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CIRCULATION PLANNING 

By RAGNAR FRISCH 

PART III. MATHEMATICAL APPENDIX 
In the following sections, I shall give certain mathematical formulae 

on which part of the argument in the preceding Sections is built. Some 
of these formulae are not new, but are here derived in a manner which, 
in my opinion, is simpler and more systematic than the ones usually 
found in the literature: this applies in particular to the formulae of 
Section 23. Other formulae here given I do not recall to have seen be- 
fore, for instance, those of Section 21. 

21. Lemmas on Matrices Consisting of Non-Negative Elements 

Consider a square matrix 
all a12 ... ain 

(21.1) (aI1)= a21 a22 ... a2 

an, an2 . ann J 
whose elements are non-negative numbers. A request matrix in circula- 
tion planning has this property. 

The operation which consists in extending a summation to one (or 
both) of the subscripts on ai1 we shall denote simply by replacing the 
subscript in question by a zero. Thus the sums of rows and columns 
respectively are denoted. 

aio= Eaik = ail + ***+ ain 

(21 .2) k 

ao;= >akj = ai1 + + ani. 
k 

If the matrix (21.1) is such that 

(21.3) aj0 = ao, for all i = 1, 2 ... n 

we shall say that it has complete row-column equality. A request ma- 
trix will in general not have this property. 

Let us consider the matrix obtained from (21.1) by subtracting from 
each diagonal element the sum of all the elements in the corresponding 
row, i.e. the matrix 

all - a10 a12 .. aln 

(21.4) a21 a22 - a2o. aqn 2 

*~~a2 - 

a., an2 . . *4ann - a2o 

422 
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We may generalize the matrix (21.4) by further subtracting from each 
diagonal element a set of non-negative quantities ti, , t., so that we 
obtain the matrix 

all - a10 - ti a12 . . . ain 

(21.5) a2l a22- a20-t2 -a2n 

anl an2 * * ' ann - anO - tn 

For the following discussion it is essential that all the original ele- 
ments and all the quantities ti be non-negative. It should also be 
noted that the quantities ajo denote the complete sum of the i-th row in 
the n rowed matrix (21.1). This is essential as we shall later consider 
certain minors of the above matrices. 

The determinant value of (21.4) is equal to zero. This is seen simply 
by adding to the elements in any given column of (21.4) the elements of 
all the other columns; this will produce a column consisting exclusively 
of zeros. 

For the more general determinant defined by (21.5) we have the 
following: 

LEMMA i.-If all the original elements a and all the magnitudes ti 
are non-negative, the determinant value of (21.5) has the sign (-)n, 
in other words this determinant is non-negative if n is even and non- 
positive if n is odd. 

To prove this, let us denote the determinant in question by T, fur- 
ther let T)i( be the (n - 1)-rowed determinant obtained by omitting the 
row No. i and the column No. i from T (but all the ako denoting still 
the sums of the rows in the complete determinant 21.1), further let 
T) j( be the (n - 2)-rowed determinant obtained by omitting the rows 
Nos. i and j and the columns Nos. i and j. And so on. Memotechnically 
we may interpret the inverted parenthesis ) ( to mean "exclusion of." 
By convention we shall put any expression of the form T)af. .. ( equal 
to zero whenever at least two of the subscripts are equal; and if all 
the n subscripts occur in the omission parenthesis we put T)12...n(= 1. 

Finally let S, S)i(, etc. denote the corresponding determinant and 
minors obtained from (21.4). Thus S, S)i(, etc. depend only on the ele- 
ments of the original matrix (21.1), while T, T)i(, etc. depend also on 
tl ... tn. 

This notation being adopted, we see that if T is considered as a 
function of the n variables t1 ... tn, the partial derivatives of T are 

AT 027T a'T 
(21. 6) -T-T)S( - T);i( = - T)j,t(.,etc. cit, - 49otioti a1t ,Ot20t4 
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This shows that we have the Taylor expansion 

T = S -Etis)i( + EtitiS)i1( 

(21.7) 
< 

(21. 7)_ E ttjtkS)ijk( + * + (-)nt1t2 ... tn 
i<j<k 

where i' runs through all the numbers 1, 2, , n, i <j runs through 
combinations without repetition of the two affixes (i, j) picked in the 
set 1, 2, , n,etc. 

The first term of the expansion (21.7), namely the determinant S 
is, as we have seen, equal to zero.This being so, the expansion (21.7) 
furnishes an easy means of proving Lemma I by complete induction. 
The lemma is obviously correct for n = I because we have all-ao -t 

t-, = non-positive if t1 _0 . Therefore, let, us assume that the lemma is 
correct for all orders up to and including n-1. Consider then the deter- 
minant S)i(. In this determinant we separate from a10 the term a1i which 
we denote for a moment t1; from a20 we separate a2i which we denote 
t2, etc. Writing S)i( in this form we see that S)( is an (n - 1)-rowed de- 
terminant of the form (21.5). Indeed what is left of a10 when the term 
a1i is taken out is just the sum of all the a's that occur in the first row in 
S)i(, and similarlyfor the other rows. Consequentlyif Lemma I is correct 
for n-1, S)i( must have the sign (_)n-1. 

Next consider the determinant S)ii(. From a10 in this determinant we 
take out a1i+a1i and denote for a moment this binome t1. From a2o we 
take out a2i+a2i and denote it t2, etc. This shows that S) q( is an (n -2)- 
rowed determinant of the form (21.5). Hence it must- have the sign 
(_)n-2 provided Lemma I is correct up to n -1. 

Quite generally any of the d-eterminants S)i;... k( must have the sign 
(_)n-v where v is the number of subscripts in S).i... k(. This shows that 
all the terms in the right member of (21.7) have the sign (_ )n, in other 
words, Lemma I is correct also for n. 

LEMMA ii.-In the adjoint of the matrix (21.4) all the rows are equal, 
in other words, if bik are the elements of the adjoint, bik is independent of i. 

The element bik of the adjoint is defined as (-) i+k times the value 
of the (n - 1)-rowed determinant obtained by crossing out the row k 
and the column i in the original matrix (note the interchange of rows 
and columns when we pass from the original matrix to the adjoint). 
For n = 3 we have for instance 

bl= (a22- a2o)(a33- a30) - a32a23 = a2la3l + a23a31 + a2ia32 

(21.8) b21 = - (a33- a30)a21 + a3la23 = a2ia3l + a23a31 + a21a82. 

b3l a2la32- a3l(a22- a2o) = a21a31 + a23a3l + a2la32 

This shows that for n = 3 'bil is independent of i. 
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For the general case Lemma II may be proved thus. Consider the 
determinant that defines bik. It contains all the columns of (21.4) ex- 
cept the column i. Let j be an arbitrary affix differeat-from i, this means 
that the column j actually occurs in the determinant considered. This 
column j consists of the elements a1i, a2j, - * *, ) except akj( 

. . . an. 
To this column we add all the other columns. By this operation the 
column in question becomes - a, - a2i, ) except -aki( * ,-ani. 
The common factor -1 we take outside the determinant. The result of 
the operation is thus simply that in the column in question the ele- 
ments have had their second subscript changed from j to i. We now 
move the column in question to the position it ought to have according 
to its new second subscript. By this movement the determinant is 
multiplied by (-)i-j+1. This shows that the determinant that defines 
bik is equal to (-) i times the determinant that defines b1k. The mag- 
nitude bik itself will consequently be equal to bik, in other words, bik is 
independent of i. 

From the above proof follows that Lemma II applies, not only to 
matrices of the special type (21.4), but more generally to all matrices 
where the sum of the elements in each row is zero. 

LEMMA III.-All the n2 elements in the adjoint of the matrix (21.4) 
have the same sign, namely (-)n-l. 

This follows immediately from the Lemmas I and II. Indeed, from 
Lemma I follows that all the diagonal elements in the adjoint of (21.4) 
have the sign (-)n-1. But on the other hand we know from Lemma II 
that all the rows of the adjoint are equal; consequently all the elements 
in any row must have the sign (-1)X-. (21.8). furnishes an example for 
the case n = 3. 

The above propositions can of course easily be formulated in terms of 
columns instead of rows. Thus, for instance, if from the diagonal ele- 
ments of the given matrix we subtract the column sums ao0 (instead of 
the row sums ajo), the adjoint will have all its columns equal. 

22. Solution of Certain Singular Systems of Linear Equations 

Consider a system of linear equations of the form 
n 

(22.1) Eaiktk = bi (i = 1, 2 * * n) 
k=1 

where {k are unknowns to be determined, and aik and bi given con- 
stants (the aik are here taken quite generally as certain constants, not 
necessarily the elements of the request-matrix). 

Suppose that the matrix of the coefficients aik is of rank n-1; the 
necessary and sufficient condition that the system has a solution is the 
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vanishing of all the n determinants obtained by replacing first the first 
column, then the second column, etc. in the determinant, aik by the 
numbers b1 ... bn. If this condition is fulfilled the solution is obtained 
by leaving out one equation and solving the remaining (n-1) equa- 
tion on the assumption that one of the quantities t is an arbitrary 
parameter. The solution thus obtained may be written out explicitly 
in the following form: 

(22.2) dpq tXi diq, tp + ,ik bk 
kl1 

where dpq are the elements of the adjoint of the given n rowed matrix 
aik, and dik)qP( are the elements of the adjoint of the (n-1) rowed matrix 
obtained by leaving out the row q and the column p from aik. By con- 
vention dik) qP( is interpreted as equal to zero whenever i = p or k = q, or 
both. With this convention the formula (22.2) holds good if i, p and q 
independently of each are put equal to any of the numbers 1, 2, - * *, n. 

If a definite p is selected, all the unknowns are by (22.2) expressed in 
terms of one of them, namely p, which may be given an arbitrary 
value. Instead of thus expressing all the unknowns in terms of one of 
them, it is for many purposes more convenient to express them in terms 
of some linear combination i4i+ . . +Xntan of the unknowns, 
X1... X. being certain weights. This solution is immediately ob- 
tained by multiplying (22.2) with Xp and performing a summation over 
p. The advantage of writing the solution in the form (22.2) is just that 
we may thus transform the solution to the particular form appropri- 
ate for any given case. For instance, if we want to express all the un- 
knowns in terms of their sum X= xi * +x., we get from (22.2) 

(22.3) 4oq*{i = diqX + aQdik *bk 
k-0 

where 

(22.4) aOq= A4icq i)k( 
k=1 h=l 

In this formula q is still arbitrary; if we want to, we may make the 
solution symmetric also in this affix by extending to (22.3) a summation 
over q; if desired we could also apply a system of weights depending on 
q. 

The above formulae show that the solutions may be expressed as 
linear forms in the quantities that occur in the second member of the 
given equations, plus a term involving an arbitrary parameter. If the 
number of variables is great, say 12 or more, the determination of the 
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coefficients in these linear form involves so much computation that 
the work becomes virtually prohibitive. We need, therefore, some form 
of approximation method. 

In discussing this problem we shall use a notation which is especially 
appropriate for the application which we want later to make to the re- 
quest-matrix. Let us consider the system of equations in the form 

n 

(22.5) ,ck(Akl - eki) = Si - 

Here Ck are the unknowns to be determined, Aki is any matrix such that 
(Aki-eki) is of rank n-1, and si are given constants; eki are the unit 
numbers. The difference between the systems (22.1) and (22.5) is thus 
only formal, (22.5) is just as general as (22.1). 

We shall solve (22.5) by an iteration method. This method will 
lead to a solution that may finally be written out in explicit form by 
means of a certain matrix whose elements are defined by infinite series. 

We first write equation (22.5) in the form 

(22.6) EckAki = Ci + Si. 

k 

In this equation we replace for a moment i by x, postmultiply by A x. 
and perform a summation over x. This gives. 

E Ck EA kxA xi = ECX A xi + Jsx A xi. 
k Ic x x 

For the first term in the right member of this equation we insert its 
expression taken from (22.6), which gives 

(22.7) E 
2) 

= ci + E Sk (eki + Aki). 
k kc 

The numbers 

A(;)E Akx Axi 
z 

are the elements of the symbolic square of the matrix A ki. 
In the equation (22.7) we again write for a moment x instead of i, 

postmultiply by Ax; and utilise the original equation (22.6). This gives 

E Ck A ki=0 Ci + Y2 Sk(eki + A ki + A ki) 
k A; 

The numbers 

A = A2AAi 
3, 

k 
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are the elements of the symbolic third power of the matrix A ki. 

Quite generally we get 

(2) +A(N-i) (22.8) EckA kti = Ci + E Sk (eki + Ak + Aki + i+ Akt ) 
k k 

where A() are the elements of the v-th symbolic power of Aki, whose 
recurrent definition is given by 

(22.9) A l =EA(Axi 
x 

with the initial condition A(') =A ki 
Let us assume that the numbers A(fN) tend towards definite limits 

as N increases. If this is the case, these limits for any given k must be 
proportional to the elements in a row of the adjoint of the matrix in 
(22.5). (Since these rows are themselves proportional, it does not mat- 
ter which row we consider). Indeed, if A(') is the limit of A(T) as 
N increases, we must obviously by (22.9) have 

A(oo) A(0)Axi. A5ks = E Az . 

Hence 

(22.10) >2A"* (A,i - exi) = 0 (i = 1,2* 2 n). 
x 

Let k be a fixed member and consider the n magnitudes A k l 
kn They are solutions of the homogeneous system (22.10) and must 

hence be proportional to the elements in a row of the adjoint of the 
matrix (A2,-ex1), q.e.d. 

From now on we shall make the assumption that the matrix A k iS 
such that the sum of the elements in each of its rows is equal to unity, 
in other words 

(22.11) AkO = 1. 

Furthermore, we assume that the sum of the right members is zero, i.e. 

(22.12) SO 0. 

If (22.11) and (22.12) are fulfilled, the system (22.5) certainly has a 
solution. By complete induction, using (22.9), it is easily seen that all 
the symbolic powers will also have the property (22.11), i.e. 

(22.13) A(o) = 1 for any v and k. 

But then the limit A() must be independent of k. Indeed, the num- 
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bers Al- ... *Al- for two different values of k must be propor- 
tional, because both these sets are proportional to the elements in a 
row of the adjoint of the matrix in (22.5). And by (22.13) the sum of the 
elements are equal in both sets, namely 1, which is only possible when 
the elements of the two sets are actually equal. If we let Pi denote the 
limit towards which Aki(N) tends, we consequently have 

(22.14) Pi = Lim Akt = independent of k. 

At the limit the left member of (22.8) can consequently be written 
CPi where 

(22.15) C = ECk = Cl + * +Cn . 
k 

By (22.11) the sum of the P's is unity, i.e. 

(22.16) Po = 1. 

If A (N) tends towards a limit different from zero, it is clear that 
the series eki+Aki+ * +A(N) in the right member of (22.8) must 
diverge. This need not mean that the whole expression in the right 
member diverges. Indeed, for high values of N A(N) is nearly inde- 
pendent of k, so that the summation is virtually equal to Pj(sj+ 
* * *+Sn) which by (22.12) is zero. This fact can be utilized to throw the 

whole expression into a form involving a convergent series. Since the 
effect of the higher terms are annihilated by the summation over k, 
because these higher terms become independent of -k, it appears that 
the feature which really determines the total value of the expression 
is how the earlier terms deviate from their limiting value. This suggests 
to replace the series in the right member of (22.8) by the series 

((N) N)(-) (N) 
(eki-Aki ) + (Aki - Ak ) + + (A(N-1) -Ak) 

which may also be written 

(22.17) ) = 1.Dka + 2.Dk. + * + N.Dki 

where 

(22.18) D = A - Ak Dk =Aki - eki. 

By (22.13) we see that the row sums are zero both in D() and QN), 

i.e. 

(22.19) D = 0 Qk) =0 for any v and k. 
Q(N) Assuming that AQk converges we put 
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(22.20) Qki = Lim Qk( 

so that at the limit the equation (22.8) can finally be written 
n 

(22.21) ci = CPi + f,Sk Qki 
kl1 

where Pi is defined by (22.14) and Qki by (22.20); C is an arbitrary 
parameter that expresses the sum of the c's. 

Under assumption of convergency (22.21) furnishes the solution 
of any system of equations of the form (22.5) where A ki and si satisfy 
(22.11) and (22.12). 

23. Projections in N-Space 

Consider an N dimensional space (xi ... xN). The symbol XK may 
be looked upon either as the point (xl . . XN) or as the vector from 
origine to this point. The individual numbers (xi ... XN) we shall call 
the total-space components of the vector, in order to distinguish from 
certain other kinds of components later to be considered. 

Let L be an N-m dimensional linear subspace through origin of the 
total space. This means that L is the locus of points XK that satisfy m 
equations of the form4 

(23.1) ZfiKXK =0 (i=1,2...m) 
K 

where fiK is an m-rowed and N-columned matrix of rank m. The equa- 
tions (23.1) express that any vector belonging to L is orthogonal to all 
the m vectorsfzK (i= 1, 2 . .. in). 

By the classical rules of linear equations there exists a set of n = N-m 
linearly independent vectors gJK (j =1,2* . . n) belonging to L and 
such that any vector UK belonging to L can be written as a linear form 
in the 9jK, in other words such that we have 

(23.2) UK = 71 jjg K (K = 1, 2 ... N) 
i 

where the nqi form a set of numbers called the components of UK in the 
reference system gJK. The vectors gjK are said to unfold L. Since every 
giK belongs to L we have the orthogonality relation 

1 = 1,2 m 

(23.3) fiKgeR = 0 j =1 2 ). . 
K 

m~~n + n = N 

'I do not express the following formulae in tensor notation because I shall here 
make no use of the "up-or-down" character of the affixes, that is of whether the 
affixes are covariant or contravariant. 
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In the same way as the gs1 unfold L, the fiK unfold a certain linear 
manifold that is normal to L. The vectors giK may be called the unfold- 
ing vectors and the fiK the normality vectors of L. The matrix gjK may 
be called the exterior unfolding matrix and fiK the exterior normality 
matrix L. The expression "exterior" is used to indicate that these mat- 
rices depend, not only on the intrinsic properties of the vector bunches 
gjK andfiK respectively, but also on their position relative to the refer- 
ence system of the total space. 

Consider the square matrices 

(23.4) 'kij = EfiKfiK (i,j = 1, 2 m) 
K 

(23.5) 'yij =EgiKgiK (i,j = 1, 2 ... n) 
K 

X and y are called the metric matrices of L. They are symmetric and 
may obviously be looked on as moment matrices, hence they are by 
the Gramian determinant formula positive definite. 

Since we assume the matrix IIfiKII to be of rank m, q/i; is non singu- 
lar, and the same applies to 'yi2. We may therefore consider their recip- 
rocals 

* 

(23 .6) ij = the reciprocal of cfjs 
* 

(23.7) yij = the reciprocal of yij 

By means of the reciprocal metric matrices we form the reciprocal ex- 
terior matrices 

* * ( i= 2 m 
(23.8) fiR = /iKfKK \ K=12***N ) 

Ki 
E 

(23.9) jK = ' jKgKK -1,2 N )n 
K K7i'- 2 ...AT 

By inverting these equations for a given K we obtain 

(23.10) fiK = 
Z:iKfKK 

K 

(23.11) 9 jK = Z iKgKUK 
K 

These relations show that between the exterior matrices and their 
reciprocals there exist the following relations 

* ~~~~~* 
(23.12) ZfiKfiK = ffiKfK =e 

K K 

(23.13) E giRKgK = giKgjIC = eii 
K K 
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where ei1 are the unit numbers = 0 or 1 accordingly as i #j or i =j. 
Now let us consider the set of N=m+n vectors flK ... fmK 1K 

... *nK. They form a set of linearly independent vectors. Indeed the 
Gramian of this total set is by (23.3). 

q51 * **irm 0 * * 

* . . . .X. X. .... . 

(23 .14) O ml * " * * 0 m ? ***?I?>iI |zi 
0k*n* *r0rn 0 *O alI nI ( ... o 'Yii. 

0 ' * -* 'Yin * * *Ynn 

Therefore any vector XK in total space can be written in the form 
m n 

(23. 15) XK = JifiK + E91gjkjK 
i==1 j=l 

The numbers ti are the components of XK in the manifold that is nor- 
mal to L, and the numbers -qi are the components of XK in L itself. 

Between the total space components XK and the components ti and 
77i there exists a unique correspondence. By -(23.15) XK is determined 
in terms of the ti and -qj. And multiplying (23.15) by f*KK and *5K 

respectively and performing a summation over K we get 

(23.16) fiX= (i = 1, 2* m) 
K 

(23.17) 7- E 9KXK j 1 2 ... n). 
K 

By means of the exterior matrices and their reciprocals we finally 
form the projection matrices 

(23.18) FHK = HfiKC = E fiHfiK 
* i 

(23.19) GHK = gjHKjK = EgiHgiK - 
i i 

The expression for these matrices may also be written 

(23 . 20) FHK = 1ifiHfiK = 1iifiHfiK 

(23 .21) GHK = J7Yij9iH9jK = DYijgiHgqK 
i i 

Between the two projection matrices there exists the fundamental 
relation 
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(23.22) FHK + GHK = eHK. 

To prove this consider the N dimensional linear form EKFHKXK. 

Inserting here the expression for XK taken from (23.15) ,and the ex- 
pression for FHK taken from the second and third member respectively 
in (23.20) we get 

>90K>/ijfiHf1KfKK + 2fl8 2q5i;fiHfjK9gKa 
K ijK a ijK 

By the summation over K the last term in this expression vanishes 
on account of (23.3), and the first term reduces to 

ii 

If this expression is multiplied by XH and summed over H we get by 
again using (23.15) 

>LFHKXHXK = E2iOZiHE flH >JtKfKH + E?159UH 
HK ii H K K 

By the summation over H the second term vanishes and the first re- 
duces so that we finally get 

(23.23) ZFHKXHXK = EOijtit; 
HK i; 

similarly we get 

(23.24) IFHKXHXK = ZYifYqi7rii 
IIK ii 

so that 

(23 .25) (FHK + GHK)XHXK = ,Xijtit; + Z:7iir1ir1i. 
HK i, ij 

This being so, let us consider the N dimensional quadratic form 
>HKeHKXHXK. Inserting here for XH and XK we find easily that the 
form reduces to the same expression as the one we have in the second 
member of (23.25). Hence we must have for any choice of the x's 

(23.26) Z(FHK + GHK)XHXK = IeHKXHXK 
HK HK 

which is only possible when (23.22) is fulfilled. 
By means of the projection matrices and the fundamental formula 

(23.22) it is now easy to express the coordinates XK' of the point ob- 
tained by taking an arbitrary point XK and projecting it orthogonally to 
L. Indeed this projection is defined as the point whose L components 
are the same as the L components of XK, but whose components in the 
manifold normal to L are all zero. The t and - components of the pro- 
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jection considered are thus immediately given by the very definition of 
the projection. The thing that interests us is, however, how the total- 
space coordinates of the projection can be expressed directly in terms 
of the total-space coordinates XK. This is obtained by expressing the 
total-space coordinates of XK' by means of its t and v coordintes using 
(23.15), then putting here the t coordinates equal to zero and the 11 
coordinates equal to those of XK, and finally by (23.17) to express the 'q 
coordinates of XK by means of its total space coordinates. Doing this 
we find 

(23.27) XH = ZGHKXK. 
K 

By means of the fundamental relation (23.22) this is equivalent to 

(23.28) XH = (eHK - FHK)XK 
K 

which can also be written 

(23.29) XH = XH - >2FHKXK. 
K 

This explains the name projection matrices given to FHK and GHK. 

As an example consider the case m = 1, that is n = N-1. In this case 
L is simply a plane defined by an equation of the form 

(23.30) fiX1 + * +fNXN = 0. 

We now get 

* 1 

f12 + +fN2 

fH fK 

/fl' + + fN2fi2 + f2+ 
and therefore 

(23.31) XH' XHf- EfKX+N 

Finally let us determine the projection of XK, not on L, but on the 
manifold M that is defined by the inhomogeneous equations 

(23.32) EfiKXK = U, (i = 1, 2 ... m) 
K 

ui being a set of given numbers. 
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The two manifolds L and M are parallel because they have the same 
normality manifold, namely the one unfolded by the vectors ftx 
(i = 1,2 ... m). If XK" is the projection of XK on M and XK' its projec- 
tion on L, XK"t will consequently have the same v -coordinates as XK', 

that is, as XK itself. And the t coordinates of XK" must obviously be 
just large enough to satisfy the equations (23.22). In other words we 
must have 

E2fi{ Y2e"fKK + J?85g5} =Ui 
K K a 

where tK"' are the t components of XK". The summation over K in the 
last of the above terms give 0, so that the equation reduces to 

(23.33) >ij4k" = ui 
i 

hence 

(23.34) = u 

In the expression for the total-space components of XK", namely 

XH = '2 "f'H + E27jgjH 
i i 

we notice that the last term just gives the previously calculated coordi- 
nate XK', i.e. the expression (23.28). And the first term in the above ex- 
pression reduces by (23.34) to 

Uw,jifiH = Euifig 
ii i 

Hence: If we take an arbitrary point XK and project it on to the linear 
manifold (23.32) we get a point XK" whose total-space coordinates are 

" * N 
(23.35) XH = EuifsH + 2(eHR - FHK)XK 

i=1 K=1 

where f.H is the reciprocal exterior matrix and FHK the projection 
matrix defined above. 

In the special case m= 1 we get 

(23.36) XH"XH + f2+fH + -(u EfKX) 

where u is the constant in the second member of the equation defining 
the plane on to which the projection is made. 

University of Norway 
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