ B = aﬁ}
.Developing the square root to the ﬁrst approxxmatlon in 1——r’

we get - ,
‘_“{1“"5 w1

A1 )

which shows that, if the correlatxon is fairly high, the regression
slope in oné material must be near to a and the regression slope
in the other material near to §.

" Thus, the hypothesis that the shifts are uncorrclated is also
in the more general case (7) admissible only in conjunction with

-
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the hypothesis that one of the materials exhibits a Cournot effect
on the demand side and the other material a Cournot effect on the
supply side. _ v ’

In the case (8) there is a possibility that the roots shall give
the correct magnitudes of the elasticities @ and B. This pos-
sibility will be realized when and (apart from coincidence) only
when the shifts have actually been uncorrelated. :

9. THE MISTAKE IN LEONTIEF’S METHOD.

The implausible character of the results obtained by Leon-
tief’s method has ‘already been pointed out by professor Henry
Schultz *). Schultz has carried out a series of numerical com-

~ putations comparing the Leontief coefficients with those obtained

by the Moore-Schultz method. From this empirical comparison he
concludes that :there must be something wrong with Leontief’s .
method. Schultz was quite right in his suspicion, although he did
not. arrive at a theoretical explanation of the trouble. Such an
explanation we are now in a position to give. Utilizing the results
of the preceding Sections it is indeed an easy matter to pin down
exactly in what Leontief’s mistake consists. .
Let us for a moment disregard the stability cases, that is
to say the cases where the (x, p) distribution exhibits either a pro-
nounced Cournot effect on the demand side or a pronounced
Cournot effect on the supply side. (See cases (2); (4) and (6) in -
Table 1.) These cases are without interest in the present con-’
nection. In these cases a simple regression fitted to the (x,p)

_ scatter, or even a freehand curve drawn through the swarm of

(%, p) observation points, would give an expression for that one of

-the two curves: demand or supply, which it is in the case at hand

possible to determine from the data. If Leonticf’s ‘method shall
have any raison d’etre, it must be through its application to the
non-stability cases. o ,

In these non-stability cases there may occur many sorts of -
situations. Frequently we will have a situation where the shifts
ms essay ,,The Meaning of Statistical Demand and Supply Curves®.
Mimeographed February 1930 and later printed in the series ,Veroffentlichun-

gen der Frankfurter Gesellschaft fir Konjunkturforschung®, edited by Dr.
Eugen Altschul.
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u and v exhibit a pronounced trend over time. Occasionally there
may, however, occur a situation where no such trends exist. It is
-. obvious that the demand and supply elasticities as Leontief concei-
ves them are n ot expressions for the historical trend connection
between price-and quantity. The elasticities in Leontief’s system

are very definitely some sort of neo-classical demand and supply -

elasticities. Trends in u and v are therefore in his theory to be
looked upon as a disturbing element that must be eliminated,
before the true demand and supply elasticities can come to play.-
Leontief is also quite definitely of the opinion that his method
iscapableofeliminating suchtrends. He says for
instance (p.20) about Moore’s and Schultz’s trend eliminations:
»Diese Trendausschaltung ist nur ein unvollkommener Ersatz des
hier angewendeten theoretischen und statistischen Hilfsmittels der
Niveauverschiebungen.“ Leontief does not seem to be aware of
the fact that the existence of trends in u and v is just one of the
most important cases where u and v become correlated and

where consequently the determination of the elastlcmes by his .

method becomes meaningless. - -

So far from eliminating the trends, one of the ,,elasmcltles“‘
determined by his method is, as we have seen, nothing else than -
just the slope of the trend relation. Indeed from (4. 7) follows that
if a pronounced trend is present in u and v, then there must be
present a high degree of trend-correlation in the (x,p) scatter.
And from case (2) in the table of Section 8 follows that this trend
effect in (x,p) is just what is expressed by that one of the two
roots that is not meaningless.

On the other hand Leontief obviously thmks that hlS method'
will yield significant results even in the case where no trends are
present in u and v. Let us see if this is correct.

In case (4) the roots have a meaning in terms of elasticities
only in the exceptional case when the two elasticities are equal in
magnitude but of opposite sign (and the shifts are uncorrelated).
And if these assumptions can be made, we have just a case where
an ordinary regression fitted to the (x, p) material would give the
elasticities. In other words there would not be any use at all for
Leontief’s method. And in case (6) and (7) the roots will have a
meaning in terms of elasticites only if we are in the exceptional
~sitnation where one of the materials shows a more or less pronounc-

y
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ed Cournot effect on the demand side and the other a Cournot
_effect on the supply side. That is to say we are again in a situation
where there is no use at all for Leontief’s method, but where a
straight-forward regression fitting would give the elasticities.

Thus the only situation in which there might be a meaning in
using Leontief’s method, is the case where all the followmg
three conditions are fulfilled: '

1. The relative (x,p) violence must be significantl y
different in the two materials on which the computations are built.

2. The (x,p) correlation must be significantly diffe-
rent in these two materials. :

- 8. The shifts must be uncorrelated in both materials.

In other words the appearance of the (x, p) distribution must
be the one corresponding to case (8) in Table 1. And in addition
to this we must be in a situation where there is a definite reason
for assuming the shifts to be uncorrelated. _ '

Is there a great likelihood that we shall meet such a situation
in practice? I think it is safe to say that it would be a veritable
miracle if we should ever find a material satisfying all these
conditions and having nevertheless the same demand ‘and supply -
elasticities. It would even be a miracle, I think, if the two obser-
vable criteria 1) and 2) should be satisfied. In virtually all practi-
cal cases where it is plausible to assume that the elasticities have
been constant I believe we shall have the situation where at least
- one, if not both of the conditions 1) and 2) are violated. If Leon-
tief had discussed the conditions 1) and 2), I believe he would
have found that they are not fulfilled in any of his data. But
Leontief has not gone into any analysis of these conditions.

"It is true that there are passages where he expresses the ne-
cessity of using two materials between which there exists some sort
of difference, but he does not seem to understand what sort of
difference this must be. In particular he does not seem to be aware
of the fact that there is only one special kind of such difference
that is compatible with his own assumptions. He seems to believe’
that any kind of difference will do. He says for instance (p.28):
»Wenn es sich um zwei Zeitreihen von Mengen und Preisen handelt,
koénnen z. B. aus den beiden Hiilften des gesamten Zeitabschnittes
zwei gesonderte Preis-Mengen-Gruppen zusammengestellt werden.
fiir die trotz verschiedener Punktverteilung eine gleiche Elastizitiit
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angenommen wird. ... Erwiinscht ist stets eine Zweiteilung, in der
die beiden Teilsy steme moglichst verschieden sind, also moglichst
-wenig dhnliche Preis-Mengen-Kombinationen enthalten.*

Professor Robert Schmidt in his paper in Weltwirtschaftliches -
Archiv 1930, has discussed the nature of the difference between
the two materials a little more closely, but also he skips entirely
those questions that are the pertinent ones in connection with the
economic and statistical me aning of the coefficients computed.
First of all Schmidt only takes account of the appearance of the
(x, p) distribution, without making the slightest attempt to interpret
this apparance in terms of the shift distribution. He does not even .
seem to recognize those cases where the appearance of the (x,p)
distribution is definitely incompatible with Leontief’s assumption
about uncorrelated shifts. His analysis does therefore not give any -
answer to the question of whether the coefficients computed have
- any meaning as elasticities. But even as an attempt at
interpreting Leontief’s coefficients in terms of the observed features

of the (x,p) distribution Schmidt’s analysis misses the point. It
does for instance not tell us anything about that fact which is the
most interesting in this connection, namely the fact that if the
two materials are rather similar and if the (x,p) correlation is
fairly high, one root simply glves the regressmn slope while the
other is meaningless. : ‘

The reason for this negative result seems to be that Schmidt -
‘bases his whole analysis on a single coefficient of ,,Prignanz*
arrived at by a purely formal application of certain classical facts
from the invariance theory of quadratic forms, without discussing

the economic meaning implied in this mathematical process. In
the light of our analysis in Section 7, it is obvious that a single
coefficient of ,,Prignanz* must be an utterly inadequate, or rather
a misleading tool in the discussion of the significance of the roots
of the two-material equation. We only have to think of the stability
cases where on e of the roots has a meaning while the other root
is meaningless.

To sum up we may characterize Leontief’s method thus: In’
the first place we have the simple cases of a Cournot effect where
a frechand line or some simple regression fitted to the material
would reveal that one or those elasticities that can possibly be -

_determined from the data at hand. In these cases there is no use

38 ' ' . A-




for Leontiefs method. In regard to the other cases, Leontief believes
that his method is capable of eliminating the trend relation between
price and quantity and give both the demand and the supply
elasticity. But the fact is that if there is no trend relation, both
Leontiefs coefficients are meaningless. And if there does exist a
trend relation, one of his coefficients gives just this trend relation
while the other coefficient is meaningless. -

Needless to say, these critical remarks have not been moti-
vated by any special wish to reduce the value of Leontief’s work
as compared with the value of other works in this field. Science
progresses slowly by trial and error. Much experimental work in
new directions — such as Leontief’s — may be stimulating and
valuable, although it is found on closer examination that the
results obtained do not carry the meaning- one had in mind at
. the outset...

And on the other hand there aré many other mvestlgahons )
in this field that may be exposed to a similar sort of criticism.
Leontief’s work is here discussed only as a typical example in
order to draw attention to a large and important group of pitfalls
which, as I see it, have been nearly completely overlooked in the
statistical works of recent years, particularly in the works that
have been directed toward a numerical determination of the shape
of various relationships of economic theory. In this field we need,

I believe, a new type of significance analysis, which is not based .

on mechanical application of standard errors computed according
to some more or less plausible statistical mathematical formulae,
but is based on a thoroughgoing comparative study of the various
possible types of assumptions regarding the eco-

" nomic-theoretical set up, and of the consequences .

which these assumptions entail for the interpretation of the obser—
vational data. .

The discussion in the precedmg sections is a humble attempt
in' this direction. I believe that in the future a considerable part
of the efforts of the quantitative economists will be devoted to this
type of significance analysis, and that this will open up new per-
spectives of the whole question of the development ot economics
into a genuine science where the abstract-theoretical and the obser-
vational-statistical approaches have become effectively united.
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