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NOTIZEN

ON THE DISTRIBUTION OF A SUM OF SQUARES
OVER A LINEAR SUBSPACE

By
RAGNAR FRISCH

Let the stochastic variables x, x, ... x, be independently and normally
distributed with expected values zero and with the same standard-
deviation ¢. As is well known the sum of squares

2= 4 xf + ...+ & 1)

is distributed in the y* distribution with n degrees of freedom. That is
to say the density function (the probability density) of z is

fem=—— T (), @
2 anl(2)

Consider any n—p-dimensional linear subspace L, , passing through
origin, that is to say consider the locus of points whose coordinates
Xy Xy« . . X, satisfy the p homogeneous linear equations

ay %+ ap x4+ ...+ a,x, =0
Oy %y + g %+« o0 @y %, =0 3)

Gpy Xyt Gpy Xy . oL -y, x, =0

where the coefficients a form a non singular p - n matrix (i.e.a p-n
matrix of rank p), but are otherwise arbitrary.

What is the density function (the probability density) of the sumsquare
(1) over the subspace L, _,, defined by (3)? It is a fundamental fact that
this distribution is simply the same x* distribution as we had before, only
with n—p degrees of freedom instead of n. And this holds good regardless
of what the coefficients a actually are provided only that the rank of their
matrix is p. In other words we have the following

(4) Theorem: Let the n stochastic variables x, , . .. x, be independenily
and normally disiributed with expected values zero and all with
the same standarddeviation o. The density function (the pro-
bability density ) of the sumsquare (1) over any (n—p )-dimen-
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sional linear subspace passing through origin (that is over any
linear subspace of the form (3)) is

v z

f&n0=1f =W ) 5)
ey

where y = n — p.

In the statistical literature this theorem is always taken more or less for
granted, but it is not easy to find a proof of it that proceeds step by step
in a complete and clear cut fashion, it is even difficult to find a precise
formulation of the theorem. It may therefore be worth while to go over
this ground and give a chain of reasoning that leads up to the theorem?
and exhibits in the simplest possible way the strategic points of the argu-
ment when (1) is assumed.
Obviously, since the x; are independent we can immediately conclude
that if we select any » of them, say x,, %5, ... %, where a, 8, . . .y is any
set of v numbers selected from the set 1,2,...n (1 = v =< n), and we
form the sumsquare » :
z:xi—i—xﬁ—]—...—[—xﬁ, (6)
then this z is distributed in the y? distribution with » degrees of freedom,
that is, its density function (probability density) is given by putting
n = v in (2). Furthermore if we perform on the set of variables x, x,, . .. x,,
any orthogonal transformation so as to obtain a new set of variables
Y1 Y2 -+ ¥n» it is a classical fact in the theory of the normal distribution
that this new set will have the same property as the original set. That is
to say all the y; will be independent, have an expected value zero and all
have the same standarddeviation, namely 6. We can therefore immediately
conclude that if we select any v of these new variables, say ya, ¥ - « - ¥z
the sumsquare

z=yi+yi+..-+ ™
will also be distributed in the %? distribution with » degrees of freedom.
That is to say the density function (probability density) of the stochastic
variable z defined by (7) will be obtained simply by putting n = » in (2).
But these facts are not yet what is contained in theorem (4). The theorem
is much broader. It tells us that if we change our attention from what
happens in the total space, to what happens in any linear subspace through
origin — which is the same as to limit our attention to what happens in
that subunivers where the relations (3) are fullfilled — the only thing

11 acknowledge with thanks the critical as well as constructive remarks of Mr. Erling
Sverdrup in the course of discussions on this problem.
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we have to do in order to obtain the density function (probability density)
of the stochastic variable z defined by (1) is to put n in (2) equal to the
dimensionality of the subspace considered, that is equal to n—p where p
is the rank of the matrix of the coefficients a in (3).
As a preliminary to the proof consider a set of p vectors in n-dimensional
space

a; = (a3 3 - - . a)

Gy = (Ay gy - - - yy) (8

a, = (am App « « - am)

They are assumed to be linearly independent, i. e. to unfold a p-dimensional
linear subspace L,. This means that the p - n matrix (8) is assumed to
be of rank p. The unfolding of the subspace L, is achieved through the
fact that any vector belonging to L, can be written as a homogeneous
linear form in the vectors (8).

For the subsequent applications it does not restrict generality if we assume
all the vectors a to be normalized. That is to say we assume

ai +ai+...4+ai=1 (;=12,...p). 9
Apart from this and from the condition regarding the rank, the vectors
a are entirely arbitrary.
The linear subspace orthogonal to L, is the locus of points (x = x, x, . . . x,,)
such that (3) is fullfilled. In other words the two linear subspaces L,
and L,_, are mutually orthogonal to each other. -
Now consider the structure of the subspace L,. There always exists a set
of p mutually orthogonal vectors

¢ = (€ Crp- - €1p)
€y = (Cy1 Cop - - - C3) (10)
€p == (Cp1 Cop+ + + Cpp)
that belong to L, and unfold L,. That these vectors are mutually ortho-
gonal means that )

€ Cip T CipCipt v oo F €€ =

1O i)
1 i=j) (11)
for (1 =1,2,...p,j=1,2,...p).

Since the vectors are orthogonal they must necessarily be linearly inde-
pendent. The fact that they belong to L, means that any of them can
be expressed as a homogeneous linear form in the vectors (8). That they
unfold L, means that any vector that belong to L,, i. e. which may be
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expressed as a homogeneous linear form in the p vectors (8) can also
be expressed as a homogeneous linear form in the p vectors (10).

One way to construct such an orthogonal set of vectors is for instance
the following. First put ¢; = a,. Since a, is normalized, ¢, will be. Next
put ¢; = aa, + fc; and determine the constants o and f# in such a way
that ¢; and ¢, become orthogonal to each other and ¢, normalized. This
leads to

@ (a,a5) +f-(a,4;) =0 (12)
(xay + fa)> =1
which gives
1
"= \/ (a; ;) (a3a5) — (a @y)? (13)
— (@, a5) )

p V(e 8,) (a3 05) — (a, )
Since the vectors a, and a, are linearly independent, the numerators in
(10) (which are the Gramians of these two vectors) are positive, not zero.
Thus the vector c, is uniquely determined, apart from the sign of the
square root. ,
Next we put ¢, = ya, + d¢; + #c, and determine the three coefficients
¥» 0, % in such a way that ¢, becomes orthogonal both to ¢, and c, and also
becomes a normalized vector. This leads to solvable equations in y, &, x.
In this manner we may continue and determine all the vectors c.
Each vector ¢ thus obtained can obviously be expressed as a homogeneous
linear form in the vectors a and vice versa. Let these expressions be
respectively
¢ =Anq0 +Apnay+ ...+ 2pa, t=12,...p) (14)
a; =AM+ A+ ...+ Ak, t=12,...p) (15)

The fact that we have chosen the c-vectors in such a particular way that
Aw = A, = 0 for k>>1 is not essential for the present argument, all that
is needed is to show that some selection of the orthogonal c—s is possible.
This being so, the system of homogeneous equations (3) may also be
written in another form, namely in the form

€y %+ € X+ .oy 2, =0

Cog Xy F Cop X+ oo FCop X, =0 (16)

€p1 Xy - Cpp Xy o oo €%, =0
Indeed, if we multiply the first equation in (3) by 1,,, the second by 4, . . .
and the p—th by 1,, and add up, the result will be the i—th equation in (16).
This may be done for all i =1,2,...p. Inversely, if we multiply the
first equation in (16) by A%, the second by 1% ... and the p—th by 1%
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and add up, the result will be the i—th equation in (3). And this too may
be done for all £ =1, 2,...p. This means that the two systems (3} and
(16) are equivalent in the sense that any set of values of x, %, . .. x, which
satisfy (3) must also satisfy (16) and vice versa. In a general way this
fact can be interpreted by saying that it is the linear subspace L, as such
that is important, not the particular reference system that is used to
unfold it. Some of these reference systems — the orthogonal ones — are
for our purpoese more convenient than the others. In any case the role of
the subspace L, is that it is the “normal” by means of which the sub-
n_p 18 defined. '
From now on we take (16) instead of (3) as the definition of the region
L,_, within which we want to study the distribution of the stochastic
variable z defined by (1).

We introduce a set of n—p further vectors

space L

Cpia = (€111 Cpr1,2+ +  Cpi1,n)
Cpio = (€pi21Cpioo«+Cpiayn) ) ) 17
Cp = (cn,l Cp2 v cn,n)

which are mutually orthogonal as well as orthogonal against any of the
vectors in (10), but are otherwise arbitrary. That such a system of vectors
exists can be seen in many ways, for instance by adding to (8) any set
of n—p further vectors a,.;, @,.,,...4a, such that the complete set
ay, Gy, . . . a, becomes of rank n (and, for convenience, such that (9) is
fullfilled also for i =p + 1, p - 2... n) and then constructing the set
€pi1s Cpip « » « € Simply by continuing the same process as was used for the
construction of ¢, ¢, . . .c, Incidentally, the arbitrariness of the vectors
@yi15 850 - » « @, exhibits the variety of ways in which the setc, 1, ¢,.0... ¢,
may be constructed.
Now consider the orthogonal transformation on the complete set of va-
riables %, x,...x, which is defined through the n vectors ¢;¢;...¢c,
(linearly independent since they are orthogonal). That is to say consider
the (non singular) transformation '

Y1 =6 % FCp gt O Xy

Y2 = %yt Cop Xy F - v A Gy Xy (18)

Yn = Cng %1+ Cpp Xy += « + o+ Cpp %y
Since the complete transformation is orthogonal all the variables
¥1¥s -+ ¥, will be independent with expected value zero and standard
deviation ¢. Hence if we select any n—p of them, say v .1, Yy« « o Yo
the sumsquare of these variables, that is
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2=Yypu+ Y2+ F o0 (19)
will be distributed in the 5 distribution with n—p degrees of freedom.
But, within the region defined by (3) the quantity z defined by (19) is
identical with the quantity z defined by (1). Indeed for any values of
Xy Xy ... %, In total space we have

Yityit. tyi=altai+... +a (20)
because
Ziyk = 2 Zij o % %y = Zyagn; ey = X a5,
and everywhere in the region defined by (3) we have

N=Yo=---=3=0 (21)
In other words, within the region considered two things happen: First,
the quantity (19) is here distributed in the ;? distribution with n—p
degrees -of freedom, and second, this quantity is here identical with the
quantity (1) whose distribution we want to determine. This establishes
the theorem (4).

Zusammenfassung

Die stochastischen Variablen x,, x,, .. :, x, seien unabhiingig und normal
verteilt mit Erwartungswerten 0 und simtlich mit dem mittleren Fehler ¢.
Dann gilt fiir die Dichtefunktion (Wahrscheinlichkeitsdichte) der Quadrat-
summe (1) iiber irgendeinem (n—p)-dimensionalen linearen Teilraum
(durch den Nullpunkt), d.h. iiber irgendeinem linearen durch (3) de-
finierten Teilraum vom Range p, die Darstellung (5) mit » = n — p.
Fiir diesen in der Statistik oft benutzten, aber anscheinend noch nicht
vollstindig bewiesenen Satz wird ein Beweis gegeben und sein Gehalt
herausgearbeitet.

Résumé

Les variables stochastiques x;, x,, .. ., x, soient indépendantes et distri-
buées normales avec I'espérance mathématique 0 et toutes de ’erreur
moyenne ¢. Pour le fonction de densité de la somme quadratique (1) sur
une variété linéaire de la dimension n—p (par l’origine) arbitraire, c. a. d.
sur une variété linéaire arbitraire du rang p, définie par (3), on a expression.
(5) avec ¥ = n— p. Pour ce théoréme, assez souvent appliqué dans le
statistique mais non pas demontré complétement auparavent, est donné
une démonstration et montré 'importance.
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