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MACROECONOMICS
AND LINEAR PROGRAMMING

By Ragnar Frisch

The biggest problems will probably be en-
countered in the social and economic field
and these problems must be studied in the
same thorough-going way as those per
taining to technology and the natural sciences.

Norwegian Prime Minister Einar Gerbardsen in
an address February 1956 to a conference on »Tech-
nical development and the future».

1. How is linear programming related to macroeconomics?

r One of the most fascinating aspects of economics is the great variety of
- mental activities that are involved in its study. In one end of the spectrum
we find painstaking fact digging, in the middle we find broad philosophical
thinking and in the other end we find heavy mathematical reasoning which
becomes indispensable when we shall keep track of a multitude of logical
elements simultaneously.

The evolution of the study of one large and important field of economics
may be taken as an illustration in point. A generation or two ago it was
customary to think of monetary theory as a more or less watertight compart-
ment that was separated from general economic theory (that revolved
around the analysis of relative prices taken in a very broad sense). And
still more sacredly it was kept apart from the principles and methods of
public finance. It was thought to be too dangerous to let the minister of
finance become conscious of the enormous possibilities which would be
opened up for him if he extended his activities into the monetary field and
began to consider the more comprehensive problem: that of steering the
whole economy, or at least a very large part of it, simultaneously.

MACROE‘JOMICS AND LINEAR PROGRAMMING

Foremost in the group of economists who inaugurated a new approach
these matters, is Professor Erik Lindahl, who in this respect (and
thers as well) kept up the tradition from Knut Wicksell. In the famous
- works »Penningpolitikens mél» from 1924 and »Penningpolitikens medel»
from 1929 Lindahl embarked upon a systematic study of how monetary
theory can be geared into general economic theory and both tools can be
‘used to discuss the steering of the economics in a balanced way.
Subsequently the evolution towards a global theory and a global formula-
tion of the targets of economic policy has proceeded by leaps and bounds.
The latest phase of this development is the application of the mathematical
tool known as linear programming to economic policy. The present paper
‘will be concerned with this development. The formulation of the problem of
onomic policy in terms of linear programming is simple enough. Indeed,
it involves no more than elementary college algebra. But the solution is
not so simple. As I shall be concerned also with methods of solution, a
_rather technical form of the last part of the paper was inevitable.
The mathematical essence of linear programming is that we consider a
number of variables that are subject to the condition of being non-negative,
and furthermore such that certain linear functions of them shall be non-
egative, and finally such that certain linear eguations between the variables
all be fulfilled. The set of values of the variables that satisfy these condi-
ions is called the admissible region. A more detailed discussion of the
oncept is given in Section 2.
A multitude of examples from the macroeconomic field immediately
come to mind. For instance if the variables are quantities produced in a
number of production sectors, or quantities consumed in a number of
specified consumer groups, or quantities used for investment in fixed capital,
“or quantities imported for use in the production sectors or by the consumer
_groups, or quantities of labour engaged in the various production sectors
etc,, etc., these magnitudes will in a concrete problem as a rule be subject to
the condition of being non-negative. And under simplifying assumptions
they will be related by a great number of Jinear equations, for instance
_equations derived from an interindustrial input-output analysis, or from a
study of Engel-elasticities in the consumer groups, or from 2 study of how
‘imports and labour depend on the level of activities in the various produc-
tion sectors.
But this is not all. There will often be a linear function of the variables

or of some of the variables that must by the nature of the concrete problem
be non-negative. There may even be several such linear functions that must
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be non-negative. For instance, if it is required that there shall be produced
given quantities for consumption or for investment, it will, by the classical
methods of input-output analysis, be possible to figure out how high zhe
rotal level of production in each sector must be when all direct and indirect
effects are included. Each such level of production will — when constant
production coefficients are assumed — be a Jinear function of the prescribed
consumption and investment elements; and the coefficients of these linear
functions can be computed. However, in practice under given short run
conditions there will be a definite upper bound to the level of production
in each sector, due to the fixed capital equipment which exists in the sector.
Hence for each production sector where capital capacity is an important
element, there exists a certain linear function of the consumption and
investment elements which must be less than or equal to the existing capital
capacity in the sector. In other words, there exists in each such sector a well
defined linear function of the investment and consumption elements that
must be non negative.

In a similar way we may derive bounds by considering the available
labour force and the nature of the immobility of labour.

Similarly we may derive bounds by considering the highest permissible
strain on the foreign exchange balance.

Or we may consider nearly any sort of bounds that expresses a humani-
tarian, social or political desideratum.

The joint effect of all such bounds define the admissible region.

When the admissible region is determined, the formulation of the goals
for economic policy is completed by defining a preference function that we
want to maximize, subject to the condition that the variables shall stay
within the admissible region. The preference function may for instance be
formulated simply as the gross national product. That is to say, we may
formulate as a target for economic policy to maximize gross national product,
subject to the conditions expressed by the admissible region. Or the pre-
ference function may express a compromise between making the gross
national product high and reducing the strain on the foreign exchange
balance. Or it may express a manysided compromise where also considera-
tions on the desirability of certain types of long run investment comes in.
And so on. In any case will the preference function be formulated as a
linear (or some times a non linear) function of some of or all the variables,
the coefficients in the function being numerically well defined.

The structure of the admissible region and the shape of the preference

function will, of course, be very different in the case of a short run and in
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that of a long run development program, but I shall not insist on this here.
How to determine the coefficients in the preference function is a question

} by itself. The decisive influence on these coefficients must come from the

. responsible politicians or political bodies, not from the programming

technician. But, on the other hand, it is only the programming technician
- who will understand the meaning of the coefficients sufficiently well to be

able to reckon with them if the preference function contains many terms. An
indirect method must therefore be used. This problem is discussed in Sec-

2. Formulation of the mathematical problem

In standard form the linear programming problem can be formulated
mathematically as follows.

. Consider (n - m) real variables x;, x,...x,, satisfying m linearly
independent linear equations. The equations may be written in the standard

n—+m
(2.1) aio—}«Za;jXJ'ZO 1=12...
=1
where the matrix aj; is of rank m (and none of the variables is lacking in all
the equations). The number of degrees of freedom is consequently n and
it is always possible at least in one way to express all the variables in terms
of a set of n basis variables, linearly independent amongst themselves. Let

(2.2) Xuy Xy .+ » + Xy
be such a basis set. The equations may then be written in the basis form
(2.3) xj = bjo 1= 2 bjkxx G=12...n-4 m)
k=uv...w

where the b;, and by are constants. Obviously

(2.4) bjo = 0 and bjx = {g)i)ftﬁe:vijse} whenj =u,v...w
If the equations (2.3) are taken for all j=—1, 2...n 4 m, we get a
system of equations that are lineraly dependent, but if we take (2.3) only

for' j=1, 2..)u, v...w(...n -} m, we get a system of equations that

are linearly independent. More precisely: If the coefficients by, and by, have
any values whatsoever, m equations of the form (2.3) for j=1, 2...)y,
v...w(...n -} mare always linearly independent.

1 We use the inverted parenthesis ) ... ( to cCenote “exclusion of”.
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We consider a linear preference function
n -+ m
f=mn,+ 2wy
j=1

(2.5)

where the = are given constants positive, negative or zero. If we introduce
the expressions for the dependent variables from (2.3), the preference
function assumes the form

(2:6) f = po + puXy + pvxv + ... + DPwXw

where the py (k=0, u, v.. .w) are known constants positive, negative or
zero. It does not restrict generality if we confine our attention to the form
(2.6).

The linear programming problem is the problem of determining that one
or those sets of values of the variables that will maximize (2.6) subject to-
the following two sets of conditions: In the first place the equations (23),
and in the second place the non-negativity conditions expressed by the
inequalities

(2.7)

1] 21 June 1954

(=12...n4+m

A great variety of problems can be reduced to this form. If there should
be one of the variables that is o subject to the non-negativity condition,
this variable could be eliminated and the problem reduced to one with the
same number of degrees of freedom but one equation and one variable less.

x;=0

2] 18 October 1954

A problem containing any linear inequality, that is, the condition that a 3] 29 March 1955
given linear function of the variables shall be non-negative, can be reduced
to the above form simply by taking the value of the linear function in 4] 13 May 1955

question as a new magnitude that is entered in the list of variables.

The inequalities (2.7) introduce discontinuities in the boundary condi
tions, and this makes the method of Lagrange multipliers, which serves so
well in many other maximum problems with side conditions, inapplicable
here.

The now classical method for handling the linear programming problem
is the simplex method due to George B. Dantzig. At the Oslo University
Institute of Economics considerable effort has been made to handle the
problem in a different way in the hope of finding one or some methods that
may be more advantageous in cases with a great number of variables,
particularly in problems of the type occurring in macroeconomic planning.

{5] 17 October 1955

[6] 3 January 1956

. . . . . 7] 10 1956
In a national planning problem of some size one may easily run into several 7] January 195

hundred variables and perhaps a hundred or more degrees of freedom. And
with modern computing outfit it is not unrealistic to be prepared for a .
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higher generation of problems with tens of thousands of variables and
several thousand degrees of freedom.

It is an easy form of mental exercise to imagine the solution in the form
f iteration processes of one form or another. They may look nice on paper,
ut in most cases such methods do not converge, or if they do converge in
principle, the convergency will in general be so slow as to make the method
entirely useless in practice. At the Oslo Institute we have accumulated a
nsiderable junk-pile of such methods. Some of the methods we have used,
_do, however, contain features that may make them useful under certain
circumstances. Some aspects of methods which have actually been used
successfully on small or medium sized examples, are described in a number
f mimeographed memoranda from the Oslo Institute of which the follow-
g might be mentioned here:

Methods of solving linear programming problems.
Synopsis of a lecture to be given at the Inter-
national Seminar on Input-Output Analysis, Va-
renna (Lake Como) June—]July 1954.

Principles of linear programming. With particular
reference to the double gradient form of the
logarithmic potential method.

A labour saving method of performing freedom
truncations in linear prograrnming. Part 1.

The logarithmic potential method of convex pro-
gramming. With particular application to the
dynamics of planning for national development.
Synopsis of a communication to be presented at the
international colloquium of econometrics in Paris
23—28 May 1955.

The multiplex method for linear programming.

The logarithmic potential method for linear pro-
gramming formulated with a view to electronic
computation.

Macroeconomics and linear programming.

It should always be remembered that any mathematical method and
particularly methods in linear programming must be judged with reference

S
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to the type of computing machinery available. In all our work we have. been
guided by the possibilities and desiderata in a situation where Fhe avaﬂabl-e
equipment consists of desk machines or IBM 602 A (or its electrom.c
improvement 626, or similar types of calculating punches) or electronic
automatic computors with a small high speed memory, as for instance t'he
Oslo machine NUSSE (whose name academically stands for »Norwegian
Universal etc.», but is better understood when referred to the meaning of
the Norwegian word nusse which can appropriately be translated as »small
cute girl»). Our outlook may perhaps be changed when we get gsed to the
super modern, high capacity electronic computor that will be available here

. Practical fixation of the bounds and the preference function

How to fix the bounds and how to determine the coefficients of the pre-
erence function are important practical problems. They are indeed so far-
eaching that they lead us into a general consideration on the line of
demarcation between the work of the politician and that of the scientist.
Expressed briefly and therefore necessarily without complete precision, we ™
can say that the politician must introduce the human evaluations, the social
value judgements, while the task of the scientist is objectively to find out
what the factual situation is and what the inherent tendencies for change are
and what consequences could be expected if one decided to put into effectj
such and such measures. In this work the scientist will simply have to take
as data the goals themselves and the social value judgements back of them.
If we scrutinize this distinction closer, we will, of course, — as always
when it is a question of distinctions of principle — see that there can be
marginal cases which are difficult to decide. In the last resort we will
pethaps have to retain only this formulation: The goals and the social
value judgement are what the scientists do not desire to take up for analysis.
It is that part of the problem which is too difficult or too vague to be amen-
dable to exact scientific methods. Therefore, to a certain extent the distinc-
tion becomes relative and may change as we change the purpose of the
analysis or we get at disposal new tools of analysis or new factual informa-
tion. For all practical purposes the distinction between the task of the
politicians and that of the scientists is, however, clear enough.

The analytical system back of a planning work will as a matter of fact
follow very closely common sense. It is nothing but common sense put into
system. When it does not appear in this way to many who consider them-
selves »practical meny, it is only because the scientist in order to save time
and effort must use a terminology that does not belong to every day
language. And also because he has to use an analytical apparatus of a certain

from the middle of next year.

The present paper describes — with a minimum of proofs — an approach
which we have found promising.

As a background for all methods of solving linear programming problem
must be kept in mind the general properties of the solutions of such pro-
blems. In short they may be summarized as follows.

The set of points that are optimal — i. e. that belong to the admissil?le ‘
region and are such that in this region it is impossible to f%nd any point
capable of producing a value of the preference function that is higher .than ,
the value produced in the point considered — form a coherent hn.ear
manifold belonging to the boundary of the admissible region, 1. €. belox-lgmg
to the point set of the admissible region where at least one of the variables
is exactly zero. The dimensionality of this pointset, that is the number of
degrees of freedom in it, may be any of the numbers 8 = 0,1... n—1i,
where n is the number of degrees of freedom in the formulation of the
problem. The case 8 = 0 means that there is only one well defined com‘er‘
on the boundary of the admissible region where the preference function
assumes its maximum value, the case 8 =1 means that the maximum is
reached all along an edge that connects two corners, etc.

Whatever the dimensionality of the optimum pointset there exists at
least one corner with optimal properties, 1. e. at least one optimal point
which is such that in this point at least n of the variables are zero, thesen
variables being such that their vanishing is exactly sufficient to determine
the point. If 8 =0, there exists one and only one optimal corner, if 8 =1

Common sense tells us that if one wants to steer the evolution of 37
country, one must first consider what the situation actually is and next |
decide what one wants it to be, and then Jook around and see what possi- }
bilities exist of bringing the situation from what it is to what one wants it ]

there exist exactly two optimal corners, and in general if 8 is any given g tl .
et y P to be. These are the main lines of the theoretical set up.

number (< n), there exist 8 1 optimal corners. :
In all underdeveloped countries — and what country could not be called
underdeveloped in one sense or another — the concept of #me is particularly
important. In how long spans of time shall we reason when we are doing

1 1. e. a vertex.
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tter must try to settle on a set of coefficients that will come the closest
ssible to giving a correct picture of the value judgements of the responsible
liticians.

national economic planning? Recently I had an opportunity of working on
the methodology of economic planning in India, and I well remember how
India’s Prime Minister Mr. Nehru in a discussion emphasized the enormous
difference between the problem as it appears in the United States and in
India: In the United States the problem was how one could bring the most
refined technical gadgets, let us say in the construction of refrigerators, into
general use. In the Indian population the urgent problem was how to keep
bunger away from the population and how the country could work up a
reserve stock of food grains and other goods fundamental for feeding the
population, so that one did not risk to be forced into a situation where food
grains had to be imported at any cost. When one remembers the situation
in India some years ago, this distinction between the two types of problems
is obvious and indeed very realistic. But when it appears that we can in
India now safely disregard the problem of technical refinement in refrigera-
tors for the population, it is only because of the time horizon one chooses to
adopt. When the responsible Indian politicians — rightly — look at the
question as they do, it is because they reason within a horizon which is wide
enough to make it possible to solve the nutritional problem safely within
this span of time, but not wide enough to make it possible to introduce
technical refinements in refrigeration for the bulk of the Indian population.
This refrigerator problem too will present itself in India but only at sucha
distant future time that we do not need to bother about it now.

How much weight shall be put on the first, the most burning problems

At the Oslo Institute we have experimented to some degree with the type
f interviews necessary to formulate the coefficients in question. First con-
der the preference function.

Its coefficients must be fixed in an indirect way by putting up alternatives
of choice and noting the ranking order which the politicians or groups of
them will prefer. Different schemes are conceivable for obtaining such a
ranking order and translating it into preference coefficients. Some of them
are discussed in [7].

Whatever values emerge for the coefficients in the preference function,
is function can by itself never produce an insolvable programming pro-
blem. In this respect the bounds are different. The bounds are the results
of the impositions of linear inequalities derived, say, from technical con-
siderations on the capacities of the fixed capital outfit in the various
sectors, or the limitations in the labour force or its immobility, or derived
by the need for economizing the use of foreign exchange, or the need for
bolding the production of or import of certain essential consumption goods
above certain physical levels of existence etc. There is no end to the kind of
bounds that may be imposed for technical or humanitarian or political
sons as mentioned in Section 1.

It will always be well to exert the largest possible moderation in imposing
bounds, i. e. one should reckon with production capacities pressed to the
highest conceivable levels, and introduce boundary levels of consumption
as low as is by any means permissible or preferably no such bounds at all,
etc. If we do not show such moderation, if on the contrary all sorts of
exigencies are allowed full play, we will almost certainly run into a contra-
diction, i. e. get a situation where 7o admissible region exists, and conse-
‘quently the programming problem has no solution.

~ If any particular element in the program appears as extremely important,
for instance the assurance of a basic standard of consumption for a certain
essential consumption good, it is adviceable to formulate the corresponding
bound in the weakest permissible way and instead let this consumption
element enter into the preference function with an extremely high weight.!

and how much on the long views extending into the future, is a matter of
judgement. In order to form an opinion on this, the responsible politicians
must so to speak already have guessed what the solution would be of an
imaginary analysis of an enormous problem where all possible details in the
present and all possibilities of the future were specified. So we have here
an example where one has brushed aside the distinction between the social
value forming politician and the objectively working scientist. The politician
must, whether he wants it or not, act in both capacities. It is, however, only
in the very first phase of the analysis where such a compromise has to be
made. For the further study of the complex of problems that has been
circumscribed by »the horizon of imaginations of the politician» we can
fully and with the greatest efficiency apply the principle of division of
labour between the politician and the scientist.

This must be the background of the determination of the coefficients
expressing the bounds and the preference function. Through interviews
between the responsible politicians and the programming technicians the

1 If this is done, we may run into the following difficulties: It may be appropriate to attach an extremely
high weight to the consumption element as long as the consumption is low, but it may not be appropriate
to do so when this consumption is high. This difficulty can be handled by using a non-linear preference
function. As long as the bounds are linear, the admissible region is convex and this is mathematically the
essential point. We shall, however, not enter further into this question here.
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which is determined in some specific way. It is convenient to consider
~ certain general aspects of such directional techniques. In so doing we shall
for generality assume that the initial point x (k==u, v...w) may be
inside or outside the admissible region or on its boundary. That is, any of
the variables x; (j=1, 2...n 4 m) may be positive, negative or zero.

A direction may be defined by fixing a directional point x,, (k==u, v...
w) at which we aim from x; (k==u, v... w). The increments in the basis
variables as we move from the initial point to the directional point are

By so doing the element in question will be sure to influence the final solu-
tion strongly and if at all possible, it will be brought up to a level above
the minimum imposed.

In spite of all moderation used in the formulation of bounds, it may turn
out that no admissible region exists. In this case we must look for a reformu
lation of the problems and it becomes necessary to consider in a more
systematic way what sorts of reformulations are possible with a minimum
of computational costs. This is discussed in [7].

(5.1) di = x; — x; k=uv...w)
- The direction may be defined either through the directional increments dy
 or through the values x of the basis variables in the directional point. One
of these sets of data is equivalent to the other by (5.1).

4. Solving linear equations and inverting matrices when high speed memory
is limited

An essential point in any method of solving linear equations and inverting , .F of any f)f the var.1ables' — basis variables or independent ones — the
matrices is the number of multiplications and/or divisions which it involves  directional increment is defined by
If the work is done by some method more or less akin to the Gaussian (5.2) dj = X; — X}’ G=12...n+m)

If the directional increments for the basis variables are given, those for
the other variables can be computed by

(5.3) dj = z bdk G=12...n4+m)

k=uv,..w

This follows from (2.3).

We shall now consider two more general ways of fixing a direction,
namely the completely incremental method and the moment method.

In the completely incremental method we select n variables — basis
variables or dependent variables — equal in number to the degrees of
- freedom and prescribe the directional increments for these selected variables.
~ We assume that the selection is made in such a way that the n x n submatrix

5.4 ; i=r1,5...t
G4 bis (kzu,v...w

algorithm, the number of multiplications and/or divisions involved in a one
way solution — that is with one given set of numbers in the right membe

. 3 . :
— is of the order %Where n is the number of unknowns. A complete inver

sion of the matrix involves a work of the order n®. It is a remarkable fact
that by this method the work involved in a complete inversion is only 3
times as large as that involved in a one-way solution, the factor 3 being
independent of n.

It is, however, not only the number of multiplications and/or divisions
that count, but also the number of figures that need to be taken down
(either in written form or punched on cards or entered, say, on magnetic
tape or drum).

And finally we must consider the maximum number of figures that need -
to be stored at any time during the operation. This point is particularly
important when the work is done on an automatic computor with a high
speed memory of limited capacity. It is possible at some expense of the .
number of multiplications and/or divisions to shape the elimination process
in such a way as to reduce the maximum number of numbers stored. Thi

(5.5) > bikdx = d; i=rs5...1

k=uv...

will then have a unique solution in the dy (k=u, v...w). And once the
basis direction increments are known, all the other increments are deter-
problem is discussed in [7].
In the moment method we also prescribe the directional increments (or
the directional values) for a certain number of selected variables, but now
this number may be /ess than the number of degrees of freedom. To make
up for the freedom which this will leave, we add the specification that the
 basis direction vector dy shall be a linear form in the boundary vectors for

5. Directional techniques

In linear programming work with the Oslo Institute methods we are often
confronted with the problem of moving from an initial point in a direction
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the selected variables. More precisely: Let Nos. i=t1, s...t be v (= n)
selected variables for which the directional increments d; (or the directional
values x; ) are given. The selected set is assumed such that the boundary
vectors

(5-6) brk» bsk “ee blk
are linearly independent over the field of variation k==u, v... w. We then
specify the movement by requiring that the directional vector dy shall
belong to the manifold unfolded by the vectors (5.6) that are orthogonal
to the boundary planes, i. e. we shall have

(5.7) dg = Cibu + Cbse + ... + Cibix
where C,, C, . .. C, is a set of constants independent of k.

If we multiply (5.7) by by (i==r, s...t) and perform a summation over

k, we get

(5.8) Mi:Cr + MiCs 4 ... + MiC, = d;
where the moments are defined by

(5.9) M3 = p
k

hed
=u,v...w

bakb,'ﬂC

(5.8) is a linear system of v equations to determine the v unknowns C. The
system is non-singular because of our assumption about the linear in-
dependency of the vectors (5.6) The system is furthermore symmetric and
positive definit, i. e. of the same sort as we encounter in linear regression
analysis. When the C are determined through (5.8), the dy are determined
by (5.7) and finally the d; by (5.3).

When a direction from the initial point x; (k=u, v...w) is fixed in
some way, we may move in that direction a shorter or longer distance, not
necessarily so far as to get exactly to the directional point we considered
originally. During the movement the values of all the variables will change
linearly according to the formula

(5.10) X = x; -+ Ad; G=12...n+4+ m)

where A is a parameter generating the movement. The value A == 0 gives the

initial point and A = 1 the directional point. If the initial point is in the
interior of the admissible region, we may for instance decide to go as far
as we can without breaking out of the admissible region. Or the length of
the movement may be decided upon by other considerations.

6. Truncation techniques

We shall often have to consider not only the process of moving from an
initial point to a determinate point satisfying certain specifications as we
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did in the previous section, but we may be concerned with the more general
problem of determining a new linear manifold that shall satisfy certain
specifications that are less in number than the degrees of freedom in the
problem. In particular we may be interested in determining the form of the
basis equations in a new truncated space. The idea of an initial point is
now without avail, we are indeed not concerned with specific points at all
or with specific movements but only with the shape of certain linear
manifolds.

We begin by selecting a subset of the variables, let it be

(6.1) The . dependent variables Nos. r, s . . . t and the v basis variables
Nos.R,S...T,
where
(6.2) w4+ v=n 0=p 0=y

We assume that the selection has been made in such a way that the rank
of the n x (n—v) matrix

‘: bru brv . ) er brS .. brT (- .. brw !
(6.3) bsu bsv ...} bsk  bss...ber (... bsw
b(u btv ) b[R th .. bs’[‘ (. .. b[w

_is exactly p, p being by (6.2) not greater than n—v. ((6.3) is a stronger
condition than a corresponding condition imposed before the v columns of
the basis variables Nos. R, S. .. T had been omitted).

Having made such a selection, we want to investigate the linear manifold
defined by the (» - v) conditions

(6.4) Xt =X = ...=%X =0

@ v

The condition (6.4) leave us with n-(u-v) degrees of freedom. That is,
amongst the original basis variables Nos. k=u, v ... w there exists a subset
of n-(pt-v) variables Nos. U, V... W such that this set is a linearly
_independent set and can therefore be used to generate the remaining
n-(p-+v) degrees of freedom. As a rule such a set can be chosen in different
ways. Since we have assumed (6.3) to be of rank p, there exists at least
one set of n-(u--v) variables that can be chosen for our purpose, namely
the set obtained from

u, v...) R, S... T(...w by leaving out the u variables Nos. H ==A,
B...C,where A, B ... Cis a set such that the determinant




RAGNAR FRISCH .

bbb
bsAbst--bsCé i=r,s...t
| C

(6.5) [ b [ = H=A,B..

;............;

is different from zero.

If we want to, we can express all the remaining variables, i. e. those that
have not been put equal to zero, namely Nos. j==1,2...) r,s...t, R, S.
T(...n -4 min terms of the n-(n + v) bas1s vanables Nos. K_u, V..
R, S...T, A, B...C(...w. For brevity we denote these basis variables

(6.6) K=UV..W=uv..)R,S... T(.)AB...C(..w
g ; "

Thus, Nos. U, V... W is a subset of the original basis variables Nos. u,
v... w, and it is a linearly independent subset. In short it is simply a
truncated set of basis variables.

If b and b’ are the coefficients of the basis equations in the original and

the new form respectively (before any of the variables have as yet been put

equal to zero) we have, denoting the inverse of (6.5) bz and for
shortness py by bok

. =A,B..
(67) b= bk H=4,B C)
i=r5s...t
H=AB...C
68 ’:— _l-i ’
8 bax T O N SO oY w)

(6.9) bji = = chubﬁa

(6.10) bjf{ = ij + b ij b}-iK
A,B...C

(j=0,1,2...)u,v...w,r,s...t

K=0,u,v...)A,B...C(...w

[1=0,1,2..)u, V... W,1,5...t
(6.11) in{:b_)K"— 2 bj'ibiK ( .. n + m
Thseet K=0,u,v..)A,B...C(..w

The number of multiplications and/or divisions involved — not counting
checks and assuming that the u order inversion is performed by a method —
for instance the Gaussian elimination algorithm — that involves a work of
order 43, will be as indicated in tab. (6.13).

MACR'ONOMICS AND LINEAR PROGRAMMING

TasBLE (6.13) Number of multiplications and/or divisions involved in a
shift of the content of the basis set.

Work involved when the u depen- | Additional work when no degrees

dent variables Nos. r,s... t and the | of freedom are taken out, but the

v basis variables Nos. R, S ... T are | previous basis variables Nos. A, B

put equal to zero .. C are taken out of the basis set

Formula and instead the g previously depen-

No. dent variables Nos. r, s ... t are ta-
ken into the basis set

(6.7) u? 0

(6:8) wh—up—v+1) wry

(69) 0 pr(m—p+1)
(6.10) pm—p+1)nm—p—v+1) [ pv(m—p -4 1)

Total WHpm+1)h—p—v+1) i plp+vy)ym+1H)—yp’

K=u,v..)R S...T,A B...C(...

When the bx (j=1,2..)u,v...w,r,s...t(...n+4+m, A, B...C

w) are computed as explained in

(6.7)-(6.13), we have the new basis equations in the explicit form

(6.14) xi = b + 5 byic xx j=L2..)uv...w,
K=UV...W s...t(...n+m A B...C

when (6.4) is fulfilled.

The formule (6.14) are identities that hold for any values of the variables

inside or outside the admissible region, or on its boundary provided only

the determinant (6.5) is different from zero and (6.4) is fulfilled.

After having performed one freedom truncation and obtained the

corresponding new basis equations (6.14), we may proceed to a new freedom

truncation and so on. The whole process will appear as a gradual chopping

off of variables from the basis set.

It is also possible to proceed in a different way. We can maintain all the

time the same basis set and reduce the number of degrees of freedom by

means of side conditions. This is explained in full in [5].

7. How to get into the admissible region. A method of solving linear in-
equalities

In our work on linear programming problems at the Oslo Institute, we have
found it convenient to carry the search for an optimum through by move-
ments in the interior of the admissible region. We must therefore first find

~ a point in the interior, that is, we must find a point where all the variables
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are effectively positive, not zero. From a formal viewpoint this is the sam
as to find a solution of a set of linear inequalities. Indeed, by (2.3) th
problem can be formulated as that of finding such positive values of th
variables x,, X, . . . x,; as will satisfy

(7.1) bjo + % bxxx >0 (=1,2..)uv...w(...n+m)
k

=u,V... W

We begin by dividing the problem in two separate problems. The first
is to determine the direction of the movement from an initial point. The

second is to determine the /ength of the movement.

Determination of the direction numbers

One way to proceed is to start from azy point, i. e. a point where any of
the variables may be positive, negative or zero, for instance conventionally -
the point where all the basis variables are zero. From this point we move

towards a direction point determined by the completely incremental method

of Section S. The variables that are to be the selected ones in this method

are determined as follows.

We determine the deference order of the variables, that is, first we take
the strongest negative variable, i. e. the variable that is negative and with
the largest absolute value, second we take the next to strongest negative

variable, and so on.

Conventionally we may try to normalize the variables for instance by -

dividing (2.3) through by
72 YbL b, b,

but in practice hardly anything will be gained by doing so. As the work
progresses, there is, however, another very useful form of normalization that

will become apparent: It will become more or less clear how large a change -

we can expect in the various variables and the absolute size of the variables
can be judged in relation to the order of magnitude of the expected change

When all the negative variables have been exhausted, we continue with
the variables that are zero, determining if necessary the order amongst them
by random drawing. When also the zero variables are exhausted, we continue -

with the positive variables in ascending order.

When the deference order has been determined, we start from the
beginning of the list and count a number of variables equal to the number
of degrees of freedom in the problem. If in the process of admitting the
variables one by one, we find a variable whose boundary vector happens to
be lineraly dependent on the boundary vectors of the variables already

MACRO.}NOMICS AND LINEAR PROGRAMMING

admitted (which can often be seen by an inspection of rows and columns of
the matrix by ), this variable is simply sk/pped and we proceed to add new
variables to the set. When a final set of n variables is obtained, we use (5.5)
putting
—x7ifxf<o0
(73) di = {o if x7 =0
In this way a direction is determined.

Another method is to proceed only through the negative variables — or
possibly through the non positive ones — and use the moment method of
Section 5. This will involve the computation of moments and some extra
thinking in adapting the subsequent steps. It is easier and more mechanical
to use the method (7.3). Particularly if the capacity of the automatic
computer is large enough to handle the system (5.5) in one stroke, much
is to be said for using this method. Whichever method is used, it is a great
advantage that only a one way solution, not a complete inversion, is needed.

When the direction of the movement has been fixed, the sense (positive
or negative) and the Jength of the movement must be decided upon. To do
this we will build on a principle that may be termed the principle of the
absolute value sum. It can be stated as follows.

As we move from the initial point along the line just determined, some
of or all the variables will change. In certain points some of them will also
change sign, some passing perhaps from negative to positive, others from
positive to negative. In any point along the line, that is for any value of
A in (5.10), we note which of the variables are negative, and we consider
the sum

(7.4) S () = sum of the absolute values of all the variables that are
negative {the direction numbers being given).

We have the following existence theorems® (for brevity we drop the
superscript O on the initial x;):

If the upper and lower of the following bounds both exists (hence one
of them negative and the other positive), and we have

; 1_
(7.5) ~§dj£Xj:0,dj>0JZ%dj
L

xj < 0, dj pos,. neg. or Z€rOJ

Y

1 The big bracket indicates the conditions for the summation affix. The summation is to be extended to
those and only those values for which the conditions are fulfilled. Tf no j exists satisfying the conditions,
the bound in question should be interpreted as non-existing.
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there does not exist any value of A which makes S(A) less than the value Next we compute the coefficients
S(O) assumed in the initial point.

In the case where (7.5) is not fulfilled, we must have either

Xj | for all j where Xy and dj have opposite signs, that is, either x,
E effectively positive and d’ effectively negative or vice versa.
g

(7.9) A=

ALl the magnitudes A; will be positive and finite. These magnitudes are

.
(7.:6) — Zd; !(XJ' =0,dj < O}f = Zd; Q{Xi =< 0, d; pos., neg. or ZCIOJ arranged in a ranking order from the lowest to the largest. Let this ranking
L ,

L g
or

(7.10) O<=dn) <Ay <Az <...

that is to say A, is the smallest of the numbers (7.9), ) the second

smallest of the numbers (7.9) etc. As a rule there will only be one value

f j corresponding to A1), one value of j corresponding to Ay etc., but in

rinciple there is nothing to prevent several values of j to correspond to
(1), and similarly there may be several values of j corresponding to Az etc.
Let V() be the absolute value of the dy that corresponds to Ag, or, if

there are several values of j, namely j=—«, 8 ..., that correspond to A,

then the sum of these absolute values, that is to say

(7.11) Vi = |da| + [da| + ...+ |dy] (r=1,2...)

Note that in (7.11) we take the sum of the absolute values of dj, not as in

(7.8) the sum of the d; with their correct signs.

All the magnitudes V), V) ... will be effectively positive.

Next we compute the following sequence of numbers

] r
(7.7) 2d; {Xj < 0, dj pos., neg. or zero f < — 2d;

- L

1,

Xj=0,d‘j>0;.I

If (7.6) is fulfilled, there exists a uniquely determined positive A (or a

- uniquely determined positive A interval) which produces the smallest value

which the sum S(X) can assume for a positive A and the value of S(\) in this

optimum point (in this optimum intervall) is less than the value S(O) in i
the initial point.

If (7.7) is fulfilled, there exists a uniquely determined negative A (or a
uniquely determined negative Minterval) which produces the smallest value
which the sum S() can assume for a negative A, and the value of S(A) in
this optimum point (in this optimum interval) is less than the value S(O)
in the initial point. ;

If both inequalities (7.6) and (7.7) are satisfied (which may happen if
at least one of the bounds is non-existing), there exists a positive optimum

value (a positive optimum interval) of A as well as a negative optimum Vioy = Vo (computed by Ylf) >(711>>
value ( a negative optimum interval). Which one of these two optimum (7.12) Vin = Vo + Vi (Vi) computed by (7
Viz1 = Vo + V(1) + V2 (V(2y computed by (7.11) )

values is the best, can be verified by actually computing the two values,
using the algorithms described below. The necessity of such a double
computation will never occur in the case where all the variables are differ-
ent from O in the initial point and we have

These numbers Vi can be computed in one single operation by continuous
wmmation directly from the absolute values of the d;. Subtotals are taken
only forr—1,2...

The initial value of the continuous summation, namely Vi =V, is
negative if (7.6) is satisfied. The numbers Vio;, V3; ... form a monotoni-
cally increasing sequence. At the latest when we get to the last number in
this sequence, namely
(7.13) Vi1 = Vo + Vi + Vo) + ... + Vi
where V(,,, correspond to the Jargest A, of the A-coefficients computed
by (7.9), the magnitude V|, must have become non-negative. Let r be the
first ranking number such that

(7.14) Vi =0.
Then if Vi >0, A=2,, will be the optimum value amongst the
positive A values. That is to say, in the point A == A, the absolute value-
sum S(\) assumes the smallest value which it can assume for any positive

2 d (Xj < 0, dj pos., neg. or zero ][ F 0.
J H
L 4

We shall first give the algorithm for determining a positive optimum
value of A.

If the criterion (7.6) for the existence of a positive optimum value of A
is satisfied, this value (this interval) is determined by first computing the
magnitude V, defined by
r ]
(7.8) Vo= —?dj | x5 = 0, d; pos.,neg. or zeroJ — Xd; [Xj =0,dj<0|.

L i J
Note that in this formula it is d; with its correct sign, positive, negative or

zero, that is entered in the summation. It is not the absolute value of d; that
is entered. When (7.6) is satisfied, the magnitude V, will be negative.
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A. For no other positive A is S(A) as small as it is in the point A == A, and
this value S(Ay)) is less than S(O). The optimum value S(A, ) can be
equal to O, in which case we have reached the admissible region, or it may
happen that S(A, ) is still positive, in which case we have not yet reached
the admissible region.

If Viy =0, S(») will maintain a constant value in the whole interval
from Ay inclusive, to Aq 4y And this value of S(A) is less than the values

which can be produced by any other non-negative A and it is actually less
than S(O).

The algorithm for determining a negative optimum value of A can be gi--
ven in a similar way. If the criterion (7.7) for the existence a negative
optimum value (a negative optimum interval) of A is satisfied, this A (this

interval) can be determined by first computing the magnitude Vo, defined by

(7.15) Vo = 2d; ![:Xj < 0, dj pos., neg. or zero} -+ Zd; ’{Xj =0,d;>0

< L
When (7.7) is satisfied, Vo must be negative.
Next we compute the coefficients

= I Xj | for all j where x; and d, have the same sign, that is to s
(7'16) )\J - 1 EJ g are either both et’jfectivelyJ positive or both effectiv:ly je;ati::.,
All the numbers (7.16) will be positive and finite. These numbers are
now arranged in a ranking order from the smallest to the largest. Let this
ranking order be
In a similar way as in the case of a positive optimum value of A, we now
define
(7.18) \_I(S)ZIdaI—]-IdB{—[——%—ldyl (s=1,2...,
where j=—a, B...y are the numbers of the variables that by (7.16) cor-
respond to k. All these numbers V() are effectively positive.
Further we compute by a continuous summation
(7-19) Vil = Vo -+ Vi) + Vo) + ... + Vi) (s=0,1..)
The first of these numbers is negative when (7.17) is satisfied. The
numbers Vo, Vi11 5 - - - form a monotonically increasing sequence. At the
latest when we get to the last number in the sequence, namely
(7.20) Vi@ = Vo + Vi) + Voy + ... + V(&)
where V(&) correspond to the largest @) of the A quotients computed by
(7.16), Vi@ must have become non-negative. Let s be the first ranking
number such that

(7.21) Vi = 0.
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We can then draw conclusions analogous to those that were formulated in
connection with (7.14).

The positive optimum value % which is computed in the above way, has
to be inserted with opposite sign in (5.10) in order to determine the new
point xj that is to say, we have

(7.22) xj = xj — ad; (G=12...n-m)

The proofs are given in Section (6) in [2].
The process is repeated round after round until the admissible region is

reached. If this takes place along a direction lying in the boundary (i. e.

with at least one of the variables equal to zero) and we want to get

effectively into the interior, we may often be able to do so by a simple

inspection of the figures and a tentative modification. If this does not work
quickly, we may perform one more round, inserting non-positive values for
the d; for those variables which we want to make positive. Or we may use
the moment method, including in the selected set only those variables which
we want to make positive.

I have not proved but believe something like the following proposition to
be true:

Prop. (7.23). The necessary and sufficient condition for an empty admis-
sible region (i. e. for the case where there exists no points
giving simultaneously all the variables non-negative) is that
the exceptional case (7.5) is reached after a finite number
of rounds of the algorithm described above.

%

In a working team at the Indian Statistical Institute in the winter of
1954—S55, one of my associates (I don’t remember whom of them it was)

suggested that when the linear programming problem is transformed into

a problem of solving a set of linear inequalities (which is possible by a
theorem of J. von Neumann), we may solve the whole linear programming
problem by the S(A) method. I don’t know how fruitful this idea is. I suspect
it will depend on how large the number of degrees of freedom in the
optimum set is. The pointset that in the original formulation was the opti-
mum pointset (possibly only a single point) will appear as the admissible
region in the transformed problem. In order to apply the S(A) method, we
do not need to know beforehand the dimensionality of the pointset that
forms the admissible region.
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8. The logarithmic potential method for guessing about limiting variables

MACRoi)NOchs AND LINEAR PROGRAMMING
aany point on the boundary is a singular point where the potential tends

Suppose that we are in a point in the interior of the admissible region. If
from this initial point we could make a move which would give us some
basis for guessing about optimum variables, i. e. variables that will be zero
in an optimum point, we may through one of the methods of Section 6 bring
these variables to zero and keep them there, starting a new round with the
reduced number of degrees of freedom which follows from the fact that
some variables have been put equal to zero. The new round would have to
start from the beginning, that is, by seeking our way into the admissible
region of the new truncated space. But if the process of secking into the
admissible region is worked out in a highly mechanized way along the lines
of Section 7, this computational difficulty will not be insuperable.

If instead we work by the moment method — slightly touched upon at
the end of Section 6 — we do not need to work our way again and again
into the admissible region. In certain other respects, however, the computa-
tional costs involved are high in the moment method, so after all, under

-away from the boundary.
The gradient components of the potential are
0Q
2 = —
62 Q=5
d their explicit expressions in terms of the variables are
n+m L. .
63 Q= % k0= 4 T Fk=uv..w
Xj Xk X

-}
j=1,2..0u,v...w(...n+m

The gradient (8.3) together with the preference vector, i e. the vector
‘whose components are px (k=u, v...w) define two different directions
in which it is in a certain sense desirable to go. In order to increase the
preference function we should go in the direction py, but in order to steer
‘away from the boundary, we should go in the direction 2. The optimal

=1

solution consists in a wise compromise between these two directions, much
in the same way as the optimal solution of the production policy of an
enterprise consists in a wise compromise between a movement in the direc-
on (in the space of the factors of production) in which the product
creases most steeply and a movement in the direction in which the cost
eclines the most steeply.

We express this by saying that we want to move in the compromise

favourable circumstances the truncation method of Section 7 will be the
most economical.

Since we possess criteria for the case where an optimum point has been
reached — compare Section 10 — and we can work out correctional proce-
dures to be applied when we have reached a corner which turns out not to
be optimal, the method suggested based on guesses about optimum variables
will be a sound one, when conditions are such that it can be followed with a
reasonable computational cost. Examples have shown that such cases exist.
The great advantage of this approach is that we may under favourable
circumstances freedom truncate a large number of variables in each round

(8.4) dg = px + ok k=uv...w)
here ¢ is a constant to be disposed of.

To impose (8.4) where c is a constant to which we may attribute any value
tween — 00 and -}~ 0o is the same as to say that the direction of movement
om the initial point shall be in the twodimensional manifold that passes
through the initial point and is unfolded by the preference vector and the
gradient of the potential. The problem is to determine ¢ in an optimal way.
First suppose that we have chosen a fixed value for c. The directional
numbers dy for the basis variables are then given by (8.4) — where we now
insert the initial point values for @y as computed by (8.3) —. Hence the
directional numbers d; for all the variables are given by (5.3), and the

and thus approach the optimum by leaps and bounds, instead of handling
one variable at a time. This is of fundamental importance when the number
of variables is great.

We shall now indicate how the logarithmic potential method for guessing
about optimum variables may be applied when we start from an initial
point x2 (k=u, v ... w) in the interior of the admissible region, i. e. where
allx? >0 (j=1,2...n+4m).

We define the potential

(8.1) Q=0 Xy, Xy - .. Xw) = = log x;

j=1,2...n+m

alues of all the variables under a movement in this direction are given by
5.10). Written out explicitly in terms of ¢ this becomes

where x; for j==1, 2...) u, v...x, (...n - m are defined as functions (8:5) x = Xj + A (pj + <) (i=12...n+m)
of x4, Xy - .. X, by (2.3). In the interior of the admissible region the poten-

Ly . . . . . . 8.6 ;= ; g = - i=1,2...

tial is continuous and with continuous partial derivatives of all orders, but (8:6) P u_%“_ “vlfjk pr and () kzu,f,“:'_.wbﬁ‘ & (=1, n+ m)

towards minus infinity. As we wander around in the admissible region the |
_potential may therefore be used as a sort of radar which will tell us to steer |

?
i

LS.
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The value of the preference function under this movement is
87)  f=1f0) =1 - A (P + M)
where £° is the value of the preference function in the initial point and
(8.8) P= ZV pi’ and M =, %: ”}‘kaQk
From (8.7) follows tha? fis a linear function of A along the straight line
considered. If we want to increase the preference function, we should let A
have the same sign as P -|- cM, i. e.

(8.9) sgn. A == sgn. (P + cM)
and we should make the absolute value of A as large as is compatible with

the conditions that we shall stay within the admissible region.
When the sense of the movement is fixed as indicated in (8.9), we have

The broken line whose abscissa is ¢ and ordinate N(c) is always convex

pwards. This helps greatly. The optimum abscissa ¢,y Which solves the
minimax problem (8.13), i. e. which produces the minimum of (8.11) can
be determined by the following algorithm.
As c varies from —o0 to +-00, we consider separately the branch of the
broken (¢, N) line (8.12) where P 4- cM > O and the branch where
+ M <O. On each such branch we determine the point ¢, that
furnishes the minimum of the function (8.11). On each branch the optimum
determined by a series of approximations starting from the initial value
on the branch where P - ¢M = 0

(8.14) cm:I -

3¢
% on the branch where P -+ ¢cM < 0

(when the sign of ) is

(8'10) f: f()\> = fo + |)\| ° lP + CMI determined by (8.9))
If the initial point x? is in the interior of the admissible region, there

exist at least some small interval of |A| where all the variables are still e separating abscissa ¢, for the two branches being defined by

effectively positive, and consequently the point Xy still inside the admissible (8.15) Co = P

region. For such values of |A| the values of the preferense function will The consecutive iteration—le‘ @ )

by (8.10) have increased. As |A| increases we will — if the admissible alues ¢ ¢ .. . are then computed by

region is finite, i. e. entirely closed — sooner or later reach a breaking out here (8.16) ck+ ) = &) L I( co + (S}_)j e 3 k=1,2...)

point, that is to say, a point where at least one of the variables reaches zero
and would become negative if we proceeded further.! The value of || for
which this happens will obviously depend on ¢ and consequently the value
of the preference function in the breaking out point is a function of ¢. A
natural principle for choosing the value of ¢ will be to do it in such a way as
to maximize the value of the preference function in the breaking out point.
This will be our principle for choosing c.
This is the same as to minimize the function F(c) defined by

(8.17) jmax(c) is the value of j that maximizes (8.12) for a given c.
The sign in (8.16) is chosen according to the following rule:

le (8.18). If the straight line y=—=p; - c©; determined by j=j, ..« (¢®)
is such that along this line [y| changes in the opposite direc-
tion of [c|, then|c|shall be increased, i. e. the sign in (8.16)
shall be chosen so that we produce |ck+D | = [c® [ If|y]
changes in the same direction as | c| along the line determined
by j=jmax (c®), there are two cases: | c| shall be inucreased,

B1) e =FO = s o]
. o = C) = T———7 %1 . H
F— [P+ M| i. e.]c®*+ 1| shall be made > Ic(k)|if§—gj!<|co|, but|c|
8.12 N(c) = "N » _ Max | pj £ e : I
(8.12) (c) = "Numerator” = j 0 shallbe decieased, i. e |+ V| be made < | c® | if
5 :
pj + ¢y <OwhenP +cM =0 fg§>|co|
il

p + cQj>0when P+ cM =<0
£ designating the value of the preference function in the breaking out point.
In other words we have to look for the solution of the minimax problem

Once the maximum of (8.12) is found for a given c®, the affix j,,, (<)
known and hence immediately ¢ ®+*) by (8.16). This gives the starting

. b+ || int for a new iteration round of the type (8.16)—(8.18).
Min Max | <0 % LD 4+ cQ; < 0 whenP +cM >0 As we approach the optimum value ¢,y the approximation values may
(6:13) i — 2 ' pj Aty =0whenP - cM <0 gin to oscillate. The optimum must then be situated b imi
|P + M| % ‘ p en be situated between the limits

btained. In most cases this gives a sufficiently close approximation, but if

d be, we may single out the two values of j that determine the optimum
oint exactly.

1 The case where the processs indicated does not lead to a breaking out point because of an open ad
missible region, is trivial. In this case the preference function can be rendered arbitrarily great.
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Thus, everything hinges on @ rapid determination of the maximum 1o the
right in (8.12) for a given value ¢® This problem is well adapted for an
electronic computor or a punched card outfit. One does not need a large
storage capacity as all items that fall below the largest one found so far, can
be discarded and only the leader retained.

When the optimum c,p is determined for both branches, that one of the
two Cop values are taken, which produces the smallest value of the function
(8.11). The two values in question are computed simply by inserting the
two optimum values found for c.

When the final c,p; is determined, we consider the situation in the
breaking out point. We compute also the values of |A| for some of the
variables which we would have hit if we had continued beyond the breaking.
out point. To find out which variables these are, we compute syste-
matically all the values

in round No. t, the initial value being N, = n. These numbers N, are then
rounded off to the nearest integer

(8.22) n, = nearest integer to Ny, and

n,—ny is taken as the number of zew candidates to include in our opti-
mality guess before we start on round No. t. Or otherwise expressed: When
going from round No. t—1 to round No. t, we reduce the number of degrees
of freedom by

' (8.22) ne—1 — ng.

9. The moment method for guessing about limiting variables

We may also use the moment method for guessing about limiting
variables. This problem is discussed in [5] and [7].

10. Criteria for optimality

Before working out computational rules for testing a point for optimality,

(o] . . .
X; it will be well to state certain general principles.

(8.19) IA] = dj<0

J
and arrange them in ascending order. There will always be at least fwo j
that give the smallest of the magnitudes (8.19) (because of the optimum
determination of ¢, which we have performed), and these two j indicate
the variables whose vanishing marked the boundary of the admissible region.
The ranking order of the variables as computed by the magnitudes (8.19)
we may call the priority order determined with respect to the breaking out
point considered. This priority order we take as the principle by which to
guess about optimum variables, i. e. about variables which are likely to be

(10.1) Sufficient condition for optimality, general formulation (any point
on the boundary).

A given point is optimal if there exist n linearly independent variables
that can be divided in two subsets, one of v and the other of (n-v) variables
(O = v = n) such that:

(a) The preference prices! of the v variables are negative and the preference
prices of the (n-v) variables are zero. (The condition (a) is a property
independent of the point considered).

(b) In the point considered the v variables are zero and the (n-v) variables
are non-negative.

(c) All the other m variables are non-negative.

Proof. Let the n-v variables be Nos. x = «, B ...y and let the v variables
Nos. k=u, v...) &, B...y (... w. By hypothesis the preference function
can be written in the form

d) f=po+ X prxi
k=u,v...)a,ﬁ...y(...w

zero in an optimum point.*

The question arises of how many candidates, i. e. how many variables to
include in our guess.

Empirically we have found that it pays fairly well to include at each
round additional candidates equal in number to the square root of the num-
ber of degrees of freedom with which we arrive in the breaking-out-point in
question.

Since this rule will usually give fractional numbers, we use a standard
procedure for the rounding off to integers.

We first compute by the following recurrence formulae

820)  N¢= N¢—; — YNe_4 :
the number of degrees of freedom N, which should theoretically be retained

where all the p under the summation sign are negative. This formula applies

the admissible region or on its boundary, and let " be the corresponding
alue of the preference function. We then have

1 The idea of using values of the I A |i for ranging the candidates in a priority order was suggested
some years ago by Mrs. Inger Haugstad, Chief computor in the University Institute of Economics, Oslo.
Later more refined principles have been tried successfully but they involve higher computational costs,

By preference prices is here meant the coefficients which emerge when the p+(n— ) =n variables
considered are taken as basis set.
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(e) f!— f = T py (8 — x)
kzu,v...)a,ﬁ...‘}/(...w

prices are non-positive. But by (10.2) if it is optimal, it must be possible to
define the same corner by means of other basis variables in such a way that
(10.1) can be applied.

(10.5) Degrees of freedom of the optimal region.

If the equations can be transformed to a basis form where n-v of the
preference prices are zero — compare (10.1) — and the other v preference
prices are negative, not zero, every point that is situated in the admissible
region (i e. has all the n + m variables non-negative) and belongs to the
(nv) dimensional linear manifold generated by putting the v variables
equal to zero and letting the n-v variables perform an independent variation,
is optimal. Over the linear manifold in question we have f==p, and

(10.6) x; = bjo + b by xx G=12...n+m)

Z=aB,.. v
The rule (10.5) follows directly from (10.1).

In [7] these optimality principles are applied to the results of some of
the computational procedures discussed above.
*

If all the py in this summation are effectively negative, it is impossible to
make the difference f-f positive without making at least one of the differ-
ences (xx —xx) negative. This, however, is impossible if all x; == O and
none of the x; can be made negative. Hence, if also (c) is fulfilled, the point
considered must be optimal. The essence of the proof is that no positive
preference prices must occur and for those preference prices that are
negative, the corresponding values of the variables must be zero.

(10.2) Sufficient condition for optimality, special formulation (a corner
on the boundary).

A given point is optimal if there exists n linearly independent variables
such that:

(a) The preference prices of these n variables are non-positive. (This isa
condition independent of the point considered).

(b) In the point considered the n variables in question are zero.

(c) All the other m variables are non-negative.

The special formulation is obtained from the general simply by considering
the case where not only the v but also the (n-v) variables are actually zero.
(10.3) Necessary condition for optimality, general formulation (any point
on the boundary).

If the total optimality criterion does not turn out in the affirmative,

different procedures may be followed. One method is to move a small
distance into the interior of the admissible region by one of the directional
techniques, and make a fresh start. If the move into the interior is made in a
reasonable way, one will get a new starting point from where it is possible
to make a much more rapid progress than from the original starting point.
As another alternative, we may — if necessary by the method of Section 7
— make sure that we get a corner of the boundary and if this point does not
give a positive answer to the total tests (10.10) — (10.13), we may finish
up by some rounds of the simplex method. As the bulk of the variables will
already have been brought into order, it is to be expected that this final
work will go through rapidly.
More precisely expressed: It is fair to assume that the logarithmic poten-
tial method will have brought us to a part of the boundary where a corner
(a vertex) which we have reached is a neighbour of an optimal corner, or
nearly a neighbour. This means that the corner in question is separated
from an optimal corner by one edge only or at most by a chain consisting of
a small number of edges. If this is the case, the simplex method ought to
carry us rapidly from a corner determined by the logarithmic potential
method through a final phase towards an optimal point.

A point that is optimal must satisfy (10.1) for some value of v. If we
disregard the case where the total admissible region is optimal, we can even
say that it must satisfy (10.1) with 1= .

The proof will not be given here. It is discussed in [2].

(10.4) Necessary condition for optimality, special formulation (a corner).

In a point where all the basis variables are zero and all the dependent vari-
ables effectively positive (a simply determined corner) it is not only
sufficient for optimality that all the preference prices py (k==u, v...w)are
non-positive — as follows from (10.2) — but this latter condition is also
necessary.

If at least one of the dependent variables is zero, necessity does not follow.
In other words, a point in the admissible region where all the basis variables
are zero and also at least one dependent variable is zero (a multiply
determined corner)! may be optimal even though not all the preference

1 When a manifold on the boundary (in the special case p =mn, a corner) is multiply determined, it is
customary to speak of ’degeneracy”. This term is not a happy one. It seems more appropriate and sugges-
tive to speak of "a multiply determined” manifold.



	img001.pdf
	img002

