Circulation Planning: Part III. Mathematical Appendix
Author(s): Ragnar Frisch
Reviewed work(s):
Source: Econometrica, Vol. 2, No. 4 (Oct., 1934), pp. 422-435
Published by: The Econometric Society
Stable URL: http://www.jstor.org/stable/1907111
Accessed: 27/08/2012 06:58

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica.

CIRCULATION PLANNING

By Ragnar Frisch

PART III. MATHEMATICAL APPENDIX

In the following sections, I shall give certain mathematical formulae on which part of the argument in the preceding Sections is built. Some of these formulae are not new, but are here derived in a manner which, in my opinion, is simpler and more systematic than the ones usually found in the literature: this applies in particular to the formulae of Section 23. Other formulae here given I do not recall to have seen before, for instance, those of Section 21.
21. Lemmas on Matrices Consisting of Non-Negative Elements

Consider a square matrix

$$
\left(a_{i j}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{21.1}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdot & \cdots & \cdots & \cdot \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

whose elements are non-negative numbers. A request matrix in circulation planning has this property.

The operation which consists in extending a summation to one (or both) of the subscripts on $a_{i j}$ we shall denote simply by replacing the subscript in question by a zero. Thus the sums of rows and columns respectively are denoted.

$$
\begin{align*}
a_{i 0} & =\sum_{k} a_{i k}=a_{i 1}+\cdots+a_{i n} \\
a_{0 j} & =\sum_{k} a_{k j}=a_{1 j}+\cdots+a_{n j} . \tag{21.2}
\end{align*}
$$

If the matrix (21.1) is such that

$$
\begin{equation*}
a_{i 0}=a_{0 i} \text { for all } i=1,2 \cdots n \tag{21.3}
\end{equation*}
$$

we shall say that it has complete row-column equality. A request matrix will in general not have this property.

Let us consider the matrix obtained from (21.1) by subtracting from each diagonal element the sum of all the elements in the corresponding row, i.e. the matrix

$$
\left(\begin{array}{ccccc}
a_{11}-a_{10} & a_{12} & \cdots & a_{1 n} \tag{21.4}\\
a_{21} & a_{22}-a_{20} & \cdots & a_{2 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array} \cdot \cdots \cdots \cdots \cdot \cdot \cdot\right]
$$

We may generalize the matrix (21.4) by further subtracting from each diagonal element a set of non-negative quantities t_{1}, \cdots, t_{n}, so that we obtain the matrix

$$
\left(\begin{array}{cccc}
a_{11}-a_{10}-t_{1} & a_{12} & \cdots & a_{1 n} \tag{21.5}\\
a_{21} & a_{22}-a_{20}-t_{2} \cdots & a_{2 n} \\
\cdots \cdot \cdots \cdot \cdots & \cdots \cdots \cdot & \cdots \cdots \cdot & \cdots \\
a_{n 1} & a_{n 2} & \cdots a_{n n}-a_{n 0}-t_{n}
\end{array}\right) .
$$

For the following discussion it is essential that all the original elements and all the quantities t_{i} be non-negative. It should also be noted that the quantities $a_{i 0}$ denote the complete sum of the i-th row in the n rowed matrix (21.1). This is essential as we shall later consider certain minors of the above matrices.

The determinant value of (21.4) is equal to zero. This is seen simply by adding to the elements in any given column of (21.4) the elements of all the other columns; this will produce a column consisting exclusively of zeros.

For the more general determinant defined by (21.5) we have the following:

Lemma I .-If all the original elements $a_{i j}$ and all the magnitudes t_{i} are non-negative, the determinant value of (21.5) has the sign (-) ${ }^{n}$, in other words this determinant is non-negative if n is even and nonpositive if n is odd.

To prove this, let us denote the determinant in question by T, further let $T_{\text {)i }}$ be the ($n-1$)-rowed determinant obtained by omitting the row No. i and the column No. i from T (but all the $a_{k 0}$ denoting still the sums of the rows in the complete determinant 21.1), further let $T_{)_{i j(}}$ be the ($n-2$)-rowed determinant obtained by omitting the rows Nos. i and j and the columns Nos. i and j. And so on. Memotechnically we may interpret the inverted parenthesis) (to mean "exclusion of." By convention we shall put any expression of the form $T_{, \alpha \beta \ldots \text { (equal }}$ to zero whenever at least two of the subscripts are equal; and if all the n subscripts occur in the omission parenthesis we put $T_{12 \ldots n(}=1$. Finally let $S, S_{i,}$, etc. denote the corresponding determinant and minors obtained from (21.4). Thus $S, S_{)_{i},}$, etc. depend only on the elements of the original matrix (21.1), while $T, T_{)_{i},}$, etc. depend also on $t_{1} \ldots t_{n}$.

This notation being adopted, we see that if T is considered as a function of the n variables $t_{1} \ldots t_{n}$, the partial derivatives of T are
(21.6) $\frac{\partial T}{\partial t_{i}}=-T_{) i(} \quad \frac{\partial^{2} T}{\partial t_{i} \partial t_{j}}=T_{) i j(} \quad \frac{\partial^{3} T}{\partial t_{i} \partial t_{j} \partial t_{k}}=-T T_{i j k(\cdot}$, etc.

This shows that we have the Taylor expansion

$$
\begin{align*}
T=S & -\sum_{i} t_{i} S_{) i(}+\sum_{i<j} t_{i} t_{j} S S_{i j(} \\
& -\sum_{i<j<k} t_{i} t_{j} t_{k} S_{) i j k(}+\cdots+(-)^{n} t_{1} t_{2} \cdots t_{n} \tag{21.7}
\end{align*}
$$

where i runs through all the numbers $1,2, \cdots, n, i<j$ runs through combinations without repetition of the two affixes (i, j) picked in the set $1,2, \cdots, n$, etc.

The first term of the expansion (21.7), namely the determinant S is, as we have seen, equal to zero. This being so, the expansion (21.7) furnishes an easy means of proving Lemma I by complete induction. The lemma is obviously correct for $n=1$ because we have $a_{11}-a_{10}-t_{1}$ $=-t_{1}=$ non-positive if $t_{1} \geqq 0$. Therefore, let us assume that the lemma is correct for all orders up to and including $n-1$. Consider then the determinant $S_{)_{i} .}$. In this determinant we separate from a_{10} the term $a_{1 i}$ which we denote for a moment t_{1}; from a_{20} we separate $a_{2 i}$ which we denote t_{2}, etc. Writing $S_{\text {) }}$ in this form we see that $S_{\text {) }}$ is an $(n-1)$-rowed determinant of the form (21.5). Indeed what is left of a_{10} when the term $a_{1 i}$ is taken out is just the sum of all the a 's that occur in the first row in $S_{)_{i},}$ and similarly for the other rows. Consequently if Lemma I is correct for $n-1, S_{S_{i}}$ must have the sign $(-)^{n-1}$.

Next consider the determinant $S_{i j(}$. From a_{10} in this determinant we take out $a_{1 i}+a_{1 j}$ and denote for a moment this binome t_{1}. From a_{20} we take out $a_{2 i}+a_{2 j}$ and denote it t_{2}, etc. This shows that $S_{i j}$ is an ($n-2$)rowed determinant of the form (21.5). Hence it must have the sign $(-)^{n-2}$ provided Lemma I is correct up to $n-1$.

Quite generally any of the determinants $S_{i j \ldots k c}$ must have the sign $(-)^{n-\nu}$ where ν is the number of subscripts in $S_{i j \ldots k(.}$. This shows that all the terms in the right member of (21.7) have the sign $(-)^{n}$, in other words, Lemma I is correct also for n.

Lemma II.-In the adjoint of the matrix (21.4) all the rows are equal, in other words, if $b_{i k}$ are the elements of the adjoint, $b_{i k}$ is independent of i.

The element $b_{i k}$ of the adjoint is defined as $(-)^{i+k}$ times the value of the ($n-1$)-rowed determinant obtained by crossing out the row k and the column i in the original matrix (note the interchange of rows and columns when we pass from the original matrix to the adjoint). For $n=3$ we have for instance

$$
\begin{array}{ll}
b_{11}=\left(a_{22}-a_{20}\right)\left(a_{33}-a_{30}\right)-a_{32} a_{23} & =a_{21} a_{31}+a_{23} a_{31}+a_{21} a_{32} \\
b_{21}=-\left(a_{33}-a_{30}\right) a_{21}+a_{31} a_{23} & =a_{21} a_{31}+a_{23} a_{31}+a_{21} a_{32} . \tag{21.8}\\
b_{31}=a_{21} a_{32}-a_{31}\left(a_{22}-a_{20}\right) & =a_{21} a_{31}+a_{23} a_{31}+a_{21} a_{32}
\end{array}
$$

This shows that for $n=3 b_{i 1}$ is independent of i.

For the general case Lemma II may be proved thus. Consider the determinant that defines $b_{i k}$. It contains all the columns of (21.4) except the column i. Let j be an arbitrary affix different from i, this means that the column j actually occurs in the determinant considered. This column j consists of the elements $a_{1 i}, a_{2 j}, \cdots$,) except $a_{k j}\left(\cdots a_{n j}\right.$. To this column we add all the other columns. By this operation the column in question becomes $\left.-a_{1 i},-a_{2 i}, \cdots\right)$ except $-a_{k i}\left(\cdots,-a_{n i}\right.$. The common factor -1 we take outside the determinant. The result of the operation is thus simply that in the column in question the elements have had their second subscript changed from j to i. We now move the column in question to the position it ought to have according to its new second subscript. By this movement the determinant is multiplied by (-$)^{i-i+1}$. This shows that the determinant that defines $b_{i k}$ is equal to (-$)^{i-j}$ times the determinant that defines $b_{j k}$. The magnitude $b_{i k}$ itself will consequently be equal to $b_{j k}$, in other words, $b_{i k}$ is independent of i.

From the above proof follows that Lemma II applies, not only to matrices of the special type (21.4), but more generally to all matrices where the sum of the elements in each row is zero.

Lemma III.-All the n^{2} elements in the adjoint of the matrix (21.4) have the same sign, namely (-$)^{n-1}$.

This follows immediately from the Lemmas I and II. Indeed, from Lemma I follows that all the diagonal elements in the adjoint of (21.4) have the sign (-$)^{n-1}$. But on the other hand we know from Lemma II that all the rows of the adjoint are equal; consequently all the elements in any row must have the sign (-$)^{n-1}$. (21.8) furnishes an example for the case $n=3$.

The above propositions can of course easily be formulated in terms of columns instead of rows. Thus, for instance, if from the diagonal elements of the given matrix we subtract the column sums $a_{0 j}$ (instead of the row sums $a_{i 0}$), the adjoint will have all its columns equal.

22. Solution of Certain Singular Systems of Linear Equations

Consider a system of linear equations of the form

$$
\begin{equation*}
\sum_{k=1}^{n} a_{i k} \xi_{k}=b_{i} \quad(i=1,2 \cdots n) \tag{22.1}
\end{equation*}
$$

where ξ_{k} are unknowns to be determined, and $a_{i k}$ and b_{i} given constants (the $a_{i k}$ are here taken quite generally as certain constants, not necessarily the elements of the request-matrix).

Suppose that the matrix of the coefficients $a_{i k}$ is of rank $n-1$; the necessary and sufficient condition that the system has a solution is the
vanishing of all the n determinants obtained by replacing first the first column, then the second column, etc. in the determinant, $a_{i k}$ by the numbers $b_{1} \cdots b_{n}$. If this condition is fulfilled the solution is obtained by leaving out one equation and solving the remaining ($n-1$) equation on the assumption that one of the quantities ξ is an arbitrary parameter. The solution thus obtained may be written out explicitly in the following form:

$$
\begin{equation*}
\hat{a}_{p q} \cdot \xi_{i}=\hat{a}_{i q} \cdot \xi_{p}+\sum_{k=1}^{n} \hat{a}_{i k}^{\prime p} \cdot b_{k} \tag{22.2}
\end{equation*}
$$

where $\hat{a}_{p q}$ are the elements of the adjoint of the given n rowed matrix $a_{i k}$, and $\hat{a}_{i k}{ }^{\prime q p(}$ are the elements of the adjoint of the $(n-1)$ rowed matrix obtained by leaving out the row q and the column p from $a_{i k}$. By convention $\hat{a}_{i k}{ }^{\prime}{ }^{q p(}$ is interpreted as equal to zero whenever $i=p$ or $k=q$, or both. With this convention the formula (22.2) holds good if i, p and q independently of each are put equal to any of the numbers $1,2, \cdots, n$.

If a definite p is selected, all the unknowns are by (22.2) expressed in terms of one of them, namely ξ_{p}, which may be given an arbitrary value. Instead of thus expressing all the unknowns in terms of one of them, it is for many purposes more convenient to express them in terms of some linear combination $\lambda_{1} \xi_{1}+\cdots+\lambda_{n} \xi_{n}$ of the unknowns, $\lambda_{1} \cdots \lambda_{n}$ being certain weights. This solution is immediately obtained by multiplying (22.2) with λ_{p} and performing a summation over p. The advantage of writing the solution in the form (22.2) is just that we may thus transform the solution to the particular form appropriate for any given case. For instance, if we want to express all the unknowns in terms of their sum $X=x_{1}+\cdots+x_{n}$, we get from (22.2)

$$
\begin{equation*}
\hat{a}_{0 q} \cdot \xi_{i}=\hat{a}_{i q} X+\sum_{k=0}^{n} \hat{a}_{i k}^{\prime 00} \cdot b_{k} \tag{22.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{a}_{0 q}=\sum_{k=1}^{n} \hat{a}_{k q} \quad \hat{a}_{i k}^{q 0(}=\sum_{h=1}^{n} \hat{a}_{i k}^{q h!} . \tag{22.4}
\end{equation*}
$$

In this formula q is still arbitrary; if we want to, we may make the solution symmetric also in this affix by extending to (22.3) a summation over q; if desired we could also apply a system of weights depending on q.

The above formulae show that the solutions may be expressed as linear forms in the quantities that occur in the second member of the given equations, plus a term involving an arbitrary parameter. If the number of variables is great, say 12 or more, the determination of the
coefficients in these linear form involves so much computation that the work becomes virtually prohibitive. We need, therefore, some form of approximation method.

In discussing this problem we shall use a notation which is especially appropriate for the application which we want later to make to the re-quest-matrix. Let us consider the system of equations in the form

$$
\begin{equation*}
\sum_{k=1}^{n} c_{k}\left(A_{k i}-e_{k i}\right)=s_{i} \tag{22.5}
\end{equation*}
$$

Here c_{k} are the unknowns to be determined, $A_{k i}$ is any matrix such that ($A_{k i}-e_{k i}$) is of rank $n-1$, and s_{i} are given constants; $e_{k i}$ are the unit numbers. The difference between the systems (22.1) and (22.5) is thus only formal, (22.5) is just as general as (22.1).

We shall solve (22.5) by an iteration method. This method will lead to a solution that may finally be written out in explicit form by means of a certain matrix whose elements are defined by infinite series.

We first write equation (22.5) in the form

$$
\begin{equation*}
\sum_{k} c_{k} A_{k i}=c_{i}+s_{i} . \tag{22.6}
\end{equation*}
$$

In this equation we replace for a moment i by x, postmultiply by $A_{x i}$ and perform a summation over x. This gives.

$$
\sum_{k} c_{k} \sum_{x} A_{k x} A_{x i}=\sum_{x} c_{x} A_{x i}+\sum_{x} s_{x} A_{x i} .
$$

For the first term in the right member of this equation we insert its expression taken from (22.6), which gives

$$
\begin{equation*}
\sum_{k} c_{k} A_{k i}^{(2)}=c_{i}+\sum_{k} s_{k}\left(e_{k i}+A_{k i}\right) \tag{22.7}
\end{equation*}
$$

The numbers

$$
A_{k i}^{(\mathbf{2})}=\sum_{x} A_{k x} A_{x i}
$$

are the elements of the symbolic square of the matrix $A_{k i}$.
In the equation (22.7) we again write for a moment x instead of i, postmultiply by $A_{x i}$ and utilise the original equation (22.6). This gives

$$
\sum_{k} c_{k} A_{k i}^{(3)}=c_{i}+\sum_{k} s_{k}\left(e_{k i}+A_{k i}+A_{k i}^{(2)}\right) .
$$

The numbers

$$
A_{k i}^{(3)}=\sum_{x} A_{k x}^{(2)} A_{x i}
$$

are the elements of the symbolic third power of the matrix $A_{k i}$.
Quite generally we get

$$
\begin{equation*}
\sum_{k} c_{k} A_{k i}^{(N)}=c_{i}+\sum_{k} s_{k}\left(e_{k i}+A_{k i}+A_{k i}^{(2)}+\cdots+A_{k i}^{(N-1)}\right) \tag{22.8}
\end{equation*}
$$

where $A_{k i}^{(\nu)}$ are the elements of the ν-th symbolic power of $A_{k i}$, whose recurrent definition is given by

$$
\begin{equation*}
A_{k i}^{(v+1)}=\sum_{x} A_{k x}^{(\nu)} A_{x i} \tag{22.9}
\end{equation*}
$$

with the initial condition $A_{k i}^{(1)}=A_{k i}$.
Let us assume that the numbers $A_{k i}^{(N)}$ tend towards definite limits as N increases. If this is the case, these limits for any given k must be proportional to the elements in a row of the adjoint of the matrix in (22.5). (Since these rows are themselves proportional, it does not matter which row we consider). Indeed, if $A_{k i}^{(\infty)}$ is the limit of $A_{k i}^{(N)}$ as N increases, we must obviously by (22.9) have

$$
A_{k i}^{(\infty)}=\sum_{x} A_{k x}^{(\infty)} A_{x i}
$$

Hence

$$
\begin{equation*}
\sum_{x} A_{k x}^{(\infty)}\left(A_{x i}-e_{x i}\right)=0 \quad(i=1,2 \cdots n) \tag{22.10}
\end{equation*}
$$

Let k be a fixed member and consider the n magnitudes $A_{k 1}^{(\infty)}, \cdots$, $A_{k n}^{(\infty)}$. They are solutions of the homogeneous system (22.10) and must hence be proportional to the elements in a row of the adjoint of the matrix ($A_{x i}-e_{x i}$), q.e.d.

From now on we shall make the assumption that the matrix $A_{k i}$ is such that the sum of the elements in each of its rows is equal to unity, in other words

$$
\begin{equation*}
A_{k 0}=1 . \tag{22.11}
\end{equation*}
$$

Furthermore, we assume that the sum of the right members is zero, i.e.

$$
\begin{equation*}
s_{0}=0 . \tag{22.12}
\end{equation*}
$$

If (22.11) and (22.12) are fulfilled, the system (22.5) certainly has a solution. By complete induction, using (22.9), it is easily seen that all the symbolic powers will also have the property (22.11), i.e.

$$
\begin{equation*}
A_{k 0}^{(\nu)}=1 \text { for any } \nu \text { and } k . \tag{22.13}
\end{equation*}
$$

But then the limit $A_{k i}^{(\infty)}$ must be independent of k. Indeed, the num-
bers $A_{k 1}^{(\infty)} \cdots A_{k n}^{(\infty)}$ for two different values of k must be proportional, because both these sets are proportional to the elements in a row of the adjoint of the matrix in (22.5). And by (22.13) the sum of the elements are equal in both sets, namely 1 , which is only possible when the elements of the two sets are actually equal. If we let P_{i} denote the limit towards which $A_{k i}{ }^{(N)}$ tends, we consequently have

$$
\begin{equation*}
P_{i}=\operatorname{Lim} A_{k i}^{(N)}=\text { independent of } k . \tag{22.14}
\end{equation*}
$$

At the limit the left member of (22.8) can consequently be written $C P_{i}$ where

$$
\begin{equation*}
C=\sum_{k} c_{k}=c_{1}+\cdots+c_{n} \tag{22.15}
\end{equation*}
$$

By (22.11) the sum of the P 's is unity, i.e.

$$
\begin{equation*}
P_{0}=1 . \tag{22.16}
\end{equation*}
$$

If $A_{k i}^{(N)}$ tends towards a limit different from zero, it is clear that the series $e_{k i}+A_{k i}+\cdots+A_{k i}^{(N)}$ in the right member of (22.8) must diverge. This need not mean that the whole expression in the right member diverges. Indeed, for high values of $N A_{k i}^{(N)}$ is nearly independent of k, so that the summation is virtually equal to $P_{i}\left(s_{1}+\right.$ $\cdots+s_{n}$) which by (22.12) is zero. This fact can be utilized to throw the whole expression into a form involving a convergent series. Since the effect of the higher terms are annihilated by the summation over k, because these higher terms become independent of k, it appears that the feature which really determines the total value of the expression is how the earlier terms deviate from their limiting vàlue. This suggests to replace the series in the right member of (22.8) by the series

$$
\left(e_{k i}-A_{k i}^{(N)}\right)+\left(A_{k i}-A_{k i}^{(N)}\right)+\cdots+\left(A_{k i}^{(N-1)}-A_{k i}^{(N)}\right)
$$

which may also be written

$$
\begin{equation*}
Q_{k i}^{(N)}=1 \cdot D_{k i}^{(1)}+2 \cdot D_{k i}^{(2)}+\cdots+N \cdot D_{k i}^{(N)} \tag{22.17}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{k i}^{(\nu)}=A_{k i}^{(\nu)}-A_{k i}^{(\nu-1)} \quad D_{k i}^{(1)}=A_{k i}-e_{k i} . \tag{22.18}
\end{equation*}
$$

By (22.13) we see that the row sums are zero both in $D_{k i}^{(2)}$ and $Q_{k i}^{(N)}$, i.e.

$$
\begin{equation*}
D_{k 0}^{(\nu)}=0 \quad Q_{k 0}^{(\nu)}=0 \text { for any } \nu \text { and } k . \tag{22.19}
\end{equation*}
$$

Assuming that $Q_{k i}^{(N)}$ converges we put

$$
\begin{equation*}
Q_{k i}=\operatorname{Lim}_{N \rightarrow \infty} Q_{k i}^{(N)} \tag{22.20}
\end{equation*}
$$

so that at the limit the equation (22.8) can finally be written

$$
\begin{equation*}
c_{i}=C P_{i}+\sum_{k=1}^{n} s_{k} Q_{k i} \tag{22.21}
\end{equation*}
$$

where P_{i} is defined by (22.14) and $Q_{k i}$ by (22.20); C is an arbitrary parameter that expresses the sum of the c 's.

Under assumption of convergency (22.21) furnishes the solution of any system of equations of the form (22.5) where $A_{k i}$ and s_{i} satisfy (22.11) and (22.12).

23. Projections in N-Space

Consider an N dimensional space $\left(x_{1} \cdots x_{N}\right)$. The symbol x_{K} may be looked upon either as the point ($x_{1} \cdots x_{N}$) or as the vector from origine to this point. The individual numbers $\left(x_{1} \cdots x_{N}\right)$ we shall call the total-space components of the vector, in order to distinguish from certain other kinds of components later to be considered.

Let L be an $N-m$ dimensional linear subspace through origin of the total space. This means that L is the locus of points x_{K} that satisfy m equations of the form ${ }^{4}$

$$
\begin{equation*}
\sum_{K} f_{i K} x_{K}=0 \quad(i=1,2 \cdots m) \tag{23.1}
\end{equation*}
$$

where $f_{i K}$ is an m-rowed and N-columned matrix of rank m. The equations (23.1) express that any vector belonging to L is orthogonal to all the m vectors $f_{i K}(i=1,2 \cdots m)$.

By the classical rules of linear equations there exists a set of $n=N-m$ linearly independent vectors $g_{j K}(j=1,2 \cdots n)$ belonging to L and such that any vector u_{K} belonging to L can be written as a linear form in the $g_{j K}$, in other words such that we have

$$
\begin{equation*}
u_{K}=\sum_{i} \eta_{j} g_{j K} \quad(K=1,2 \cdots N) \tag{23.2}
\end{equation*}
$$

where the η_{j} form a set of numbers called the components of u_{K} in the reference system $g_{j K}$. The vectors $g_{j K}$ are said to unfold L. Since every $g_{j K}$ belongs to L we have the orthogonality relation

$$
\sum_{K} f_{i K} g_{j K}=0 \quad\left(\begin{array}{c}
i=1,2 \cdots m \tag{23.3}\\
j=1,2 \cdots n \\
m+n=N
\end{array}\right) .
$$

[^0]In the same way as the $g_{i K}$ unfold L, the $f_{i K}$ unfold a certain linear manifold that is normal to L. The vectors $g_{j K}$ may be called the unfolding vectors and the $f_{i K}$ the normality vectors of L. The matrix $g_{j K}$ may be called the exterior unfolding matrix and $f_{i K}$ the exterior normality matrix L. The expression "exterior" is used to indicate that these matrices depend, not only on the intrinsic properties of the vector bunches $g_{j K}$ and $f_{i K}$ respectively, but also on their position relative to the reference system of the total space.

Consider the square matrices

$$
\begin{align*}
\phi_{i j} & =\sum_{K} f_{i K} f_{j K} \tag{23.4}\\
\gamma_{i j} & =\sum_{K} g_{i K} g_{j K}
\end{align*} \quad(i, j=1,2 \cdots m)
$$

ϕ and γ are called the metric matrices of L. They are symmetric and may obviously be looked on as moment matrices, hence they are by the Gramian determinant formula positive definite.

Since we assume the matrix $\left\|f_{i K}\right\|$ to be of rank $m, \phi_{i j}$ is non singular, and the same applies to $\gamma_{i j}$. We may therefore consider their reciprocals

$$
\begin{align*}
& \stackrel{*}{\phi_{i j}}=\text { the reciprocal of } \phi_{i j} \tag{23.6}\\
& \stackrel{+}{\gamma_{i j}}=\text { the reciprocal of } \gamma_{i j} \tag{23.7}
\end{align*}
$$

By means of the reciprocal metric matrices we form the reciprocal exterior matrices

$$
\begin{array}{ll}
\stackrel{*}{f_{i K}}=\sum_{\kappa}^{\phi_{i k} f_{\kappa_{K}}} & \binom{i=1,2 \cdots m}{K=1,2 \cdots N} \\
\stackrel{*}{g_{j K}}=\sum_{\kappa}^{\gamma_{j} k^{k} g_{K_{K}}} & \binom{j=1,2 \cdots n}{K=1,2 \cdots N} . \tag{23.9}
\end{array}
$$

By inverting these equations for a given K we obtain

$$
\begin{align*}
f_{i K} & =\sum_{\kappa} \phi_{i}{ }_{i} f_{\kappa_{K}}^{*} \tag{23.10}\\
g_{i K} & =\sum_{\kappa} \gamma_{j \kappa}{ }^{*} g_{\kappa_{K}} . \tag{23.11}
\end{align*}
$$

These relations show that between the exterior matrices and their reciprocals there exist the following relations

$$
\begin{align*}
& \sum_{K} f_{i K}^{*} f_{j K}=\sum_{K} f_{i K}{ }^{*} f_{j K}^{*}=e_{i j} \tag{23.12}\\
& \sum_{K}^{*}{ }^{*}{ }_{i K} g_{j K}=\sum_{K} g_{i K} g_{j K}^{*}=e_{i j} \tag{23.13}
\end{align*}
$$

where $e_{i j}$ are the unit numbers $=0$ or 1 accordingly as $i \neq j$ or $i=j$.
Now let us consider the set of $N=m+n$ vectors $f_{1 K} \cdots f_{m K} g_{1 K}$ $\cdots g_{n K}$. They form a set of linearly independent vectors. Indeed the Gramian of this total set is by (23.3).

Therefore any vector x_{K} in total space can be written in the form

$$
\begin{equation*}
x_{K}=\sum_{i=1}^{m} \xi_{i} f_{i K}+\sum_{j=1}^{n} \eta_{i} g_{j k K} . \tag{23.15}
\end{equation*}
$$

The numbers ξ_{i} are the components of x_{K} in the manifold that is normal to L, and the numbers η_{j} are the components of x_{K} in L itself.

Between the total space components x_{K} and the components ξ_{i} and η_{i} there exists a unique correspondence. By (23.15) x_{K} is determined in terms of the ξ_{i} and η_{j}. And multiplying (23.15) by $f^{*}{ }_{k K}$ and $g^{*}{ }^{\mathrm{J} K}$ respectively and performing a summation over K we get

$$
\begin{array}{ll}
\xi_{i}=\sum_{K} \stackrel{*}{f}_{i K} x_{K} & (i=1,2 \cdots m) \tag{23.16}\\
\eta_{j}=\sum_{K}^{*}{ }_{g}^{*}{ }_{i K} x_{K} & (j=1,2 \cdots n) .
\end{array}
$$

By means of the exterior matrices and their reciprocals we finally form the projection matrices

$$
\begin{align*}
F_{H K} & =\sum_{i} f_{i H} \stackrel{*}{f_{i K}}=\sum_{i}^{*}{ }_{f}^{*} f_{i K} \tag{23.18}\\
G_{H K} & =\sum_{i} g_{j H} g_{j K}=\sum_{i}^{*} g_{j H}^{*} g_{j K} . \tag{23.19}
\end{align*}
$$

The expression for these matrices may also be written

$$
\begin{align*}
& F_{H K}=\sum_{i j} \dot{\phi}_{i j} \stackrel{*}{f_{i H} f_{j K}}=\sum_{i j}^{*} \stackrel{*}{\phi_{i j} f_{i H} f_{j K}} \tag{23.20}\\
& G_{H K}=\sum_{i} \gamma_{i j}{\stackrel{*}{j H} g_{j K}}_{=}^{*} \sum_{i}^{*} \gamma_{i j} g_{i H} g_{j K} \tag{23.21}
\end{align*}
$$

Between the two projection matrices there exists the fundamental relation

$$
\begin{equation*}
F_{H K}+G_{H K}=e_{H K} . \tag{23.22}
\end{equation*}
$$

To prove this consider the N dimensional linear form $\sum_{K_{K}} F_{H K} x_{K}$. Inserting here the expression for x_{K} taken from (23.15), and the expression for $F_{H K}$ taken from the second and third member respectively in (23.20) we get

$$
\sum_{\kappa} \xi_{\kappa} \sum_{i j K} \phi_{i j} \stackrel{*}{f_{i H}} \stackrel{*}{f_{j K} f_{\kappa K}}+\sum_{\delta} \eta_{\delta} \sum_{i j K}^{*} \phi_{i j} f_{i H} f_{j K} g_{\delta K} .
$$

By the summation over K the last term in this expression vanishes on account of (23.3), and the first term reduces to

$$
\sum_{i j} \xi_{i} \phi_{i j}{\stackrel{*}{j} j_{j H}}^{\text {. }}
$$

If this expression is multiplied by x_{H} and summed over H we get by again using (23.15)

$$
\sum_{H K} F_{H K} x_{H} x_{K}=\sum_{i j} \xi_{i} \phi_{i j} \sum_{H}^{*} f_{j H}\left\{\sum_{\kappa} \xi_{\kappa} f_{\kappa H}+\sum_{\delta} \eta_{\delta} g_{\delta H}\right\} .
$$

By the summation over H the second term vanishes and the first reduces so that we finally get

$$
\begin{equation*}
\sum_{H K} F_{H K} x_{H} x_{K}=\sum_{i j} \phi_{i j} \xi_{i} \xi_{j} \tag{23.23}
\end{equation*}
$$

similarly we get

$$
\begin{equation*}
\sum_{H K} F_{H K} x_{H} x_{K}=\sum_{i j} \gamma_{i j} \eta_{i} \eta_{j} \tag{23.24}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sum_{H K}\left(F_{H K}+G_{H K}\right) x_{H} x_{K}=\sum_{i j} \phi_{i j} \xi_{i} \xi_{j}+\sum_{i j} \gamma_{i j} \eta_{i} \eta_{j} . \tag{23.25}
\end{equation*}
$$

This being so, let us consider the N dimensional quadratic form $\sum_{H K} e_{H K} x_{H} x_{K}$. Inserting here for x_{H} and x_{K} we find easily that the form reduces to the same expression as the one we have in the second member of (23.25). Hence we must have for any choice of the x 's

$$
\begin{equation*}
\sum_{H K}\left(F_{H K}+G_{H K}\right) x_{H} x_{K}=\sum_{H K} e_{H K} x_{H} x_{K} \tag{23.26}
\end{equation*}
$$

which is only possible when (23.22) is fulfilled.
By means of the projection matrices and the fundamental formula (23.22) it is now easy to express the coordinates $x_{K^{\prime}}$ of the point obtained by taking an arbitrary point x_{K} and projecting it orthogonally to L. Indeed this projection is defined as the point whose L components are the same as the L components of x_{K}, but whose components in the manifold normal to L are all zero. The ξ and η components of the pro-
jection considered are thus immediately given by the very definition of the projection. The thing that interests us is, however, how the totalspace coordinates of the projection can be expressed directly in terms of the total-space coordinates x_{K}. This is obtained by expressing the total-space coordinates of x_{K} ' by means of its ξ and η coordintes using (23.15), then putting here the ξ coordinates equal to zero and the η coordinates equal to those of x_{K}, and finally by (23.17) to express the η coordinates of x_{K} by means of its total space coordinates. Doing this we find

$$
\begin{equation*}
x_{H}^{\prime}=\sum_{K} G_{H K} x_{K} . \tag{23.27}
\end{equation*}
$$

By means of the fundamental relation (23.22) this is equivalent to

$$
\begin{equation*}
x_{H^{\prime}}=\sum_{K}\left(e_{H K}-F_{H K}\right) x_{K} \tag{23.28}
\end{equation*}
$$

which can also be written

$$
\begin{equation*}
x_{H}^{\prime}=x_{H}-\sum_{K} F_{H K} x_{K} \tag{23.29}
\end{equation*}
$$

This explains the name projection matrices given to $F_{H K}$ and $G_{H K}$.
As an example consider the case $m=1$, that is $n=N-1$. In this case L is simply a plane defined by an equation of the form

$$
\begin{equation*}
f_{1} x_{1}+\cdots+f_{N} x_{N}=0 \tag{23.30}
\end{equation*}
$$

We now get

$$
\begin{aligned}
\phi_{11} & =f_{1}{ }^{2}+\cdots+f_{N}{ }^{2} \\
\phi_{11}^{*} & =\frac{1}{\phi_{11}} \\
f_{K}^{*} & =\frac{f_{K}}{f_{1}{ }^{2}+\cdots+f_{N}{ }^{2}}
\end{aligned}
$$

$$
F_{H K}=\frac{f_{H}}{\sqrt{f_{1}^{2}+\cdots+f_{N}{ }^{2}}} \cdot \frac{f_{K}}{\sqrt{f_{1}^{2}+\cdots+f_{N}{ }^{2}}}
$$

and therefore

$$
\begin{equation*}
x_{H}^{\prime}=x_{H}-\frac{f_{H}}{f_{1}{ }^{2}+\cdots+f_{N}{ }^{2}} \sum_{K} f_{K} x_{K} . \tag{23.31}
\end{equation*}
$$

Finally let us determine the projection of x_{K}, not on L, but on the manifold M that is defined by the inhomogeneous equations

$$
\begin{equation*}
\sum_{K} f_{i K} x_{K}=u_{i} \quad(i=1,2 \cdots m) \tag{23.32}
\end{equation*}
$$

u_{i} being a set of given numbers.

The two manifolds L and M are parallel because they have the same normality manifold, namely the one unfolded by the vectors $f_{i K}$ ($i=1,2 \cdots m$). If $x_{K^{\prime}}{ }^{\prime \prime}$ is the projection of x_{K} on M and $x_{K}{ }^{\prime}$ its projection on $L, x_{K^{\prime}}{ }^{\prime \prime}$ will consequently have the same η coordinates as $x_{K^{\prime}}$, that is, as x_{K} itself. And the ξ coordinates of $x_{K}{ }^{\prime \prime}$ must obviously be just large enough to satisfy the equations (23.22). In other words we must have

$$
\sum_{K} f_{i K}\left\{\sum_{\kappa} \xi^{\prime \prime} f_{f_{K K}}+\sum_{\delta} \eta_{\delta} g_{\delta K}\right\}=u_{i}
$$

where $\xi_{\kappa^{\prime}}{ }^{\prime}$ are the ξ components of $x_{K^{\prime}}{ }^{\prime \prime}$. The summation over K in the last of the above terms give 0 , so that the equation reduces to

$$
\begin{equation*}
\sum_{i} \phi_{i j} \xi_{i}^{\prime \prime}=u_{i} \tag{23.33}
\end{equation*}
$$

hence

$$
\begin{equation*}
\xi_{i}^{\prime \prime}=\sum_{i}^{*} \phi_{i j} u_{j} \tag{23.34}
\end{equation*}
$$

In the expression for the total-space components of $x_{K^{\prime}}{ }^{\prime \prime}$, namely

$$
x_{H}{ }^{\prime \prime}=\sum_{i} \xi_{i}{ }^{\prime \prime} f_{i H}+\sum_{i} \eta_{i} g_{j H}
$$

we notice that the last term just gives the previously calculated coordinate $x_{K^{\prime}}$, i.e. the expression (23.28). And the first term in the above expression reduces by (23.34) to

$$
\sum_{i j} u_{i}{\stackrel{*}{\phi}, f_{j H}}=\sum_{i} u_{i} \stackrel{*}{i}_{i H} .
$$

Hence: If we take an arbitrary point x_{K} and project it on to the linear manifold (23.32) we get a point $x_{K}{ }^{\prime \prime}$ whose total-space coordinates are

$$
\begin{equation*}
x_{H}^{\prime \prime}=\sum_{i=1}^{m} u_{i}^{*} f_{i H}+\sum_{K=1}^{N}\left(e_{H K}-F_{H K}\right) x_{K} \tag{23.35}
\end{equation*}
$$

where $\int_{i H}^{*}$ is the reciprocal exterior matrix and $F_{H K}$ the projection matrix defined above.

In the special case $m=1$ we get

$$
\begin{equation*}
x_{H}{ }^{\prime \prime}=x_{H}+\frac{f_{H}}{f_{1}{ }^{2}+\cdots+f_{N}{ }^{2}}\left(u-\sum_{K} f_{K} x_{K}\right) \tag{23.36}
\end{equation*}
$$

where u is the constant in the second member of the equation defining the plane on to which the projection is made.

[^0]: 4 I do not express the following formulae in tensor notation because I shall here make no use of the "up-or-down" character of the affixes, that is of whether the affixes are covariant or contravariant.

