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Introduction.

The present memorandum has been written rather
hurriedly, and the text is therafore not as carefully polished
as 1% ought to be in a manuscript ready for publicetion., It
should, however, be clear enough to bring out my point of
~Vview,

The present memorandum does not discuss details of
the various -equations whioh Tinbergen has obtained and whose
coefficients he has determined statistically., My mein concern
has been to discuss what equations of this type really mean,
and to what extent they can be looked upon as "A Statistical
Test of Business Cycle Theories". (The title of one of the
volumes which Tinbergen hes presented for discussion).

My conclusion is that the work which Tinbergen is
now presenting is of paramount importance, perhaps the most
important single step forward in Business Cycle Analysis of
recent years. But I do not-think thet it cen be looked upon
as "A Test of Business Cycle Theories". The question of what
connection there is between the relations we work with in
theory and those we get by fitting curves to actual statistical
data is a very delicate one., I think it has never been
exhaustively and 'satisfactorily discussed. Tinbergen in his
work hardly mentions it. He more or less takes it for granted
that the relations he has found are in their nature the same
as those of theory. See for instance his discussion in Vol.II
P.109 - 123 where he constantly refers to the coefficients of
his equations and takes the signs and magnitudes of these as
tests of whether certain theoretical contentions are right or
wrong. This is, in my opinion, unsatisfactory. 1In a work of
this sort, the connection between statistical and theoretical
relations must be thoroughly understood and the nature of the
information which the statistical relations furnish - although
they are not identical with the theoretical relations -~ should
be clearly brought out.

The present memorandum is an attempt to bring some
contribution to this question. It will be divided into 7
sections viz:

l. Some remarks on terminoclogy.
2, Functional equations and their solutions.

3. The irreducibility of a functional equation with respect
to a set of functions.

4, Coflux and superflux relations. The nature of passive
observations.



6. Aberrations versus stimuli. Confluence analysis and
shock~theory.

7. Interpretation of Professor Tinbergen's results.

1. SOME REMARKS ON TERMINOLOGY.

In any macrodynemic analysis there will be some
constvants or functions of time that are taken as data while
others are considered as the variates to be'"explained”.

A determinate theory is one that considers just as many
independent relations as there are variates to he explained.

We shall use the expression "nature" or "constitution"
of the system of phenomena studied as the whole of all those
characteristics that describe the "way of functioning" of these
phenomena, When we speak of the "structure® of the systenm,
we think more specifically of those features of the "constitution"
that can be quantitatively described., We speak for instance
of the "structural equations” for the system. We do not intend
however to draw any sharp line of demarcation between cons titu-
tion and structure. The difference between them is only one
of degree and one that is not very important., The precise
definition of a structure is a matter of theorising although
of course the leading ideas of the theoretical definitions will
frequently be suggested by facts.

4 disturbance is a deviation from that situation
which should have existed as a consequence of the structure.
In other words , it is something incompatible with the struc-
ture; something new and spontaneous introduced in addition to
the structure. Such disturbances meay be of two sorts:
aberrations and stimuli. A stimulus is a disturbance that
carries on its effects to the subsequent statesof the system, -
through the structural equations. In other words &t any given
moment it is the magnitudes of the variates including the
stimuli that are taken as influencing the further evolution;
that 1s,the stimulil act as a sort of permanently changing
initial conditions. An aberration is also a departure from
the value which a variate should have had according to the
structure, but this departure acts only at the actual moment
at which it occurs; it is a sort of instantaneous addition =~
unexplained by the structure - and without any consequence )
for the subsequent states, In other words it is the magnitudes
of the variates exclusive of the aberrations that asct &s initisl
conditions for the subsequent states,

The existence of aberrations leads to the applica-
tion of the methods of Confluence analysis.® The existence
of stimuli leads to the shock-theory.** There may also be
mixed cases but I shall not go info this question here.

* See the publication "Confluence Analysis™ of the University

Institute of Wconomics, Oslo. -
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2. FUNCTIONAL EQUATIONS AND THEIR SOLUTION.

The structure of a macrodynamic system will be
described by means of a number of functional equations. We
shall in particular consider linear lag-equations, and tak-
ing as ocur variates the deviations from certain trend values,
it will be sufficient for our purpose to consider homogeneous
equations. Let X,(¢).... X it/  be a number of variates whose
movement is to be explained; t designating time. Let
X,(t). .. x, (t) be trend values determined in some way or other,

and let x’ﬂy..,xw{?)be deviations from trend, i.e.

(2.1) X (4) =kt x (¢

Between the ‘variates X. we assume a number of
reletions {structure equations) of the form

(2.2) Z[@O{ki@ X (k-6) =0 (k = 1,2...)

k represents different equations, while the summation i &

represents. the terms of each equation; 1 runs through all

or some of the variate numbers 1 ... N, and € runs through

a certain range of lag numbers, in general different for each

variate, The 16 range in each equation determines the nature

of the terms involved, we shall call it the form of the equation;
the o¢'s are the coefficlents of the equation, The distinction

between the form and the coefficients of the equation is

essential for the discussion in Section 4, A similer distinc-

- tion may of course be made for more general types of functional
equations. s

For the discussion of the following Sections 1t is
necessary to summarise some of the classical facts of the
theory of linear lag-equations (differenceequations).

A certain number of equations of the form (2.2) -
equal or unequal to the number of variates N - are said to be
linearly independent if it is impossible to deduce any one of
the equations from the others no matter what the time shapes
of the variates are. A necessary and sufficient condition for
the independence of a set of m equatlions of the form (2.2),
is that there should not exist any set of numbers A, A; . A,

not all zero, stuch that.

(2.3) . Zé )\k O<k¢'{-:,’ =@ foreny1 G

In terms of the coefficilents o( the criterion can be
formulated by considering the m rowved and M columned matrix

(2.4) O‘k.i@l_

vhere all 19 combinations are written as columns, M being
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the number of different (# combinations that exist in ell
the m equations and k representing the rows,

The equations are independent when and only when
this matrix is of rank m. Or again the ¢riterion can be
formulated in terms of the moments /o4 cox,jthe summation being
extended over all ¢ & combinations. The ¥quations are in-
dependent when and only when the Symmotric geterminant of the
magnitudes /'g% o(,gfis different from zero.

For each equation of the kind (2.2) that we edd,

we make less general the class of functions that satisfy the
equations. If the number of equations becomes equal to N
the system 1s determinate, This means that the nature of the
solution has been restricted as much as it is possible to do
so by means of functional time equations. It does not mean
that the set of functions X,ﬂ"j.,. X,V(tj is completely
determined, & considerable amount of freedom 1is still left
and will have to be determined by a set of initial conditions.
But this determination is in point of principle different from
that achieved by the functional equations. This 1s shown
¢clearly by the fact that we cannot, say, replace the initlal
.- ¢cenditions by one or more additional equations of the form

. (2.2). Indeed if there are more than N independent equations

. of the form (2.2), there will in general exlst no functions

. satisfying the system.

The solution of a determinste system of the form
(2.2) can be achleved either directly or by means of expansions
in series of complex exponentlals. The direct method 1s
applicable only in the simplest cases. Take as an example
the system

(2.5) | Ny Xp () ~ O Xy(t) =0
y : , X, X (t]) + S X, (t-g) =0
. From this follows immediately o x', + XX o) ) =0

(2.6) hence X AL +x, (6 -6 =2

A solution of (2.6) 1s obtained by choosing
arbitrarily the shape of x, over an interval of length &
and then repeating this shape antiperiodically for each
subsequent @ interval. (2.6) shows that no more general
form than this can be an X solution of (2.5). If we further
put x_zéf-j: ‘5:32-)(,(&.‘} ve get a complete solution of (2.5).

Obviously this 1s the most general form of the solution. Any
function that can be a solution, must be a special case of
this. The arbitrary shape of Xl over the original 7~ interval

is here the initial condition. Putting this equal to a sine
function with period 2¢ , we get, both for X, and X,, over
the complete t range, sine functions with this p%riod.

In the more complicated cases one must resort to

the indirect method. It consists in trying to satisfy the
equations by expansions of the form g&;ﬁﬁ

(2.7)
X:'({‘}: /r c'v (’.Xé //|:/? IV’
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vhere (} are constants and the summation over X runs over
certain.%alues to be determined. Complex numbers are
admitted both as C's and }'s.

Inserting (2.7) in (2.2) we get -~ if the system is
determinate -

(2.8) ¥le-g

75 L. /‘ =) 3
Zﬂé’ 0</<H:' CJ;!' ~ = {: -k‘ﬂ*"'”j
Any number of exponential functions with different
exponentials are linearly independent, therefore if the
¥ 's are different, (2.8§ cannot vanish identically in t
unless the terms of (2.8) vanish separately for each J .

Assuming for the moment all the J 's to be different we see
that we must have -

R
. . wI o 11 4 k.
(%’ 9) Z[é’ Xy C}@,g _:%r all X an

For any given value ofgf this is a system of linear
homogeneous equations (k = 1, 2 ... N) in the set of N numbers
, . If this system is to have a solution apart from
the trivisgl C}}:z cero=( xy=0 the determinant of the co-

efficients must “vanish, 1.e. we must have

X
E o HKiy € )Z;fbr any X

k and 1 designate rows and columns respectively in the N
rowed determinant (2.10).  (2.10) is the characteristic
equation whose roots 2.,{,,: .- (in general infinite in
number) give the exponents of the expression (2.7). Under
very general conditions this expansion is velid even though
some of the 5 's are equal, the only difference being that in
this case the multiple terms are replaced by a polynomial in
t (of the order egqual to ¥ - 1 1f )@ is the multiplicity of
the §-root) multiplied by the exponential in question. We
need not consider this case here, The characteristic
equation could also have been obteined by eliminating - in

a way similar to that used to obtain (2.6) - a certain number
of the varistes in order to get a "final equation" in one or
a few varietes, and then forming the characteristic equation
for this, This procedure 1s often useful when it is wanted
to glve a concrete interpretation of the mechanism of the
solutlon, but in point of principle it is just as easy to
form the characteristic equation directly as in (2.10?.

(2.10)

It will be noted that the set of exponents as
determined by (2.10) is the seme for all the variates Xy oo Xye
In other words all the variates contain the same sort of
components (if Zfis a real number the component in question
is a real) exponential, 1f'x'is a complex number its conjugate
must also be a solution of the characteristic equation and
these two terms together will form a real, demped, undamped
or antidamped sine function). But the intensities with
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which the components occur in the various variates will be
different. These intensities, - amplitudes - are represent-
ed by the numbers (., . The distribution of these numbers
and in particular the extent to which it is determined by

the functional equation i1s essential for the interpretation
of the relation between stetistical and theoretical relations
in economic mecrodynamics,

For any given Y the corresponding numberscﬁa...(;
will - if (2.10) is of rank N - 1 for this value of § ¢ - V7
be uniquely determined apart from a common factor of pro-
portionality ¢.. . Indeed, the numbers ch o O,y Wik,

when (2.10) 1s“of rank N - 1, be proportional to'{he elements
in a row of its adjoint (the elements of all these rows are
proportional), There exlsts at least one row which does

not consist exclusively of zeros and hgnce determines the

proportlons in question. Let{ y ... {, ,be one such set of
proportionality numbers, We may then put

A
(2.11) (:zA:C} Cfg' where Cx is an arbitrary number,

This applies to any root 4 that makes the rank of
(2.10) ¥ - 1. Suppose that only such roots exist (the other
cases do not alter those features of the amplitude distribu-
tion in vhich we are here interested),

Inserting (2.11) in (2.7) we see that we can draw
- the following coneclusions: )

Each variate of the set of functions that is a
solution of (2.2) can be expanded as & sum of trigonometric
components. The frequencies and damping exponents of the
components are determined by the equations (2.2), and so are
the relative amplitudes, that is the ratio of the emplitude of
a given component in one of the variates to that of the same
component in another variate. But the absolute amplitudes
are not determined by the equations (2.2). 1If these equa-
tions only are given, we may choose the absolute strengths
of the various components in one of the -variates arbitrarily
(the choice of the numbers Cy )}, but then the absolute
strengths of these components in the other variates follow
since their relations to the amplitudes of the components
in the one variate we selected are determined by the equations
(2.2). Briefly, the relative amplitude distribution is
deterniined by the equations !2.2), but the absolute amplitude
distribution has to be fixed by the initial conditions.

A similar situation exists for the phase distribu-
tions, Indeed the timing of a given component in one variate
as compared with that of the samé component in another variate
is determined by the equations . (2.2), but the timing of the
various components in one selected variate must be fixed
by the initial conditions. '

By elimination processes similar to that used in
obtaining & final equation, meny new systems of equations
may be deduced from (2.2)., . If the correspondence between the
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two systems is unigque in the sense that the new system may

be derived from the o0ld and vice versa, with identical

variates involved, the solutions of the two systems must be
identicsal. In particular it is of interest to consider linear-
elimination processes, that is processes where the form of tﬁe
equations (the specification of the functions and lag-numbers
that occur in the equation) is the same but the coefficients are
changed. Any transformation of the form

» fa
(z.12) X, o = =~ .
kLB Z,, Yrn Xpi0 A
where ?}h is a non~-singular matrix, independent of 1¢&/ , will
furnish a new system of equations,that are independent if the

0ld system is, and has exactly the same set of functions as its
solution, - and vice vsrsa.

Yie shall now discuss-in somewhat greater detail these
various equations that have the same solutions, and introduce
a classification of them which is important for our purpose.
In particular we shall consider equations which have the same fam
but different coefficients.

3. THE IRREDUCIBILITY OF A FUNCTIONAL EQUATION WITH
fBSP Y) S e

When we compare a functional equation involving one or
gseveral functions with particular set of functions, there are two .
questions to be asked: does the set of funotions satisfy the
equation and does it satisfy this equation only?

Obviously, the set will satisfy all equations which -
involving identical functions - can be derived from the first
equation, so we are only interested in knowing whether the set
satisfies some other eguation wnich is independent of the first.
Furthermore we shall not consider all other conceivable equations
but only those which are of the same form as the first but have
different coefficients. In the case of homogeneous equations
of the form (2.2) this means that for any given one of these
equations (any given k) we are interested in knowing whether a
particular set of functions considered satisfies not only this
equation but also another with the same i% range but with
coefficients that are non-propartional to those of the first eguation.
If this is s=o, we shall say that the first equation is
reducible with respect to this set of functions; if not it is
irreducible. Thus an irreducible equation of the form (2.2)
is one whose coefficients are uniguel¥ determined and allow of no
degree of freedom if the equation 1s to be satisried by this set
of functions (apart from thée arbitrary factor of proportionallity
which is always present in the case of a hemogeneous equation).
It is clear that the property of irreducibility must be importan
when we are studying the nature of those equations that can be

determined from the knowledge of the time shapes of the functions
that are to satisfy the egquations.

Obviously the first equation in the above definition is
reducible, the second is also reducible. The set of functions
involved in the definition may be specified in great detail or
only very broadly as a general class of functions.

A similar definition may be established for a system of
equations but we shall only need it for a single equation.
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If an equation is given, we may consider the class
of all those sets of functions (satisfying the equation} which
have the property that the equation is irreducible with respect to
those sets of functions. This class we may call the irreducibildty
class of the equation.

Let us consider some simple propositions and some
examples that will help us to visual ise the nature of this
irreducibility definition. In the first place it 1s easy to
see that there camnot exist two or more equations of the same
form which are both irreducible with respect to the same set of
functions. But if the two equations are of different forms
(e.g. with different lag-numbers) each of them may be
trreducible for the same set of functions.

In the second place we notice that an functional
equation is irreducible with respect to the mpst general set of
functions that satisfy this equation.  Indeed, if the set of
functions should also satisfy another equation - independent of
the first - this would represent a restriction to the set, so
tnat it could not sctually be the most general set that satisfied
the first equation. But if we consider a set of funections
that satisfy two independent equations, neither of the equations
need be irreducible with respect to this set. Thig is indeed
a more special set of functions -and the requirement that this
. set shall be a solution is less rigorous and therefore places
less restrictions on the coefficients of the equation.

A8 a more particular example let us consider the
equation (2.6). Pure sineé functions with period 2% is a
solution, and for functions of this sort the eguation is
irreducible, because there do not exist any values of p and ¢
which will make the equation _

(3.1) PXAE) +G X (E =G =

an equation satisfied by pure sine functions of periocd 26,
except the values p = q. And in this case the equation is the
same as (2.6). '

On the other hand take the equation

(3.2) O.6x,(6) +X(6-6) + L4 x, [+~20)=0

This equation is also satisfied by e sine function of period 20
{which is easily seen by insertion), but it is not irreducible
with respect to this function. The equation would also be
satisfied by this function if we let the first coefficient be

0.9 and the last 0.1, or quite generally if the sum of the firs?t
and last coefficients are equal to the middle coefficient. 1In
this case the coefficients of the equation have a one dimensional
degree of arbitrariness (even apart from the arbitrary factor of
proportionality which is always mresent in the homogeneous
equations).

The following is a general rule about the reducibility
of equations of the form (2.2%.
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(3.2} Rule about reducibility: If the functions with respect
to which reduciblilty 18 defined are made up Of N exponential
components (Ltwo compleX exXponentials correspond 10 one damped,
undamped or antidamped sine function), the equation is
certainly reducible - and hence its coefTiclents are arfected
in a mores or less arbibtrary manner - 1f It conbains more vhan
n+ 1 terma. And 1T may be reducible even 1I 1t colvains

n + 1 terms or less.

Let us first consider as an example the following three
term equation in one funetion

041 K femgy) st (6, vos (08, ) =O

If x is simply an exgogent}gl x(t) = Ce¥?, the left-hand side
of (3.4) becomes (0, ¢ “8 cr,e WG wex, 096 T,

In order that this expression should vanisﬁ identically in ¢

it is necessary and sufficient that the bracket should disappear.
This leaves a one dimensional arbitrariness in the 'S even
apart from their arbitrary common factor of proportionality.

If the funoction considered is of the form

= _— 3é
(3.5) X(H*A \.‘?/.:-:/n(?'/sf-Oc.’f)

it is equivalent to two exponentiasl components (i.e .o
and since the number of terms in the equation is only 3, the
equation may he irreducible. But it may slso be reducible if
the lag-numbers satisfy certain special conditions. Inserting
from (3.5) into the left-hand side of (3.4) we get

.,_ .
(8.6) AeSnfaict) [, v A 3
' / O }1[.,6 Twz.f.d+%\’L7+Ae/\605/q+qf)/‘0(,J,-rlig-:,‘-‘..+0(37i.7

wh —f2
ere C = < /: C,‘,., . _ﬁ@c.
/ 2wy 6 - -, ’
(3.7) < =€ smi e
In order that (3.6) shall vanish identically in %
it is necessary and sufficient that the two brackets should
disappear separately (because the two time functions in front of
the brackets are linearly independent). I.e. we must have

U’i 5t O(J . *‘:Xj .73 =0

These are two equations in the «'s If the coefficients of the
two equations are proportional, i.e. if

(3.9) & -

T AL — L3

vy -A_p g, .
a set of ®'S that satisfies one of the equations would
automatically satisfy the other. Hence there would again be only
one ocondition for the three 'S consequently the o's would have
a one dimensional arbitrariness, even apart from the usual
factor of proportionality. The condition (3.9) is egquivalent
to the condition that all the three two-rowed determinants in
the matrix of coefficients in {3.8) should vanish (if any two of
these determinants venish, the third vanishes automatically).
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Since

(3.10) ' g ‘ _ . BGrg)

= ¢ 5’7?0((C?”'6%;)

we see that in terms of the lag-numbers the condition (3.9)
is reduced to

(3.11)

N
’ 4
- h

(-jz--@/_-_-é_(.{{, 6 -6 = K7

where h and k are integers (h = k or h = 0 or k = 0 represent
trivial cases). Thus, if (3.11) is fulfilled, (3.4) is
reducible with respect to (3.35).

4 general criterion for the case when evun the
{(n + 1) terms equation 1s reducible with respsct to a series
consisting of n exponential components, is provided by the n
rowed and (n + 1) columned matrix

'",(9’ Yy Y Fu i PR ¥

(5.12)//Q eh'C-‘:.- ), Y Coi &, ‘. <_.)[ch }g

M ES S & e Jy¢ o, Ly € /i
where i, J... are the affixes of the variables xy, Xy one which
occur in the equation considered, and &/, 6 &, .. G F
are the lag-numbers. The rows of (3.12) aré proddced” by
letting 25 run through the characteristic numbers of which
we here suppose that there exist n. For the (n + 1) term
equation in question to be reducible with respect to the set of
funetions considered, it is necessary and sufficient that the
matrix (3.12) should be less than n. lMore precisely: if it is
of rank rif n (which is a criterion that depends only on the nature
of the funcétions in question and the distribution of the lsg -
numbers) the equation will have an (n - r) dimensional
reducibility, i.e. its coefficients will have an (n - r)
dimensional degree of arbitrariness, in addition to the arbitrary
factor of proportionality associated with the homogsneity of the
equation.

4. COFLUX ALD SUPERFLUX EQUATIQNKS.
THE NATUHE OF PASSIVE OBSERVATIONS.

If a determinate system of the form (2.2) is given,
it is of particular interest to consider the reducidbility of the
various equations with respect to that class of functions which is
a solution of the complete system. This, of course, is a much
more special class of functions than that which satisfies each
equation taken separately, and the reducibility of the equation
ig correspondingly higher. The speclalisation of the functions
is 8till further increased by the initial conditions. = Ye have
indeed seen that even though the solution of the equations
themselves may contain a large - perhaps infinite - number of
components, the equations do not say anything about the absolute
amplitude distribution. It may indeed happen that in the actual
solution all components will disappear except, say, one which is
a pure sine curve. In this case all the original equations
that consisted of more than thres terms would certainly te redueible,
and even some of the three-term equations might be reaucible.
An equation which is fmreducible with respect to the set of
functions that forms the actual solution of the complete system
(including those determined by the initial conditions) we shall
call a ¢oflux equation. The others - thosge that are reducible
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with respect to their set of functions - will be called

gsuperflux equations. These latter equations are of course in

B particular sense irreducible, but with respect to more general
classes of funetions. If any one of them is not reducible

for any more special class of funection it is at least irreducidle
for that class which consists of its own most general solution.
The word "flux" in this conncction suggests that the reducibility
is here defined with respect %o the time shape ~ the "flux" -
actually possessed by the phenomena.

The notion of coflux relations is fundamental when we
ask what sorts of equations it is pogsible teo determine from
the knowledge of the time shapes that are actually produced.
The answer is obviously that all coflux equations and no other

eguations are discoverable from Uhe knowiedge of the time Sha es
o% the functions that form the actusl squf%on. ' 2RE SRRl

Indeed all other equations will have coefficients with
at least a one~dimensional degree of arbitrariness. if an
attempt were made to fit sush an equation to the data, the
coefficlents would be of the § form when no errors {aberrations)
were present, and otherwise they would have a fictitious

deferminateness, their magnitudes being determined solely by
the errors, and not by the structure.

This is the nature of passive observations, where the
investigator is restricted to observing what nappens when all
eguations in a large determinate system are actually TulFIIled
agmquaneousI . ﬁﬁe Very fact Eﬁgf these equations are
TATIII2d prevents the observer from being able to discover

them; unless they happen to be coflux equations, that is,

irreducible with respect to the functions that form &he actual
sclution.

But why bother about these other equations that are
not discoverable through passive observations?

dhe answer is that some of theseother gquations
frequently have a higher degree of "autonomy"” than the coflux
equations, and are therefors very well worth knowing. The
"autonomy"” of an equation is hot,like the irreducibility a
mathemetical property of a cloged gystem like (2.2), but is
built on some sort of knowledge outside this system. I shall
now proceed to a digscussion of this point.

5. THE AUTONOMY OF A FUNCTIONAL EQUATION -

ATION
KD REFOR.—

Suppose that, from a knowledge of the time shapes of
the two functions x/4, and x,/*) , I have determined a
relation of the form

(500 Xy ()= 08 (6-6)wbx, () #Cx,, (66, )

What does this equation mean? 1t means that so long as x, and Xo
sontinue to move with the same time shapes as They have hed in
m

8 pas can compute e value ol x; at any point o ]
from the knowledge of X at this same™noint and % and x.at
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cartain earlier moments as indicated in the formulae. In other
words the equation is simply a description of the “routine of
change" which xy and Xp follow. The equation determined in

this empirical way does not atate that if a situation occurs

e—

where x3{ £-8), xg{t) and X5(t~ €. )have some arbitrary values.
1 can agein compute x3{t) by (5.1). To assume that 15.1) should
hold good for any values whatsoever inserted for the variables
on the right-hand side of the equation would indeed imply that
T coneceived of the possibility of another structure than the
one which prevailed when the equation (5.1) was determined.
For instance, if the original structure was taken as defined
by two equations of the form (2.2), I could not conceive of a
freevariation of the variates on the right-hand side of (5.1)
without giving up at least one of the two structural equations
thet determine the course of x; and Xp. But that wuld nean
giving up the very assumption on which (5.1) was determined.

This situstion can also be interpreted in terms of
irreducibility. If I conceive of the possibility that the
sonstants, 8,b and ¢ in (5.1) mey have definite velues, I must
also conceive of the existence of some time shapes of Xy &nd Xs
for which (5.1) becomes an irreducible equation, that is, has
determinate coefficients withoul any arbitrariness. And the
same applies to any other structural equation.

In a big system of structural equations it would be
quite exceptional 1f all the equations should be irreducible with
resnect to that particular solution which turns out to be the
final one. We only have to think of a case where the initial
conditions are such that only one single component 1s left with
an amplitude different from zero, while meny of the structual
pquations contein a large n-mber of terms. The fact that 1
reckon with such & system of equations, must mean that I con-

ceive of the possibility that the structure may heve been aif-
farent from what it actually is, thus giving a chance of produc-
ng & time shapes complicated enough to make the big structural
equations irreducible with respect to these time shapes.

But when we start spesking of the possibility of
a structure different from what 1%t actually is, we have intro-
duced a fundementally new idea. The big question will now be:
in what directions should we conceive of a possibility of
changing the structure. There is nothing in the nature of the
equations that describe the sctual structure, which can sugrgest
an answer., It is true that if & system of squations is given,
it would be natural to imagine in turn all equatiors omitted
except one; this remaining equation would then certainly be irre-
ducible with respect to the general class of functions which
now satisfy the equation (see the second example in Section 2}.
But this solution 1s only apparent, because there exist an
jnfinity of wavs of writing the system of structursl equations.
(Compere for instance the trensformation (2.12)).

To get & resl answer we must introduce some funda~
mentally new informstion. We do this by investigating what
features of our structure are in feect the most autonomous in the
gense that they could be maintained uneltered while other fep~-
tures of the structure were changed, This investigation must
use not only empirical but also sbstract methods. So we are led
to constructing a sort of guper-structurse, which helps us to

winl mnt thnza narticular equations in the main structure to

- L o wa-
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sense. The higher this degree of autonomy, the more fundamental
is the equation, the deepsr 1s the insight which it gives us into
the wav in which the system functions; in short, the nearer it
comes to being a real exnlanation. Such relations form the

essence of "theory".

Once such a basic svstem of structural equations to
which we c=n attach the label "autonomous" has been selected, it
is easv to derive others that have & greater or lesser degree of
autonomy. Tquations that are obtained by long elimination pro-
cesses, based on several autonomous equations will have a low
degrse of autonomy, they will in fact depend on the preservation

of a great many features of the total system.

The coflux relations that can be determined by
obsarvation of the actusl time shapes may or mey not come near
o0 resembling an sutonomous relation; that depends on the general
constitution of the phenomena studied. To give twd extreme
examples: the demand function for a consumers commodity as de-
pending on price and incomé and perhaps on some secondary
variables will, if the coefficlents can be determined with any
degree of sccuracy, come fairly near to being an sutonomous re-
lation. It will not be much changed by a change i1 monetary
policy, in the organisation of production ete., But the time
relation between the Harvard A, B and C ocurves is & pure coflux
relation, with only a small degree of autonomy.

Such I believe is in essence the relation between
the eqguations of pure theory and those that can be determined

by passive observations,

If the situation is such that the coflux relations
are far from giving information about the autonomous structural
relations, recourse must be had to experimentation, that 1s one
must trv to change the conditions so that one or more of the
structural equations is modified. In economics the interview
method is & substitute - sometimes bad, sometimes good ~ for

experimentation.

If the results of the investigation eare %o be spplied

for economic political purposes - for reforming the existing
economic organisation - it is obviously the autonomous structwural

ralations we are interested in.

6. ABERRATIONS V@RSUS STIMULI. CONFLUZNCE ANALYSIS
AND SLEOCK-THEORY.

The existence of aberrations does not necessarily
involve anv importent consequences for the theoretical analysis,
it only concerns the statistical technique, but in this respect
it is important. The existence of stimuli enteils much more
far-reaching consequences. The total time shape will now be more
or less trensformed, for instance demped cycles vill become un-
damped in the long run, but will have a disturbing effect over
shorter intervals. The timing between the cycles may be changed
from what it 1s in the stimulus-free system, and entirely new
cycles, pure cumulation cycles will emerge. These consequences

cannot be discussed in detail here.
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7. INTERPRTTATION OF PROTTSSOR TINBTRGEN'S RESULTS.

All the wav through his work Tinbergen uses approxi- ]
mations by which the time equations are reduced to linear
forms. This is certainly admissible in & first approximation 4
but the consequences should be clearly recognised. If the
linear approximations are used for as many equations &s are
needed to meke the system determinate (which is what Tinbergen
aims at doing: "...we must continue this procedure until the
number of relations obtained equals the number of phenomena..."
*"Business Cvoles ...." p.7) - only those features of the time
series are taken account of that can be approximated to by
fitting to the data that type of solution which & linear system
of equations asdmitsofnamely a number of trigonometric compo-
nents (exponentials or damped, undamped or antidamped sine
functions or as exceptional cases such functions multiplied by
polynomials) of the time serles over the interval considered.
In itself there is nothing objesctionable in this but 1t means
that the significance of the results must be interpreted int he
light of the various algebraic facts of the preceding sections.
These become relevant with the same approximation as that in-

volved in Tinbergen's calculations.

_ This being so it is clesr that it is only coflux
relations that are determined by Tinbergen; and the lack of agrecement
petween thesas equations and those of pure theory cennot be taken
as a refutation of the latter. Any number of examples could be
given of statements that are in need of very much qualification
on this ground. 4 case in point is that discussed on page 11l
in "Business Cycles" or perhaps even better the attempt on page
26 to gét an equation for consumers outlay. The only result of
the various attempts made here is to shift from one to ano ther
amongst an infinite number of coflux equations. By a suitable
choice of the variate an& lag-numbers introduced one can pro-
duce practically any coefficients one likes. A comfutation
from series made up of a small number of trigonometric com-
ponents shows this immediately. The reasons for discarding
some of the equations (p.26) are quite unsatisfactory. No other
reasons seem to be given than the fact that the coefficients do
not work out as the author likes. In my opinion all these equa~
tions are acceptable when interpreted as what they really are:

a number of cotlux equations. But none of them can,I believe,
be taken as an expression of the sutonomous structural equation

that will characterize demand.

In concluding this memorandum, I want to stress again
what T mentioned in the introduction, namely, the importance of
the results obtained by Tinbergen. They will have to be taken
as starting point for any further investigation ziming at obtain-
ing limits or other sorts of information concerning the struectural

coefficients.

17.7.38.
(signed) RAGNAR FRISCH.
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