ON WELFARE THEORY AND PARETO REGIONS*
By RAGNAR FRISCH

1. INTRODUCTION

The following considerations constitute an attempt at discussing—and ques-
tioning—certain basic propositions of welfare theory which are frequently taken
more or less for granted. They are, I believe, very much in need of being
scrutinized more cautiously. In particular I shall discuss the way in which con-
ditions enter into the argument about optimality. I shall concentrate on these
basic points without making any attempt at surveying the whole field of welfare
economics.?

* *
¥

The purpose of a macro-economic decision model? is to discuss which
economic policy or policies might be designated as “good” or perhaps as
“the best” under given circumstances. In this connection it becomes necessary
to consider criteria which may, in point of principle, be used to define the mean-
ing of these words as applied to an economic policy. , :

An essential problem in this connection is how to reconcile the desires of those
in power (the dictator, the democratic public authority, the influential non-
official personalities, etc.) with those of the mass of citizens. A conflict may arise
on this point. This conflict is formally similar to the conflict between the
interests of individual citizens. The discussion of the general problem may there-
fore well take as its starting-point a theoretical device for describing the pre-
ferences of any economic entity, whether a person, a family, a business enterprise,
a public authority, etc. Such a device is the preference function of that entity.?
In what follows we assume the existence of such a function for each such entity.
For shortness such an entity will be referred to as an “individual”. In other
words, we assume that each individual acts as if there exists a function which
this individual tries to maximize.

In the most general case the preference function of any individual may be
envisaged as depending not only on the values assumed by all the variables of

* This paper was worked out in the main in the autumn of 1950; it was subsequently revised and pre-~
sented as an appendix to a paper “From National Accounts to Macro-economic Decision Models”, read at
the meeting of the International Association for Research in Income and Wealth, Rome, September 1953.
That paper has since appeared in Income and Wealth, Series IV, London, 1955, pp. 1-26, but the appendix
reproduced below, although written in English by Professor Frisch, has so far been published only in French:
“La Théorie de Pavantage collectif et les régions de Pareto”, translated by Georges T. Guilbaud, Economie
Appliquée, vol. VII, No. 3, July/September 1954. The original English version has so far been available only
i;rirm;lmcographcd form at the Universitetets Social¢konomiske Institutr at Oslo, which is headed by Professor

sch.

! An excellent survey of the opinions of different authors is given by Tibor Scitovsky in the American
Economic Review, 1951.

* The concept of a decision model is studied at length in two papers in the Revue &’ Economie Politique, 1951.

s Thc application of this concept to the “homme d'état” is considered in a very interesting article by
Maurice Fréchet: *'Sur les fonctions de bien-étre”, which I have had an opportunity to read in manuscript.
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the theoretical model used, but as depending also explicitly on the nature of the
various relations that form part of the model (i.e. on the parameters of these
relations). This means that the value of the preference function will depend on
the nature of these relations in a manner which is so complicated that it is not
sufficient to indicate the result of the relations, that is, the values of the various
variables as they actually exist. In what follows we shall, for simplicity, only con-
sider the case where the preference functions can be expressed simply in terms
of these variables.

Some of the conditions—in the form of equations or inequalities—which we
impose on the variables of a model are more or less obligatory, unavoidable.
For instance, certain definitional equations between the variables, certain tech-
nically given production functions depending on the laws of nature, certain
existing limitations on natural resources, etc. Others of the conditions we impose
on the variables of the model are of a more or less facultative sort. They may
be changed if man changes the “rules of the game”, i.e. changes the rules and
regulations by which production and distribution take place. The choice of an
economic policy just consists in choosing a specific form of these facultative
conditions. On closer scrutiny it might in border cases be found difficult to
draw the line of demarcation between obligatory and facultative conditions in
a hard and fast way, but some sort of distinction between these two kinds of
conditions has to be made if it shall be possible at all to discuss the question of
economic policy in a systematic way. The distinction between obligatory and
facultative conditions is more important than a distinction between “technical”
and “‘behaviouristic”” conditions.

A certain variable or a certain set of variables may belong to a given indi-
vidual as his parameter(s) of action (variable(s) of action).¢ That is, the individual
in question is free to choose whatever magnitude he wishes of this or these
parameters; e.g. the quantity bought by a buyer in an atomistic market, or the
price fixed by a monopolistic seller who is not under public regulation, etc.
In choosing a specific magnitude of this or these parameters the individual will
be guided by the nature of his preferences—as expressed by his preference func-
tion—and by the conditions that are conjectural to him, that is, the conditions
which he believes will hold good while he makes his choice. For instance, the
buyer in the atomistic market believes that by changing the quantity which he
buys, he will not affect the price, the monopolistic seller believes that if he
changes his price by so much, the quantity demanded will be changed by so
much, etc.

The conjectural conditions are not the same thing as the objective (obligatory
or facultative) conditions referred to above, but the conjectural conditions will,
in general, depend on some of these objective conditions and on the psychology
of the individual in question. The set of all these conditions: the objective con-
ditions (the obligatory and facultative ones) and the conjectural conditions, we

¢ M. Lutfalla, editor of the Revue d'Economie Politique, has suggested the term variable potestative, which
would refer to the meaning of the term potestas in Roman law.
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shall call a régime. Thus a régime is simply the complete set of conditions which
the variables of a model will satisfy under a given type of economic policy.
If nothing is said to the contrary, we assume that the régime is specified in such
a way as to lead to a uniquely determined point or at any rate to a pointset
of measure zero.

When speaking of a purpose to be realized by an economic policy, two types
of problems should be distinguished: the selection problems and the realization
problems (problems of régime).

In the first type of problems we ask whether there exist points (a pointset of
zero or higher measure) satisfying some preassigned set of conditions. Some of
these conditions may be objective (obligatory or facultative) and some may be
conjectural and, perhaps, some may be additional conditions imposed by the
policy-makers in the manner discussed in detail in the paper on decision models
already referred to (e.g. “the part of the national income that goes to the
workers shall not decrease”).

If such points exist, we classify them according to their desirability defined
in some way or another. We may, for instance, pick out one specific subset of
points which we consider particularly desirable. The consideration of Pareto
conditions is an example of a principle by which to select such a subset.

In the second type of problems we ask whether there exists a régime that will
lead to a point in the selected subset.

The distinction between these two types of problems is absolutely funda-
mental if it shall be possible at all to attach any meaning to a statement about
whether a régime is “good” or not. First we must define what we mean by
“good”. This is the selection problem. Secondly, we must define the régime and
find out whether it leads to a point that has the property which was defined as
“good”. The distinction between these two types of problems brings out very
forcibly the necessity of being fully aware of the significance of conditions.
Indeed in the selection problem, i.e. in the definition of what is “good” and in
the definition of a régime, two entirely different sets of conditions enter and
fundamental fallacies may be introduced if we are not aware of the difference
in the meaning of an “optimality” produced under these two sets of conditions.

This classification of the problems in the two categories: selection problems
and realization problems, is discussed fully in Section 9 of the article in the
Revue &’ Economie Politigue. In that article a number of examples of formulations
are also given. In what follows the rdle of conditions will be considered.s

2. THe ROLE oF CONDITIONS IN PROBLEMS OF CHOICE

In the discussion of welfare problems, the reasoning about Pareto conditions
is not always carried through as carefully as one could wish. A brief systematic
% Note added in March 19

basic réle of conditions,
clearly recognized.

59. It should be stressed that the main purpose of the paper is to clucidate the
and to warn against the errors which may creep into the reasoning if this réle is not
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discussion of some essential points—starting from a rigorous statement of
definitions—might therefore be useful.

Consider a model containing the m variables X,(i=1, 2 ... m) and the n
individuals Nos. j=1, 2 ... n, each of whom has a preference function
Q(X;, Xs ... Xn). A point in m-dimensional space with cartesian co-ordinates
(X1, X ... Xa) we denote for shortness by X. Sometimes we may speak of
“the space X”.

Let C be any given set of compatible conditions (constraints) imposed on the
variables X;, X; ... X... The set of points X satisfying these conditions we
denote by

(2.1) x[C]

In particular the total space we denote X[O]. X[C] may be called the admis-
sible region under the conditions C.

If the conditions consist of s independent equations, the normal case will be
the one where the locus of points satisfying C is of dimensionality m—s. On the
other hand, if the condition consists of any number of independent inequalities,
the locus of points satisfying C will, in the normal case, still be of dimensionality
m. That is, a set of inequalities will, in general, not restrict the dimensionality
of the admissible space (but it will restrict its volume). If the conditions are in
the form of s equations and any number of inequalities, the dimensionality of
the admissible space will in the normal case be m—s.

Definition (2.2). Let X and X’ be any two points. If X’ is such that for any of
the individuals whose preference functions are Q; ... Q,, X' is either preferred
to X or indifferent to X, and for at least one of the individuals X’ is actually
preferred to X, we shall say that X’ is Pareto-preferred to X under the prefer-
ence function Q, ... Q,, i.e. by the individuals Nos. 1... n.

The property of Pareto-preference is transitive provided the individual com-
parisons are completely transitive. This means that for any of the individuals
the comparison of points is transitive with respect to preference and also

From the criteria discussed there follow also certain conclusions which have a practical bearing on the
question of régime. It is true that the régime needed to produce exactly a Pareto-optimal solution may be so
complicated that we do not find it feasible to organize it. This simply means that in practice we should
choose a solution that does not deviate too grossly from one that has the criteria in question. This can often be
done ad hoc. Or, if 2 more refined analysis is wanted, we can formulate the problem of choosing amongst a
set of feasible régimes that (or those) coming closest to Pareto optimality.

Such extensions of the theory may, in particular, be needed in cases where it is found necessary to let
the utility of one individual depend not only on the quantities received by him, but also on those received
by other individuals. Similar complications may be considered in the technical field. (The subsequent
general parts of the argument do take account of such complications, but the examples which are discussed
in detail do not.)

It is, of course, perfectly proper to try to improve the analysis by proceeding to a closer scrutiny of more
general cases, provided one can do it in such a way as actually to reach precise conclusions and to show that
the simplified treatment eliminated something that is quantitatively important. This cannot be done by
general philosophical discussions, but demands a precise mathematical analysis.  One should not be led to
the negative, perfectionist artitude of saying that, since the principle of Pareto optimality does not solve
all intricacies, the principle should be abandoned altogether. If we did abandon it, we would lose a lot
of relevant—although approximate—insight.
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transitive with respect to indifference and transitive with respect to comparisons
with one preferent and one indifferent term, preference being in this case
dominant (if X” is preferred to X’ and X’ indifferent to X, X" is preferred to X,
and similarly if X” is indifferent to X’ and X’ preferred to X). Then the property
defined in Definition (2.2) is transitive. Indeed, suppose that X” is Pareto-
preferred to X’ and X’ Pareto-preferred to X. Then there can be no individual
for whom X is preferred to X” (because for any individual X" is preferred or
indifferent to X', and X’ preferred or indifferent to X, hence X" preferred or
indifferent to X). Furthermore, there must be at least one individual who prefers
X" to X'. For this particular individual X" is either preferred or indifferent to X,
hence this individual will actually prefer X” to X. Consequently X” is Pareto-
preferred to X.

The property of Pareto-preference being transitive, if X’ is Pareto-preferred
to X, and if we determine the set of points which are Pareto-preferred to X and
the set of points that are Pareto-preferred to X', we will find that the latter set
is included in the first.

Definition (2.3). Let X and X’ be any two points. If X is not Pareto-preferred to
X’ and X’ not Pareto-preferred to X (with respect to a given set of preference
functions), we shall say that X and X’ are non-distinguishable in the Pareto-
sense (with respect to these preference functions). Otherwise we shall say
that X and X’ are distinguishable in the Pareto-sense.

The property of being non-distinguishable in the Pareto-sense is not transi-
tive. Indeed, even if X" and X’ are non-distinguishable and also X’ and X
non-distinguishable, it might well be that X” and X are distinguishable, for
instance X" Pareto-preferred to X. It is therefore not possible to build up a
theory of “indifference curves for Pareto-preference” in the same way as we
do for individual preference. Some useful concepts may, however, be derived
from the above definitions, as, for instance, the concept of a positive Pareto-
pressure indicated in Section 5.

Definition (2.4). A point X will be called locally Pareto-optimal under the con-
dition C and with respect to the preference functions Q; ... Q,—or shorter
with respect to the individuals Nos. 1 ... n—if there exists no other point in
the vicinity of X and satisfying C, which is Pareto-preferred to X with
respect to the preference functions Q, ... Q,—i.e. for the individuals Nos.
1...n

Definition (2.5). A point X will be called globally Pareto-optimal under the con-
dition C if (2.4) applies when the words “in the vicinity of X" are replaced
by “in the whole permissible space”.

The locus of points that are globally Pareto-optimal under the conditions
C will be said to form the Pareto region or the Pareto-optimal region (or
space) under the conditions C and with respect to the preference function

Q... Qu—i.e. for the individuals Nos. 1... n.
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This region will be denoted
(2.6) Par[C] or more explicitly Par[C; Q, ... Q,]

If the variables X, ... X, are independent under the search for points that
are—locally or globally—Pareto-optimal, that is, if no conditions are imposed
on X, ... X, during this search (apart from trivial conditions), we shall say that
the points obtained are unconditionally Pareto-optimal—locally or globally as
the case may be. The region of points having this property will be denoted

(2.7) Par [O] or, more explicitly, Par [O; Q, ... Q,]

The above definition includes the limiting cases where there exist one or
more other points, different from X, which are for each individual indifferent to
the original point X. If necessary, we may characterize this formulation of the
definition as Pareto-optimality in the general sense.

A slightly more restrictive definition is obtained if we call a point Pareto-
optimal only in the case where all other points are such as to make at least one
of these individuals worse off than in the original point X. This point may be
called strong Pareto-optimality—local or global as the case may be.

The distinction between general and strong optimality will not play an im-
portant réle in what follows. If nothing is said to the contrary, the optimality
is to be understood in the general sense.

I shall not at this point take up a full discussion of how “correct” it is to
require that a point must be—locally or globally—Pareto-optimal in order
that it shall be considered a “good” or “efficient” point. I only want to take
exception to one particular type of argument which does not, I think, render
justice to the principle under discussion. The principle has been criticized on the
ground that it makes “the initial position” a sacred one from which we are not
allowed to depart if such a departure should make any individual worse off.
As 1 see it, this way of arguing is misinterpreting the meaning of the principle.
The principle does not single out any point as an “initial position”. The Pareto-
principle is a principle of negation, not one of affirmation. It states that if a point
is not Pareto-optimal, then it cannot be said to be a “good” or “efficient” point.
And this must be our conclusion regardless of how in detail we have formulated
our desiderata for a “good” or “efficient” point. In other words, the principle
gives a necessary condition, it segregates a class of points to which our “good”
or “efficient” point must belong, if any such points shall be fixed at all. Taken
in this sense it would seem that it is next to impossible not to accept the prin-
ciple—unless by saying that the individuals do not know what is best for them.
Indeed, if they do know this, and we want to respect it, how could we maintain
a point as a “good” or “efficient” point if there exist one or more other points
that are Pareto-preferred to it ? Only the dictator could maintain it: “I know
better than you what is best for you”.

To adopt this principle is, of course, by no means the same as to say that any
“initial” point which we have happened to run across and which we find on
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scrutiny to be Pareto-optimal, is a point from which we should not depart.
Many other points may, of course, also have the property of being Pareto-
optimal.

Since the Pareto-principle only forms a necessary, not a sufficient, criterion
—a fact which will be clearly illustrated by some of the subsequent examples—
the principle does not lead to a final fixation of what should be considered the
“best” or “most efficient” point, it leaves considerable leeway in the fixation of
economic policies. An analysis of the consequences produced by adopting some
specific way of handling this leeway is just the purpose of the macro—economic
decision model.

Obviously the property of a point of being globally Pareto-optimal under a
given set of conditions is a special case of the property of being locally Pareto-
optimal under these same conditions. In other words, any point which is
globally Pareto-optimal must necessarily be locally Pareto-optimal, but the
inverse does not hold. If it is wanted to construct the Pareto-optimal region in
an actual case, we may therefore—if this is found convenient—begin by con-
structing the locus of points that are locally Pareto-optimal under the conditions
considered. Out of this pointset we may then pick out the points that have the
global property. However, in any case where it is possible to use a graphical
representation it will, as a rule, be safer and more illuminating to proceed
directly to an analysis from the global viewpoint. This is exemplified in the
figures of Sections 4 and 5. Whenever we speak of a point or a region as being
Pareto-optimal without further specification, we have the global property in
mind.

It should be emphasized that it is absolutely essential to indicate explicitly the
conditions under which the search for Pareto-optimal points is to take place. If
these conditions are not indicated, the definition of a Pareto-optimal region has
no sense. It is as if one would speak of “the derivative™ of a function of several
variables without indicating the variable with respect to which the derivation is
to be performed.

This necessity of specifying conditions when speaking of Pareto-optimal
points is only a special manifestation of a basic principle underlying the whole
theory of choice. The absurdities which may be produced by carelessness on
this point may, perhaps, be illustrated by the following “theoretical analysis”
of the “régime” which consists in forcing people to do abominable things under
the threat of being shot. Firstly: this régime has the important property that
any person subject to it is perfectly free to choose himself the alternative which
he likes. Secondly: this being so, everybody will, of course, choose the alterna-
tive which gives him the highest possible satisfaction. Thirdly: any régime which
allows everybody subject to it to reach the highest possible satisfaction must be
a very desirable régime for these persons. Therefore: the régime considered must
be a very desirable régime for those concerned. Quod erat demonstrandum.

Tam not suggesting that all attempts at “‘proving theoretically” the superiority
of the régime of free competition proceed on logical lines similar to the above,
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but I think it is fair to say that some of these attempts come dangerously close
to this form of logic. Translated into economic terms: “the régime of free com-
petition is the best of all régimes within the class of régimes which consists of
the régime of free competition”. It is even possible that Pareto himself has at
one time been thinking more or less along such lines, but has at a later stage
recognized the fallacy. My suspicion in this direction has been confirmed by
prolonged conversations with such an eminent connaisseur of Pareto as Professor
Gustavo Del Vecchio. The essence of our conversations on this point is given
in Section 7.

3. Tue UNCONDITIONAL PARETO REGION

To simplify we only consider points where all the preference functions have
continuous first order partial derivatives and none of the preference functions
has all its first order partial derivatives equal to zero. Any point where the con-
ditions are not fulfilled would need a special investigation which is not neces-
sary for the present purpose.

Proposition (3.1). If all the preference functions have continuous first order
partial derivatives and none of the preference functions has all its first order
partial derivates equal to zero, a necessary and sufficient condition for a point
X' to be unconditionally locally Pareto-optimal is that there exists at least
one set of n numbers 0, ... @, functions of the point X, all of them effectively
positive (i.e. none of the © equal to zero), such that

(3.2) 0,4+ ... +0,dQ,=0 (6,>0)

for all variations dQ, ... dQ, around the given point X, i.e. for all values of

dX, ... dX,, around the point X.

The proposition holds no matter whether m>n, m=n or m<n.

Another way to express the criterion (when the indifference surfaces have
the usual convexity property) is to say that it is necessary and sufficient that
there exists at least one set of n numbers @, ... ©, with the specified properties,
such that

(3.3) @1w1i+®2w2x’+ +®"w,“-=0 for i=1,2...m
where

2Q,
(3.4) Wyy ZEY‘

If we consider w, ... w, as n uectors-—preference vectors—in m-dimensional
space, with components (wy; ... ®in) ... (Wny ... Wapm), We can interpret (3.3)
by saying that it is necessary and sufficient that any of the n preference vectors
w ... w, isexpressible as a linear form in the other (n— 1) preference vectors, with
coefhicients all of which are effectively negative.

Another symbolic way to express (3.3) is to say that for a given point X, the
n “variables” w, ... w, (so far without specification of the secondary subscript)
shall be perfectly correlated (around their natural origin) over the “field of
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variation” generated by maintaining X fixed, but putting successively i=1,
2... m, all the “perfect regression coefficients” in the homogeneous form of
the equation, i.e. all the ©, ... O, (constants under the variation over i) being
effectively positive. In the terminology of confluence analysis we may say that
the variables w, ... w, form a closed set of variables.

Finally, we may interpret the situation by saying that if there exists a convex
corner on X such that all the n preference vectors w, ... w, from X lie in this
corner or on its boundary, and at least one of them lies in the interior of it (as
a limiting case the convex corner may be a half-space), then, and only then, will
there exist points in the vicinity of X that are Pareto-preferred to X. Con-
sequently the necessary and sufficient condition that no such points shall exist
in the vicinity of X is that the » preference vectors w, ... w, do not have the
property in question, a condition that is precisely expressed by the existence of
the n effectively positive numbers @, ... 0,.

The sufficiency of the criterion in (3.1) follows immediately when the pro-
position is considered in the form (3.2), that is, when the variations around the
given point X are expressed in terms of the increments dQ; ... dQ,. Indeed, if
O, ... O, is any set of n numbers, all of which are positive, non-zero, it is
impossible to find a set of non-negative numbers dQ, ... dQ,, at least one of
them different from zero, such that the linear form written in the left member
of (3.2) vanishes. Hence, if there actually exist n effectively positive numbers
©, ... ©, such that (3.2) holds for any variations around the given point X,
this point must be unconditionally locally Pareto-optimal.

The necessity of the criterion in (3.1) is most casily discussed in terms of (3.3),
which we now prefer to look upon as a vector equation in the n preference
VECtors w; ... w,. We may first note that in any point which is unconditionally
locally Pareto-optimal the preference vectors must be linearly dependent. This is
trivial in the case m<n because any set of more than m vectors are necessarily
linearly dependent in m-dimensional space. In the case mSn, suppose that the
n preference vectors w, ... w, in the given point X are not linearly dependent.
Hence the matrix [w,,] (msn) is of rank n and the equations

(3.5) w,lXm+ vee +wjdem=8j j=1, 2... n (?m)

has solutions dX, ... dX,, for arbitrarily given 8, ... 8,. In particular we may
choose all the 8; non-negative and at least one of them positive. Any set of
values dX, ... dX,, satisfying the equations (3.5) with this choice of the 8’s,
will produce increments A ~w,dX, + ... +w,;,dX,, j=1,2 ... n, which are
non-negative and at least one of them positive.

Thus, in any point X that is unconditionally locally Pareto-optimal, there
must exist at least one set of # numbers 0, ... ©,, independent of i and at least
one of them different from zero, such that (3.3) holds for all i (and con-
sequently (3.2) holds for all variations of dQ, ... dQ, around X). This applies
no matter whether m>n, m=n or m<n.

To complete the proof of the necessity of the criterion in (3.1) it therefore
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suffices to consider the sign condition for the ©’s and dispense with all cases
where at least one of the ©’s is zero or of different sign from the other ®’s. The
necessity of the sign condition for the @’s in (3.1) follows from a general prin-
ciple of the signs of the coefficients in linear vector aggregates. However, rather
than to approach the problem from this general and abstract viewpoint, we
prefer to discuss the meaning of the sign condition in terms of some simple
examples, maintaining all the time the concrete interpretation of the vectors as
preference vectors. From these examples the necessity of the sign conditions in
(3.1) in the general case will follow more or less intuitively.

To simplify the wording we shall say that a given point X' is deferred to X
(by a given individual) if it is such that X is preferred to X'. We shall say that
the point is non-deferred to X if it is either indifferent to X or preferred to X
(by a given individual).

Example 1. In the case m arbitrary (5 1), n=2, we have an immediate geo-
metric interpretation of the necessity and sufficiency of (3.3). Indeed, in this
case a point X, where none of the preference functions has all its partial deriva-
tives equal to zero, is obviously unconditionally locally Pareto-optimal when,
and only when, the preference vector of one of the two individuals points
exactly in the opposite direction of the preference vector of the other individual,
that is, when, and only when, there exist two effectively positive numbers
0, and 0, such that ©,w, ;4 Ouw,;=0 for all i.

Example 2. Next consider the case m=2, n=3. Consider the two preference
vectors w; and w, going out from a given point X (none of these preference
vectors having both its preference components equal to zero). First suppose
that they form an angle different from 0 and from 180° as indicated in Figure 1
(3.6). Extend these two vectors forwards and backwards (towards 4 and B).
We have the proposition:

X3

X,

Fic. 1 (3.6)
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Proposition (3.7). In order that the point X shall be unconditionally locally
Pareto-optimal for the three individuals Nos. 1, 2, 3—when the two pre-
ference vectors w; and w, are given (and all the indifference surfaces have the
usual convexity property)—it is necessary and sufficient that the third pre-
ference vector w, is directed to a point in the interior of the opposite of the
(infinite) convex corner formed by the vectors w; and w,, i.e. it is necessary
and sufficient that w; is directed to a point in the interior of the (infinite)
convex comer AXB in Figure 1 (3.6), not to a point on the boundary lines
AX or BX of this corner, and not to a point in any other sector of the plane.

Indeed, draw the straight half-line XP perpendicular to w, and the straight half-
line XQ perpendicular to w,. The local region around X which is non-deferred
by both individuals 1 and 2 and actually preferred by at least one of them is
the convex corner PXQ (North-East of X), the boundary lines XP and XQ
included. No point (except X itself) has the property of being indifferent to X
for both individuals as long as we confine our attention to the vicinity of X.
Hence, in order that the point X shall be unconditionally locally Pareto-optimal
with respect to all three individuals—when the two preference vectors w; and
w, are given and form an angle different from 0 and from 180°—it is necessary
that the preference vector w; is such that all points in the convex comer PXQ,
boundary lines included, become actually deferred to X for individual No. 3.
This happens when, and only when, the preference vector w; is directed to some
point in the interior of the (infinite) convex corner AXB, boundary lines not
included. This happens when, and only when, the vector (—w;) is directed to
some point in the interior of the (infinite) convex corner formed by the two
preference vectors w; and w,, boundary lines not included. According to a
familiar proposition in vector algebra, this happens when, and only when, the
vector (—w;) can be written as a linear form in the two vectors w, and w, with
coefficients, each of which is positive, not zero. In other words, if the point X
shall be unconditionally locally Pareto-optimal when the two vectorsw, and w,
are given and form an angle different from 0 and from 180°, it is necessary that
there exist at least one equation of the form

(3.8) BO,w, 4+ Ogw,+ Oy =0

where all the coefficients © are positive, not zero. In the case now considered
these coefficients are obviously uniquely determined apart from a common
factor which is positive, but otherwise arbitrary.

If the two vectors w, and w, point in the same direction (i.e. form an angle of
0 degrees), the point X will obviously be unconditionally locally Pareto-
optimal when, and only when, the vector w, points in the opposite direction
of w, and w,, i.e. when, and only when, w;= —aw, wherea is positive. If w, and
w, point in the same direction, the condition on wj can also be expressed by
saying that we must have w,= —Bw, where 8 is positive. Multiplying these two
equations by arbitrary positive constants and adding, we see that in order that

the point X shall be unconditionally locally Paretian it is also now necessary
LE.P.—D
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that there exist at least one equation of the form (3.8) with all the ©'s positive,
not zero. In the present case those ©’s have a two-dimensional arbitrariness.

If the two vectors w; and w, point in opposite directions, i.e. form an angle
of 180°, the point X will be unconditionally locally Pareto-optimal for the two
individuals 1 and 2. This applies no matter whether we define the local structure
of the preferences as a linear structure expressed through the single datum con-
sisting of the preference vectors, or we define it more exactly in its curved form
depending also on the higher order derivatives (with the usual convexity
assumption). The difference between the two viewpoints is only of avail if we
attribute importance to a refined distinction between limiting cases. In the
formulation (3.2) no assumption about first order approximation—i.e. linearity
—is implied, but in (3.3)—where only the first order derivatives are involved—
such an approximation is involved. In a point X, where the preference vectors
w; and w, of two individuals point in opposite directions, the situation is as
follows: when due account is taken of the curvature of the indifference lines
(with the usual convexity assumption), any point in the vicinity of X will make
at least one of the individuals worse off than he is in X. When furst order
derivatives only are considered, any point in the vicinity will make at least one
of the individuals worse off, except points on the straight line through X which
is normal to the direction of w; and w,. Along this line any point will—in terms
of the linear approximation—be indifferent to both individuals. Whichever of
the two ways of looking at the situation we use, the point X will in the general
sense (compare the definitions (2.4)-(2.5)) be locally Pareto-optimal for the
two individuals. If we introduce a third individual, we must take account of
the difference berween the curvilinear and the linear way of looking at the
situation. From the curvilinear point of view the point X will be strongly
Pareto-optimal for the two individuals 1 and 2, and consequently also be strongly
Pareto-optimal for the three individuals 1, 2, 3 (compare Proposition (3.13)
below). From the linear point of view the point X is only Pareto-optimal in
the general sense (not in the strong sense) for the two individuals 1 and 2. If
in this case the preference vector w; does not fall in the direction line of w,
and w,, the point X is not Pareto-optimal (neither in the general nor in the
strong sense) for the three individuals 1, 2, 3. Indeed, if the vectors w, and w,
point in opposite directions and the vector w, does not fall in the line defined
by w, and w,, then some points along the line through X normal to w; and w,
will be Pareto-preferred by the three individuals, namely the points on that
half of the perpendicular considered which is situated to the same side of X as
w;. In this case it is impossible to satisfy (3.3) which is the appropriate formula
to consider when the linear viewpoint is adopted. Only if w, falls in the same
line as w; and w, (no matter whether it is to the side of w, or to that of
w,), will the point X be unconditionally locally Pareto-optimal for the three
individuals. When this happens, we put w,= —aw, and w;=fw,, where « is
effectively positive and B either effectively positive or effectively negative.
Multiplying these two equations by effectively positive numbers @, and @,




PARETO REGIONS 51

and adding, we get (3.8) with 0, =a®,—B0,. If B is negative, O, will be effect-
ively positive for any choice of the two positive numbers 0, and . If 8 is

. .. O
positive, we only have to impose the condition -—2>§. Thus we reach the
3

conclusion that there must exist at least one equation of the form (3.8) where
all the coefficients are positive, not zero. This checks with (3.3).

The above difference in interpretation of the point X according to whether
we adopt the exact, curvilinear, or the approximate, linear, point of view, only
applies to the point X itself, not to some near-by point such as, for instance,
X' in Figure 2 (3.9) with preference vectors w,’, w," and w’. This near-by point
X" will, as a rule, appear as non-Pareto-optimal for the three individuals 1,2, 3,
no matter whether we adopt the exact, curvilinear, or the approximate, linear,
point of view. This illustrates the fact that the difference between the two view-
points is only of avail when we want to classify in detail limiting cases, and in

Fig. 2 (3.9)

particular when we want to be careful in stating exactly whether some boundary
points belong to a certain region or not. In any case which is simple enough to
admit of a graphical illustration with curvilinear indifference lines—such as the
examples below—it is easy to check whether boundary points should, or should
not, be considered as belonging to the region.

Since (3.8) is symmetric in the three vectors w,, w, and w;, and the criterion
only specifies the sign of the ©’s, we will reach the same criterion no matter
which set of two vectors we start with.

From the above analysis we conclude that in all cases where the point X in
two-dimensional space is unconditionally locally Pareto-optimal with respect
to three individuals, there must exist at least one equation of the form (3.8)
where each of the three coefficients © is positive, not zero.
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We can also express the conclusions of Example 2 in the following proposi~
tion:

Proposition (3.10). If the point X is unconditionally locally Pareto-optimal, the
preference vectors must be distributed around X in such a way that any
vector around the point X which can be written as a linear form in the
preference vectors can be written as such a form with all the coefhicients
positive, not zero,

If we had wanted to, we could have aimed at first proving (3.10) and from
(3.10) deduce (3.8). It is easily seen that if (3.10) holds, the existence of an
equation of the form (3.8) is assured. Indeed, if w is any vector which can be
written as a linear combination of the preference vectors, the vector (—w) has
the same property. Write each of these two vectors as a linear combination of
the preference vectors with cocfficients that are positive, not zero. The sum of
these two vector equations is a vector equation of the form (3.8) with all the
O’s positive, not zero.

Example 3. m=2, n arbitrary>2. If all the n preference vectors are situated
in the same line, the point X is unconditionally locally Pareto-optimal when,
and only when, there is at least one vector pointing in one direction along this
line, and at least one vector pointing in the other direction. In this case obviously
any vector that can be written as a linear combination of the preference vectors
(i.e. any vector directed to a point on the line considered) can be written as
such a combination with coefficients that are positive, not zero, hence by the
same argument as in (3.10) there must exist an equation of the form (3.3).

If not all the preference vectors are situated in the same line, draw a circle
around X and follow the circumference. If the point X shall be locally Pareto-
optimal, we must nowhere pass as much as 180° between one preference vector
and the next. Indeed, suppose that somewhere we pass exactly 180°. There
would then be at least two preference vectors pointing in opposite directions
and at least one preference vector pointing in the sector covered by the 180°
which we have not passed. Any points in this sector and situated on the line
which is perpendicular to the line of the two preference vectors that point in
opposite directions would be Pareto-preferred by the group consisting of all the
individuals. If we passed more than 180°, there would even be a whole convex
corner of Pareto-preferred points.

Thus we only have to consider the case where we nowhere pass as much as
180° when going from one preference vector to the next. In this case there must
exist a set of three preference vectors w;, w,, ws, such that the counterclockwise
angle between any two consecutive vectors is less than 180°; as indicated in
Figure 3 (3.11). Such a triple of vectors is, for instance, constructed by starting
with any preference vector w, and moving counterclockwise until we reach the
last (one of the last) preference vectors that form an angle of less than 180° with
w,. Let it be w,. From w, we continue the counterclockwise movement until we
reach the first (one of the first) vectors wy such that the counterclockwise angle
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from w, to w, is more than 180°. Since there is no empty angle of as much as
180°, w; must be situated somewhere in the interior of the counterclockwise
angle between A, (the negative of w,) and w,. Hence the counterclockwise
angle from w; to w; is less than 180°. Any vector around X can be expressed

Fic. 3 (3.11)

as a linear form in the three vectors wy, wy, w,, with coefficients all of which
are effectively negative. Indeed, consider first a vector directed along A,. It can
be expressed in the form —aw,, with « effectively positive, but it can also be
expressed in the form Byw,+ 8w, with 8, and B, effectively positive. Hence it
can be expressed in the form p(—a)w, + q{Baws+Baws) with p+g=1. Choosing g
negative (and consequently p positive) the vector in question will be expressed
in terms of w;, w,, w; with coefficients all of which are effectively negative.
Similarly for any vector along A4, or along Aj or for any vector along w, or w,
or w,. Next consider a vector in the interior of the convex corner (Ayws). It
can be expressed in the form ayw,+ agw, with ap and a4 effectively positive, but
it can also be expressed in the form — (Biw,+Baw,) with the B, and B, positive;
hence it can be expressed in the form Plaaws+agws)— q(Bywy+Paw,) with
p+4q=1. Choosing p negative (and consequently g positive) the vector will be
expressed as a linear form in w,, w,, w;, with coefficients all of which are
effectively negative. Similarly for vectors situated in the other sectors of
Figure 3 (3.11). Thus, any vector around X can be expressed as a linear form in
wy, wy, wy With coeflicients, each of which is effectively negative. Applying this
in particular to all the other preference vectors w,, wg ... w, around X, we get
an equation of the form (3.3). Hence (3.1) holds for m=2, n>2.

These examples will be enough to exhibit the meaning of the general pro-
position (3.1).

The conditions on the signs of the ©’s are not important from the viewpoint
of manipulation of formulae in the first stages of the work when we wish to
construct the unconditional local Pareto region in an actual case. Indeed, in this
case we might begin by eliminating the ©’s and thus deriving a set of conditions
on the point X which will be well defined when the shape of the indicators Q;
are given. Since the ©’s enter in a homogeneous and linear fashion, the con-
ditions after elimination of the ©’s will appear as (m—n+1) equations between
the derivatives of the indicator, when 5 n. The dimensionality of the subspace
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of the points that are Pareto-optimal will consequently—apart from degenerate
cases—be

(3.12) m—(m—n+1)=n—1 (when msn)

In the further discussion of the properties of the pointset X which is Paretian,
it becomes essential to add the sign conditions. These sign conditions can then
be formulated by saying that the expressions obtained for the ®’s—expressions

only involving the partial derivatives of the indicators—shall be effectively
positive.

* *
*

If m<n the unconditional Pareto region will, in general, form a closed sub-
space whose dimensionality is independent of n, namely equal to m, but whose
volume will, in general, be all the larger the larger is n. In degenerate cases
special situations may emerge, but the general rule is that the volume of the
Pareto-optimal region increases as the number of individuals increases. One
general proposition that illustrates this is the following.

Proposition (3.13). The region that is strongly Pareto-optimal for a group of
individuals consists at least of all points that have the property of belonging
to any region that is strongly Pareto-optimal for a subgroup of these indi-

viduals.

This proposition follows immediately from the fact that a point X, which
belongs to a region that is strongly Pareto-optimal for a subgroup of the indi-
viduals, is by definition such that in any other point at least one of the individuals
in the subgroup must be worse off. This is saying that at least one of the indi-
viduals of the total group must be worse off. In other words, the point X must
belong to the region that is strongly Pareto-optimal for the total group.

A graphical illustration of a simple case will suggest the nature of the possi-
bilities that exist. See Figure 4 (3.14). By a global analysis of Pareto conditions,
such as given in Figure 4 (3.14), we get a much more elucidating picture of the
situation than by a formal application of Lagrange multipliers.

The case illustrated in Figure 4 (3.14) is m=2, n=3. The two independent
variables X, and X, are measured along the horizontal and vertical axis, respect-
ively. Each individual is represented by a system of contour-lines for his
preference function. The maximum points are at (1), (2), (3), respectively.

We begin by considering the individuals 1 and 2 only. Take the point A.
The shaded region between A and B (enclosed by the indifference lines for
individual 1 and that for individual 2, that pass through A), represents points
that the individuals 1 and 2 Pareto-prefer to the initial point A. The endpoint
B is not Pareto-preferred, but Pareto-indifferent to A. This, however, is
unessential in this connection. What is essential is that there exist points that are
Pareto-preferred to A by the individuals 1 and 2. In other words, A is not
Pareto-optimal for the two individuals 1 and 2. Take any point C in the interior
of the shaded area between A and B. A similar argument applies here. That is,
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the doubly-shaded area CD—situated entirely inside of the area AB—represents
(with the exception of the endpoint D) points that the individuals 1 and 2
Pareto-prefer to C. Hence C is not Pareto-optimal for the two individuals 1
and 2. Continuing in this way, we end up by reaching a point where there is

A
X2

N\

X;

Fic. 4 (3.14)

tangency between a preference line of the individual 1 and a preference line of
the individual 2 (assuming continuous variation of the partial derivatives of the
preference functions). The locus of points where such a tangency exists is the
heavily drawn curve P(1)(2)Q. This curve is defined as the set of points satis-
fying (3.3) for i=1, 2 (with n=2) and no condition put on the @’s. Introducing
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the additional condition that the two ©’s involved shall be of the same sign, we
get the points of the curve P(1)(2)Q that are situated on the finite segment
between the points (1) and (2). To the right of the point (1) and to the left of
the point (2) the two ©’s are of opposite signs. Hence: any point belonging to
the finite segment of the heavily drawn curve between the points (1) and (2)
is unconditionally Pareto-optimal for the two individuals 1 and 2. This opti-
mality is to be taken in the general sense if we adopt the viewpoint of a locally
linear preference structure, but it is even a strong optimality from the exact
curvilinear viewpoint. Furthermore, no other point in space has this property
which the points on the finite segment (1)(2) have. In other words, any point
on this segment—the endpoints included—is such that there is no other point
in space which would be Pareto-preferred to it by the two individuals 1 and 2.
And no other point in space has this property.

Similar interpretations are possible for the finite segments of the heavily drawn
curves between the points (1) and (3) and between (2) and (3), respectively.
The construction of the curve between (1) and (3) is suggested by the shaded
area EF and that of the curve between (2) and (3) by the shaded area GH.

The region of points which are Pareto-optimal simultaneously for all three
individuals—when no constraints are imposed on the points—is the two-
dimensional area enclosed by the three curves (1) (2), (1) (3) and (2) (3). If we
adopt the exact curvilinear viewpoint, we may add: boundary included. Indeed,
take, for instance, the point A. Divide the total space in two parts: the one out-
side and the one inside of the closed indifference curve for the individual 3 that
passes through A. The points that are Pareto-preferred by 1 and 2 are situated
entirely in the outside region, namely in the shaded area AB (endpoint B not
included), while those points that are preferred by 3 are situated entirely in the
inside region. The only point that is indifferent to both 1 and 2 is B and this
point is for individual 3 on a lower level of satisfaction than A. Since no other
point can be Pareto-preferred to A4 by the group of the three individuals than
points that are either Pareto-preferred to A by the two individuals 1 and 2 or
indifferent to A for these two individuals, we see that there does not exist any
point which is Pareto-preferred to A by the three individuals 1, 2, 3. Hence A
is unconditionally globally Pareto-optimal for these three individuals.

On the other hand, take the point B. Again divide the space in two parts:
the one inside and the one outside the closed indifference line for 3 that passes
through B. There are points in the inside region, namely the points in the shaded
area AB, that are preferred by all three individuals. Hence B is not Pareto-
optimal.

Considering in this way one by one all the 6 regions: SW. of the line (1) (2),
NW. of the point (2), NW. of the line (2) (3), NE. of the point (3), E. of the
line (3) (1), S. and SE. of the point (1), we see that each of these regions will
be characterized in a certain way with respect to the preferences of the indi-
viduals and always such that a point in the region becomes non-Pareto-optimal
for the group of the three individuals. Hence: a necessary and sufficient condi-




PARETO REGIONS 57

tion for a point to be Pareto-optimal for the group of three individuals 1, 2, 3,
is that it is situated in the closed area (1), (2), (3)—boundary included if we
adopt the exact curvilinear viewpoint of the indifference lines.

By changing the nature of the indifference lines, for instance by moving the
point (3) towards (2), one may produce a situation where the curve segment
(1) (3) coincides with the line segment (1) (2). This would reduce the dimen-
sionality of the Pareto-optimal region to unity, i.e. the region which is Pareto-
optimal for all the three individuals would now become a curve segment. This
and similar situations would represent degenerate cases.

4, Tue REGION WHICH 1S PARETO-OPTIMAL UNDER A SET OF CONDITIONS
EXPRESSED BY EQUATIONS

Consider first the dimensionality (the number of degrees of freedom) of the
Pareto-optimal region. A full discussion of all possible limiting and degenerate
cases would be a tedious and, perhaps, not a very important task. Apart from
degenerate cases a simple rule may be formulated. We notice first that in the
case where no constraints are imposed on m variables to be preference-evaluated
by n individuals, the Pareto-optimal region will—apart from degenerate cases—
be of dimensionality (number of degrees of freedom) min[m, n—1}, where
min| | indicates the smaller of the two numbers written in brackets. From
what has been mentioned, this follows by noticing that (3.3) gives m equations.
If we eliminate from these m equations, the (n—1) ratios between the ©’s, we
are left with m— (n—1) equations, hence (n—1) degrees of freedom. This
assumes that (n—1) does not exceed m. If it does, the number of degrees of
freedom is, of course, limited by m.

In the case where s constraints are imposed, we may re-formulate the problem
by expressing everything in terms of (m—s) independent parameters. In the

new setting of the problem we can apply the above reasoning. Hence we have
the proposition:

Proposition (4.1). The region which is Pareto~optimal under a set of constraints
exposed by s independent equations between m variables that are preference-
evaluated by n individuals has a dimensionality (number of degrees of free-
dom) which—apart from degenerate cases—is equal to min[m—s, n—1].

Thus, so far as the dimensionality of the Pareto-optimal region is concerned,
the addition of constraints in the form of equations tends to reduce the content
of the region. But when it comes to the volume of the region within its given
dimensionality, the addition of constraints tends to widen the region—just as the
addition of more individuals tends to widen the Pareto-optimal region (see
Section 3). The precise meaning of the above statement is given in Figure 5 (4.2)
and Proposition (4.3) and in the examples discussed in connection with the
proposition. Before proceeding to this more detailed discussion, I would like to
state that in my opinion the fact here considered is of fundamental importance
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for the whole welfare analysis. It has far-reaching consequences for our inter-
pretation of what is really meant when we say that a point is “good” because it
is Pareto-optimal. A slipslop way of passing over the basic logical principle here
involved is, as I see it, the main cause for so much of the unprecise and un-
warranted reason that has been given about the superiority of the régime of free
competition—amongst others by Pareto himself and his immediate followers.
Let C and ¢ be two sets of constraints such that ¢ is included in C. That is
to say, any point X that satisfies C must necessarily satisfy ¢, but the inverse is
not true. For shortness we may call C the strong and ¢ the weak condition. The
general argument leading to Proposition (4.3) applies to any type of condition
whether expressed by equations or inequalities, but the subsequent example is
concerned with the case where the conditions are expressed by equations.
Since C is the stronger of the two sets of conditions, the points X that satisfy
C form a region X[C] that is entirely included in the region X[c] of the points
that satisfy ¢. This is illustrated in Figure 5 (4.2). For simplicity the region

Boundary for Par[C]

Boundary for X{[C]

Fic. 5 (4.2)

X|¢] is here drawn as one continuous region, but the argument is general and
applies no matter what the structure of the point set X[c] is. Similar remark
on X[C].

The region Par[c] must, of course, be situated in X[c] and the region Par[C]
in X[C). The region Par[c] may, or may not, have points in X[C]. If it does
have points in X[C], these points must belong to Par[C]. On the other hand,
there are, in general, points that are Pareto-optimal under C without being
Pareto-optimal under ¢, as, for instance, the point A in Figure 5 (4.2). That is
to say, if we confine our attention to points in X[C], we find that the points
that are Pareto-optimal under the stronger condition C form a more inclusive
set than the points that are Pareto-optimal under the weaker condition c. This
idea that a stronger condition leads to a more inclusive set is a bit unfamiliar
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and it takes a little attention to incorporate it correctly in a reasoning about
“good” points and “good” régimes.
We may formulate the fact referred to in the following proposition:

Proposition (4.3). Par[c] . X[C] is included in Par[C] but not inversely, i.e.
those points that are strongly Pareto-optimal under the weaker condition ¢
and lie within the region of points that satisfy the stronger condition C, must
be included in the points that are strongly Pareto-optimal under the stronger
condition C. But the inverse is not true.

To give a formal proof of (4.3) let X be any point in X[C] and consider the
following three cases—which form an exhaustive list of all possibilities:

1. There exists a point in X[C]—and

consequently in X[c]—which is Then X is not Par[C]
Pareto-preferred to X. and not Par[c].

2. There exists no point in X[C], but
a point in X[c] which is Pareto- Then X is Par[C]
preferred to X. but not Par]c].

3. There exists no point in X[¢]—and
consequently no point in X[C]— Then X is Par[C]
which is Pareto-preferred to X. and is Parfc].

In other words, for any given point X which belongs to X[C] it is true that
if it is Parlc], it must be Par[C], but it may be Par[C] without being Par|c].
In this formulation Par stands for “strongly Pareto-optimal”,

As a special case all the points that are Pareto-optimal under the weak con-
dition ¢ may fall in the region of points that satisfy the strong condition C, but
that is of no particular importance. In any case will Proposition (4.3) hold.

As an example consider the case where ¢ is a production constraint given,
say, by the limitation of natural resources and the technical situation, in short
a set of what might be called obligatory conditions, while C is a more inclusive
set of conditions, consisting of the obligatory conditions and a set of facultative
conditions expressing, say, conditions to the effect that the total output shall
be distributed amongst the individuals in certain proportions. In short, we may
term these conditions the production and distribution constraints, respectively.

If we are to use the concept of Pareto-optimality on this set-up, we must keep
in mind that Pareto-optimality under the production constraint is not the same
thing as Pareto-optimality under the production and distribution constraints.
For instance, if we want to say something about the distribution system from
the viewpoint of Pareto-optimality, the pertinent question is whether some
point X which shows the prescribed distribution ratios, is Pareto-optimal under
a constraint which consists of the production constraint only. If a choice is to be
made between different systems of distribution, we must, of course, not evaluate
a given point in terms of an optimality definition that imposes one particular
distribution as a necessity. In other words, if we ascertain that some point X,
which has been reached in some way or another, has the property of being



60 FRISCH

Pareto-optimal under the inclusive set of constraints consisting of the produc-
tion and distribution constraints, this does not say anything about whether this
point is “good” in the sense of giving an “effective” udlization of the resources.
If we only know that our point X is Pareto-optimal under the inclusive condi-
tion C, it may, perhaps, fall in A of Figure 5 (4.2) and thus not be Pareto-
optimal under the production constraints. In all cases we must be very careful
to impose only the obligatory conditions and not any condition pertaining to
the alternatives between which we want to select.

The nature of the pitfall might perhaps be illustrated by an analogy in partial
derivatives.t Suppose we have a function f (x, y, z) of three variables and we

0
want to find the value of its partial derivative f;'(x, , z)=ﬂ%’z) (under
constant y and z) in a point (x, yo, 2o) that satisfies 2,=_g(x, yo) Where g is a
given function of two variables. The value sought is

f2' (%or Yor 20)

and not the value that would be obtained by imposing the relation z=g(x, y)
under the derivation process. This latter value would be

fx/(xo’ Yo Zo)+le (xm Yo 2) gx/(xm )’o)

One way to approach the problem correctly would be first to seek all points
that are Pareto-optimal under the production constraints only, and then within
this set to pick out those points that show some desired distribution ratios. It
may then, of course, happen thatitisi mpossible to realize the desired distribution
ratios by confining the point to lying in the region that is Pareto-optimal under
the production constraint. If so, this simply shows that the goals put up are
inconsistent.

A simple example will illustrate the situation.

Example (4.5)

Consider two goods Nos. i=1, 2 and two individuals Nos. j=1, 2. Let each
good be produced in an independent production process with only one factor
of production which we may call labour. We use the following notation:

N=total quantity of labour.
N, and N,= quantities of labour used in the two industries.
X, and X,= quantities produced in the two industries.
X,; and X,;= volumes of these goods received by the two
individuals (j=1, 2).
Q, =, (Xy;, Xys)=preference function of individual j(j=1, 2).
X,=f,(N:)= production function of industry i(i=1, 2).

& Note added in March 1959. The essence of the matter is that the stronger the conditions, the easier will it
be to find points which do not satisfy these conditions. My friends and colleagues Professors Trygve Haavelmo
and B. Thalberg have produced another example to illustrate the nature of the above pitfall:

Given a function F(x,y,p.q) of four variables. Consider three subsets in space (x,y).

(1) Maximize F over x and y under fixed p and ¢. To a given p,g region there will correspond a well-
defined (x,y) region. Let this be subset S;.
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By definition we have
(4.6) N +N,=N
(4.7) Xe=Xg+Xa (i=1,2)
The marginal preferences and the marginal productivities will be denoted

aQJ' X y XJ' . .
(4-8) wii=w;‘i(X1h Xzs)=—(a;%) (1=1, 2; j=1, 2)

(4.9) fr=ND g g

~ dN;

Marginal labour cost in industry No. i is f—17
The inverse production functions will be denoted
(4.10) Ne=f(X) (i=1,2)

Reducing the model to its lowest terms by eliminating all unnecessary
variables, we can say that we have a problem in the four variables

(4-11) Xll’ X].Z’ X21) X22
on which is imposed the single condition
(4.12) S Xu+ X))+ (X + Xe)=N

where N is given. The shapes of the two functions f;-! and f;-* are also assumed
to be given.

We shall first determine the region that is Pareto-optimal for the two indi-
viduals, one constraint in the form of an equation being imposed on the four
variables (m=4, n=2, s=1).

We take Xj,, X, and X, as free variables and consider X,, as a function of
the three free variables, the relationship being defined through (4.12).

Letting now 9 indicate partial derivation in the model of three degrees of
freedom, we can formulate the necessary and suflicient condition for a Pareto-
optimal point as

20, a0, &Q,
0X, oX. c
(4.13) an: = GBQI: = CSQZ: = negative (compare (3.3))

Xy X Xy

This is a set of conditions formed by two equations and a sign condition. In
other words, the dimensionality of the solution will be one, and out of this one-
dimensional pointset there will, in general, be a finite segment that answers the
requirement. This checks with min[m—s, n—1]=min[3, 1]=1.

(2) Add the condition g(x,y) =0. This gives S,. It is a subset of S;.

(3) Maximize F over x and y under the constraint g(x,y) =0, the values of p and ¢ being given. To the
same p,q region as in case (1), there will correspond 2 well-defined (x,y) region. Let it be S,.

It is not true that Sy will in general be identical with S,. In general it will be larger than S,.
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By implicit derivation of (4.12) we find

0Xps 0Xyy £ 0X3e
4.14 Son_Con_Jo ——
(4.14) 09X, 06Xy, h 0 Xy 1
and hence
2, o0, 20,
eX, ou 0Xp iX;, on
(4.15)
Ay onf oy _wnf ol S
X S 0% nT Xy Oom
The conditions (4.13) can therefore be written
wufll 0 Wiy "
4.16 Al 7 ==
(4.16) oyl —onfy positive

Rearranging the terms and writing out all the variables, we get (the central
denominator must be zero)

Wiy (Xm Xm):wzl (Xlz, X22)=le U;_l (X21+X22)]
Wye (Xuy le) Wag (Xn, X22) ﬁ,Lﬁ—l(Xll+X12)}

wyy and w,, of the same sign (in the regular case both positive).

(4.17)

The result can be summarized in the formula
(4.18) Par[12]=X[17, 12]

In words: the region (of the four-dimensional space X, X2, Xu, Xs2) which
is Pareto-optimal for the two individuals under the constraint (4.12) (with
given N), consists of the points where (4.17) and (4.12) are satisfied.

Since the region which is Pareto-optimal under the production constraint
has one degree of freedom, there is still room for adding a condition without
giving up the requirements that the point shall be Pareto-optimal under the
production constraint. Suppose that we try to dispose of the remaining degree
of freedom by requesting that a certain distribution ratio shall prevail between the
two individuals. This way of disposing of the remaining degree of freedom is
purely conventional and not derived by any sort of consideration on Pareto-

optimality.

In order to be able to compare the part that one of the individuals gets of
the total product with the part that the other individual gets, we must in some
way or another introduce a principle for comparing quantities of the two goods.
Suppose we do it by using labour costs as value coefficients. This too is a purely
conventional criterion not derived by any consideration on Pareto-optimality.
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If labour costs are used as value coefficients, the relative part which the indi-
vidual 2 gets of the total product will be

X12 X22
R
(4.19) K X Ka T L(Xn, Xz, Xar, Xze)

s 5
If we insert in the left member of (4.19) the expressions for f," and £, in
terms of the four varables X,,, Xj,, X;, Xp, (the same expressions as those
written in the right member of (4.17)), we get a certain function L of the point
in four-dimensional space. The shape of this function L is uniquely determined
through the shape of the production functions. Hence, the requirement that the
distribution ratio shall have a preassigned value A is expressed by

(4.20) L(Xi1, Xigy Xors Xpo)=2A

This is simply a one-dimensional condition on the point and may consequently
be considered as a means of taking out the one degree of freedom that remained
after imposing the condition that the point shall be Pareto-optimal under the
production constraint.

Is it possible to assign an arbitrary value to A ? Certainly not if the point shall
be Pareto-optimal in the above sense. Since the value of the function L(X,,,
Xig, Xa1, Xpg) in any point of the four-dimensional space is given directly from
the shape of the two production functions and from nothing else, we may
follow the variation of this function as the point moves over the one-dimensional
pointset Par[12] defined by (4.18). For simplicity assume continuous variation
and let Ly, and L,,;, be the maximum and minimum respectively, assumed by
the function L under this variation. The two numbers L., and L,,;, depend
on the shapes of the two production functions and the two preference functions
and on nothing else. Obviously, if we require that the distribution coefficient
shall have a value between L,,; and L,,;,, the problem of finding a point that
gives this ratio and at the same time is Pareto-optimal under the production con-
straint, has a solution (at least one). But if we choose a distribution ratio that
falls outside of the interval (L,,z, Lniq), n0 point can be found that is Pareto-
optimal under the production constraint and has the distribution ratio chosen.

This simplified example illustrates the principle according to which a selection
problem—i.e. a problem of how to formulate the goal for economic policy—may
be handled. The goal in the example has been formulated in such a way as to
conform to Pareto-optimality under those constraints that it is not possible to change
simply by a human decision. And the remaining degrees of freedom have been
handled by a postulate in the form of a social value judgement. This social value
judgement is something which the economist as scientist and technician simply
has to take as a datum. But all the rest is within his sphere of competence. It
would seem that even with the above limitation of the economist’s field, there
is more than enough for him to do.
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So far I have not discussed the problem of the régime, that is the problem of
how actually to organize production and trade in order to make the equilibrium
point fix itself in the desired position. Before proceeding to a discussion of this
I shall work through the above example once more and now determine explicitly
the region that is Pareto-optimal under a set of conditions that consist simul-
taneously of the production constraint and the distribution constraints. The
resulting region will prove to be very different from the one that is Pareto-
optimal under the production constraint only.

We now have to consider a model with two degrees of freedom, namely the
same four variables Xi;, Xi9, Xa1, Xz as before, but now with two constraints
(4.12) and (4.20) with N and A given.

We take X,, and X,, as free variables and determine first the elements of the
a(Xl?.’ Xzz)
e(Xun, Xa)
of freedom now considered, we get

ofit dfit 3(XutXu) 1(1 8X,2>

Xn dX, T X, A \VTeXy,

Jacobian . Letting 0 indicate partial derivation within the two degrees

(4.21)
ofit_dft (XutXn) 10Xy
0Xy dX Xy  fr Xu

and hence by implicit derivation of (4.12)

Xy X
A
(4.22)
90X, 0X,,
M) S
where
f‘ll
4,23 =7
(42) L
Since
—3_ [_1_]= _ 1 ?fl' _ 1 ﬁ ﬁ 8(X11+X12)=_ f1” (1+3X12>
8Xu LA (A') eXn (i) dN, dX,  8X, (h'P X
(4.24)
9 {l]z Cl e 1 R AN Xt X)) Xa
oXu LS (') eXu () dN, dX,  oXy (f' )P 6 Xy
we get by implicit derivation of (4.20)
. 0 Xaa
81 gzl‘-,—(baz 5(:— 1—31
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(4.25)
OX!Z , CX22

b oyt 08 o

where

(4.26) 8,=8,(A; Xuy, Xao)=1 /\T&, AXa—(1=2)X,] (i=1,2)

Hence
c)&lz CX22 A
ax,- U7 X =
(4.27)
0X1e aXzz__
X, =®A X, (14-4)
where
1
(4-28) A=A ()U X, Xz Xa, Xzz)zgz‘_Ts
In the two degrees of freedom model now considered we have
20, o
ﬁuzwn EX—n—wm

(4.29)
20, Xy, X 2, Xy, Xn
EXH‘—wzx aXqu’wzz eX, CXZI =W 8X T Weg dX

Furthermore, the condition for Parcto-optimality is now

20, 20,
oXy, 60Xy, .

(4.30) an = Oan: = negative
0X1 0 X1

Inserting in (4.29) from (4.27), and further inserting the expressions thus
obtained in (4.30), we finally get

A
(4.31) on 0T 0

w1y Wy (1HA)—w, DA

A
wy; and iwzl (1—A)+w22¢§ of the same sign (in the regular case both positive).

The formula (4.31) expresses a constraint consisting of one equation and a sign
condition.
The result may be summarized in the following proposition:

Proposition (4.32)
Par[12, 20]= X[31, 12, 20]
In words: the region (of the four-dimensional space Xy;, X5, Xu;, Xzp) that

is Pareto-optimal simultancously under the production constraint (4.12)—
L.E.P.—E
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with given N—and the distribution constraint (4.20)—with given A and the
function L being defined by (4.19)—is the onc-dimensional segment of points
satisfying (4.31), (4.12) and (4.20).

Already a glance at the conditions (4.31) and (4.17) shows that we have here
two fundamentally different kinds of regions. For instance, (4.31) depends on
the second order derivatives of the production function while (4.17) depends
only on the first order derivatives of these functions.

Any point that satisfies (4.17)—the Pareto condition under the weak con-
straint—must satisfy (4.31). Indeed, noticing that the right member of (4.17)

1
is g Ve see that if (4.17) holds, so that w,,=®w,,, (4.31) reduces to the first

equation in (4.17). This applies no matter what magnitude has been fixed for A.
That is to say, any point that is Par[12] must satisfy that part of the conditions
for Par[12, 20] which is expressed by (4.31). In other words, if we take any
point in Par[12] and verify that it gives a certain value A of the distribution ratio
defined by (4.19), this is sufficient to make sure that the point in question is
also Par[12, 20] under this particular value of A.

Or again we may say: let A be any given value of the distribution ratio
(between the maximum and minimum assumed by the function L over Par(12]).
Consider any point in Par[12] that gives this value of the distribution ratio.
This point must also be Par{12, 20] with this value of A. This checks with the
general structure exhibited in Figure 5 (4.2).

On the other hand, let A be any given number and consider the set of points
which satisfy (4.31), (4.12) and (4.20) with this particular value of \. We have
no guarantee that this point will satisfy (4.17). In other words, within the set
of points that give a certain distribution ratio, any point that is Pareto-optimal
under the production constraint will be so also under the more inclusive set of
constraints which consist of the production and distribution constraint with the
given distribution ratio. But it is not true that any point which is Pareto-optimal
under this more inclusive set of constraints is also Pareto-optimal under the
production constraint. This checks with Figure 5 (4.2), where we may have a
point such as A. No importance should be attached to the dimensionality of the
regions in Figure 5 (4.2), they do not correspond to the dimensionalities in the
example under consideration. Only the inclusion or non-inclusion of one region
in another is important in Figure 5 (4.2).

In the discussion on Pareto-optimum, one way of reasoning which is fre-
quently used is this: suppose that the individuals act on the assumption that
prices are constant and let us determine Pareto-optimality under this condition.
We can do it by introducing a system of prices and be careful to specify that
they constitute any system of relative prices, the precise magnitude of them
being determined afterivards through the equilibrium process itself.

As I see it, this specification does not help in the least to correct the funda-
mental logical fallacy involved. Any analysis of this sort means that the assump-
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tion of some sort of free competition is smuggled into the analysis alrcady from
the outset so that the conclusion can only be formulated by saying that “free
competition is the best possible of all régimes in the class of régimes which
consists of the régime of free competition”. In other words: in the course of
the analysis Pareto-optimality is determined under the stronger condition, while
it should have been determined under the weaker condition. The example under
consideration can illustrate what I have in mind.

Suppose that we do not begin by attributing any specific value to the dis-
tribution ratio A, but let it have any value. Afterwards we may dispose of this
value in some way which we find convenient, for instance we may just put it
equal to the value which the function L assumes in the final point to which we
may be led possibly by some sort of régime.

Let us determine the points that are Pareto-optimal under the set of con-
ditions which consist first of the production constraint where the total labour
input N is some given magnitude not to be determined by the equilibrium point,
and second, some value A of the distribution ratio, this value, however, to be
determined afterwards as the value of the function L in the point in which we
arrive, no matter what it might be. This formulation of the problem resembles,
I think, in all logical essentials a type of reasoning frequently encountered in the
discussion on Pareto-optimality.

As our example will show, the above proviso that the magnitude of the dis-
tribution ratio is to be taken as it emerges afterwards, does not correct the funda-
mental fallacy. Indeed, the solution to the present problem is obtained simply
by inserting in (4.31) instead of A the explicit expression for the function L in
terms of its four variables, and drop the condition (4.20) that the distribution
ratio shall have a given magnitude A. This will lead to a two-dimensional point-
set, namely the region in the four-dimensional space (X1, X2, Xa1, Xo2) which
satisfies (4.12) and the single equation obtained from (4.31) by inserting
L(Xy1, X120, X1, Xop) instead of A7

Let 8, (L) and 8,(L) be the functions of X,;, X;5, Xs1, X obtained when we
replace A in (4.26) by the left member of (4.19). We get

D (Xquz"Xr.’ ’21) [1H

Sl(L):(i—A)_*— <X11+X12)+q) . (X21+X22> ' 71,)_2

(4.33)

Xy Xao— Xn Xso) I
(L) = (1 A) = X KX)o S
(B= 0N X+ (Kt ) (R

Inserting these expressions for 8, and 8, in the right member of (4.28), we
get A as a function of the point (Xy;, X2, X, Xee), hence the whole right
member of (4.31) becomes a function of the point.

97 . - . . . . . . .
. The faAct that we now have a two-dimensional Pareto-optimal region is not in contradiction with the
ormula min[m—s, n—1] because this formula is to be applied before the optimization takes place. Any addi-

noqal degrees of freedom that come in afterwards by letting certain previously fixed parameters become
variable, must be added.
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It is obvious that the pointset determined by the production constraint (+.12)
and the constraint expressed by the new form of (4.31) will, in general, not
belong to the pointset determined by the production constraint and (4.17), while
on the other side any point in the latter set must belong to the first. In other
words, if we ascertain that a point is Parcto-optimal in the special meaning
now considered, that does not tell us anything about whether it is Pareto-optimal under
the production constraint or not. Consequently it gives no criterion for whether the
point represents an “effective”” utilization of resources or not.

The question may be raised whether it might not be possible to escape the
above antagonism between Pareto-optimality under different kinds of con-
straints by making special sorts of assumptions about the shape of the production
functions.

In particular, it might be interesting to look into a special case which so
frequently produces a particular sort of situation, namely the case where the
production functions are homogeneous of the first order. In the present example
this simply means that the marginal productivities f," and f, are constant, i.c. that
£i" and £;" are zero. It will turn out that this particular case does not introduce
any modification in the conclusions reached about the antagonism between the
two types of Pareto-optimality.

The solution in the case now considered is obtained from (4.31) simply by
Jetting A tend towards infinity. In this case the condition for Pareto-optimality
under the production and distribution constraint reduces to

(4.34) (w0 P —wy) (wy® —wy,)=0

If the first parenthesis in (4.34) is different from zero, the second must be
equal to zero, and vice versa. In other words, the optimality condition in the
present case can be expressed by saying that at least one of the two expressions
(w0 ®—w,;) and (w3, @ —wy,) must be equal to zero. When the condition 1s
expressed in this form, we get a simple and very illustrative comparison with
the condition (4.17) for Pareto-optimality under the production constraint only.
The condition (4.17) states that both expressions (w® — ;) and (@0n®P—ws)
must be equal to zero. Thus, also in the case of homogeneous production func-
tions of the first degree, it is true that a Pareto-optimality determined under the
production and distribution constraint does ot entail a Pareto-optimality deter-
mined under the production constraint only, while the inverse is true (for all
points having the desired distribution ratio). Pareto-optimality under a stronger
condition leads to a more inclusive pointset than Pareto-optimality under a
weaker condition.

5. THE REGION WHICH IS PARETO-OPTIMAL UNDER A SET OF CONDITIONS
EXPRESSED PARTLY OR WHOLLY BY INEQUALITIES. THE PARETO-PRESSURE

The examples so far have only been concerned with conditions expressed in
the form of equations.We now turn to the more complex case where some of,
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or all, the conditions are expressed by inequalities. By introducing one more
variable for each inequality, any system involving inequalities can, of course,
be reduced to a system involving only equations and sign conditions on one or
more variables. (This re-formulation of the problem is, for instance, sometimes
found useful in linear programming.)

We will illustrate the case now considered by studying rather carefully a
simplified example.

Let the quantities of two goods X; and X,—say “public health service” and
“public radio entertainment” —be evaluated by two individuals Nos. 1 and 2.
Let the indifference lines be as indicated in Figure 6 (5.1). The figure indicates a

Fic. 6 (5.1)

situation where the individual No. 1 attributes greater weight to health service
and smaller weight to radio entertainment than No. 2 does. Let , (X,, X;) and
Q,(X,, X;) be the indicators of choice, and suppose there exists between X,
and X, a production constraint such that for given magnitudes of some common
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factor of production—say “labour”—one gets the isoquants Nos. I, II, ... VL
Let the curve ACE... P be determined by the tangency of isoquants with the
indifference curves of individual No. 1. Similarly we get the curve BDF... Q
for individual No. 2. Let (1)S and (1)T be the locus of points where the
indifference lines for No. 1 are horizontal and vertical, respectively.The curve
(2)V and (2) W has a similar meaning for individual No. 2. Thus: in the region
S(1)T the preference direction for individual No. 1 has both its components
positive, in the region V(2) W the preference direction for individual No. 2 has
both its components positive, and in the region TR’V all four preference com-~
ponents are positive. The finite curve segment (1)M'K'G’L’(2) is—as follows
from the reasoning in connection with Figure 4 (3.14)—the region that is
Pareto-optimal under no constraint.

We start by considering the case where it is prescribed that exactly so much of
the common factor of production shall be used that the (X;, X;) point falls
somewhere on the isoquant marked I—i.e. somewhere on the curve A’ ABB'.
The finite segment AB of this isoquant represents the points that are Pareto-
optimal for the group of the two individuals 1 and 2 under the constraint that
exactly so much of the common factor of production shall be used as is indicated
by the isoquant I. Indeed any point on this segment—and no point outside of
it—has the property that it is impossible to depart from it without making one
of the individuals worse off. Along this segment the interests of the two indi-
viduals are directly opposed. No. 1 wants to go in the direction of A and No. 2
in the direction of B. The segment AB is situated entirely in the region TR'V
where all four preference components are positive.

If the quantity used of the common factor is increased so much that the
isoquant becomes II, the region which is Pareto-optimal under the production
constraint becomes the finite segment CD. Of this segment only the part C'D’
is situated in the region where all the four preference components are positive.
On the isoquant III the Pareto-optimal segment is EF. Here there are no points
where all preference components are positive. The requirement that exactly so
much shall be used of the common factor, entails that at least one of the pre-
ference components for one of the individuals must become negative.We must
either produce so much public radio-entertainment that it becomes a nuisance
to individual No. 1, or so much public health service that it becomes a nuisance
to No. 2.8

On the isoquant [V—where the conditional Pareto-optimal region is the
finite segment GH—there is one point, namely G’, which is at the same time
Pareto-optimal under no constraint. This gives another example of the fact that
Pareto-optimality under a weak condition plus the additional requirement that
the poine shall satisfy a certain constramnt, 1s sufficient to ensure that the point

sPareto-optimal under the stronger condition obtained by appending the addi-
tional requirement to the original weak condition.

¢ A supplement to the Pareto-criterion might perhaps be to require that all the preference components
of all the individuals shall be non-negative. I shall, however, not go into this question here.
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On the isoquant V—where the conditional Pareto-optimal region is the seg-
ment LK—there are two points, namely L’ and K’, that are at the same time
unconditionally Pareto-optimal.

On the isoquant VI the conditional Pareto-segment is M\ This isoquant is
different from the isoquants so far considered in one respect: there is one indi-
vidual, No. 2, who can find no point on the Pareto-optimal scgment of VI,
which is as preferable to him as the most preferable point on the preceding iso-
quant V.,

The isoquant VII—where the conditional Pareto-optimal region is PQ—is
even such that none of the individuals can find a point in the Parcto region on
this isoquant, which to him is more preferable than the most preferable point
on the preceding isoquant VI.

On the isoquant VIII we can make a similar statement—in relation to VII—
and we can even replace the term “more preferable” by “equally preferable™.

Each of the above Pareto-optimal regions was defined under the condition
that the quantity used of the common factor should be exactly the quantity
represented by the isoquant in question.

Let us now go through the same alternatives, but each time replace the con-
dition exactly equal to by not larger than. This means that in the first case—
isoquant I—the condition is that the point may be anywhere on this isoquant
or South-West of it. Which points in this area are Pareto-optimal for the two
individuals ? Obviously, again the segment AB. Similar reasoning for all the
isoquants II-IV.

For the isoquant V the situation becomes different. The region which is
Pareto-optimal under the condition that the quantity used of the common factor
shall be equal to, or less than, that represented by the isoquant V, is the curve
made up of the segments LL" and L'G’'K’ and K'K. This is easily seen by a
method of analysis similar to the one used in connection with Figure 4 (3.14).

For the isoquant VI the Pareto region will be made up of the two segments
(2)L'G'K’M’ and M’ M. Here again we see an example of the fact that the points
(namely, the segment K'G'L’) that are Pareto-optimal under the weak con-
dition (VI) and satisfy the strong condition (V) must also be Pareto-optimal
under the strong condition (V). And we sce that there are points (namely, the
segments KK" and LL’, endpoints K" and L’ not included) that are Pareto-
optimal under the strong condition (V) without being Pareto-optimal under
the weak condition (VI).

For the constraint defined by the isoquant VII the Pareto-optimal region will
be the segment (2)L'G’'K’M'(1), i.e. the same as the region which is Pareto-
optimal under no constraint. The same will be true for any of the higher
isoquants, such as, for instance, VIII.

We will now study these various situations from the point of view of the
sequence which they form. That is. we consider the sequence of situations that
is characterized by the isoquants I, II, III ... VIII, each of these isoquants now
being interpreted not as a locus of admissible points, but as the North-East
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boundary of a set of admissible points. This means that the conditions considered
form a sequence of conditions that become weaker and weaker. We shall say that
a condition C, is effectively weaker than a condition G if the set of points that
satisfies C, contains all the points satisfying C; and at least one other point. The
sequence of conditions now considered obviously satisfies this criterion.

In the sequence now considered, the isoquant [V—or more precisely the
region whose North-East boundary is isoquant IV—occupies a special position.
There is indeed a distinct difference between the isoquants lower than IV and
those higher than IV. Any isoquant in the range below IV has the property that
if we pass from this isoquant to a higher one in the sequence, we find that the
Pareto region corresponding to this higher isoquant contains no point that belongs
to the Pareto region corresponding to the lower isoquant. This means that to
any point X in the Pareto region obtained by taking the lower isoquant as a
constraint, there corresponds at least one point X’ situated within the boundary
given by the higher isoquant, but not within that given by the lower isoquant,
which is Pareto-preferred to X under the new (and weaker) conditions. We can
therefore say that from the Pareto viewpoint an unguestionable gain is obtained by
weakening the condition.

This does not apply to isoquant IV itself or to any of the higher isoquants.
True enough, something is gained by passing, say, from IV to V, namely a larger
variety of points that are Pareto-optimal, but, to use a simplified expression,
“none of these points are any Pareto-better than the best point attainable under
the old (and stronger) condition”. More precisely expressed: each point X
obtainable under the new (and weaker) condition is such that we can indicate at
least one point X which was attainable alrcady under the old (and stronger)
conditions and which is such that X' is not Pareto-preferred to X under the new
(and weaker) conditions.

Starting with the isoquant VII, we see that this and the higher isoquants even
have the property that the Pareto-optimal region remains unchanged as the con-
dition is weakened. We may generalize these considerations in the form of the
following definition :

Definition (5.2). Let C(x) be a one-dimensional pencil of conditions, that is, a
sequence of conditions depending on a parameter «, such that an effective
increase in « means an effective weakening of the condition, i.e. if x>, any
point that satisfies C(x,) will also satisfy C(x) and there exists at least one
point which satisfies C(x,) but not C(x,). If the pointset Par[C(x,)] contains
no point belonging to Par[C(x,)], when x>, we shall say that there exists
a positive Pareto-pressure on o from oy tO .

An essential feature of this definition is that Par[C(x,)] shall contain no point
belonging to Par[C(x,)].We do not use the weaker formulation that Par[C(x,)]
shall contain some points that do not belong to Par[C(x)]. If we want to use only
the kind of criteria that are genuine to a Parcto-optimality way of thinking, we
can indced not say that any point within a given Parcto region is any better
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than another point in this region. Therefore, if by weakening the condition we
have found a new Pareto region that contains one or more points that belonged
already to the old Pareto region, we cannot say that we have found something
that is actually better than what we had before.

Nor can we approach the definition of a Pareto pressure, for instance, by
saying that there exists a positive Pareto pressure on the parameter that generates
the conditions, if at least one of the points that satisfy the new (weaker) con-
dition, but not the old (stronger) condition, is Pareto-preferred—under the new
conditions—to all points that satisfy the old condition. If such a situation should
occur, we would certainly be led to say that there exists a pressure of an extremely
heavy sort. But this idea of looking for a point that is actually Pareto-preferred
to all other points (in a certain admissible region) is not genuine to the way
of thinking in Pareto-optimality analysis. Such a point would exist only in
cases that are so extremely particular as to be virtually trivial. The definition
(5.2) on the contrary builds on ideas that are natural in Pareto-optimality
analysis.

An obvious generalization is to consider a set of conditions depending on two
or more parameters. This would lead to the concept of directional Pareto
pressure, that is Pareto pressure defined by changing one of the parameters while
keeping all the others constant. The concept of the region of the parameter
space where all the directional Pareto pressures are positive would then indicate
a situation where all the parameters are far from being “free goods” in the
Pareto sense.

6. THE PROBLEM OF THE REGIME

All the above arguments pertained to the selection problem, that is, to the
definition of the point X which it is considered “desirable” to reach. Having
decided on such a point or on a class of such points, the next question is to
indicate a régime or a class of régimes which will achieve this goal.

From the analysis of the previous section we know that a point X that shall
be Pareto-optimal under the production constraint (when a change in quantities
is possible) must have the marginal preferences proportional for all the indi-
viduals and proportional to marginal costs. Contrary to what is commonly
believed, such a point cannot be reached under a system of production and dis-
tribution possessing the characteristics which are commonly associated with
free competition and a system of income taxes and capital taxes of the usual
type and a “neutral” monetary system.

I'shall discuss this by considering a number of special cases that are constructed
on several different assumptions. From these special cases I shall extract certain
conclusions that will scem to hold under very general conditions.

In all the subsequent discussions it is vitally important to be fully aware of the
nature of the constraints under which Pareto-optimality is defined. When it comes
to discussing the optimality—conditions of a régime, any reasoning that is not
built on a terminology and mathematical symbolism that express the kind of
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Parcto-optimality involved in the argument {the nature of the constraints), is
a waste of time, Just as it would be a waste of time to discuss the “derivative” of
a function of several variables without indicating the variable with respect to
which the derivative is to be taken.

Can abstract discussions on Pareto-optimality be of any practical significance
at all for questions of economic policy? Yes, I am convinced that they do have
great practical significance. Even though this reasoning involves many quanti-
tative concepts that cannot be measured directly through actual observation,
certain important conclusions can be drawn which are of paramount practical
importance. These conclusions show amongst others that most present-day
taxation systems are in one particular respect extremely questionable—to say
the least.

In a general way we may say that the useful result that can be deduced from
discussions of this type, consists in asserting that certain economic régimes do
not satisfy certain optimality criteria which would seem to be of such a nature
that we must accept them. In other words, Pareto-optimality is a principle of
negation, not one of affirmation. In this it has the same logical structure as the
statistical testing of hypotheses. What statistical testing can do, is to reject a
hypothesis.

Logically the first step in a discussion of Pareto-optimality is to formulate the
obligatory conditions, that is certain conditions which we will accept as the basis
of the analysis. For instance, certain fundamentals regarding the technical
aspects of production, or certain basic human rights, etc. The formulation of
these obligatory conditions has logically much in common with the circumscrip-
tion of the class of admissible hypotheses in statistical testing.

Once the obligatory conditions are formulated, we are by pure logic, without
the intervention of any social value judgements, led to formulate the criterion
that no régime can be accepted as satisfactory if it is not Pareto-optimal under
the obligatory constraints. '

This criterion may exclude a great number of particular régimes, but it
will, in general, not lead to the selection of one particular régime. In general,
there will be a whole class of régimes which are Pareto-optimal under the
obligatory constraints. Here is where the spectrum of social value judgements
comes in.

The economist as scientist and technician simply has to take these judgements
as data. As citizen he has as much as, but nothing more, to say about these value
judgements than other citizens. When the supplementary conditions derived
from social value judgements are given, all the rest is within the sphere of com-
petence of the economist. This limitation of the economist’s field is necessary
for the maintenance of his objectivity and self-respect as a scientist. It would
scem that even with this healthy limitation of the economist’s field, there is
more than enough for him to do.

With this general philosophy in mind [ now turn to a study of some models
of régimes.
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Case 1

Consider first the model defined by (4.6)-(4.12). If it is humanly possible to
impose a sufficiently strong control-system and one is willing to take the incon~
veniences that go with this régime, one could produce a preassigned combina-
tion of Xy, X1z, Xz and X,,. By choosing this combination in an appropriate
way, it would seem that one could always reach a point that has a preassigned
distribution ratio (within certain objectively given limits) and at the same time
satisfies (4.12) and (4.17), which by (4.18) means that the point is Pareto-
optimal under the production constraint. The following will illustrate this and
also illustrate that such a situation cannot be realized by decontrolling the market
completely.

Suppose, for instance, that forced labour is used so as to ensure a given
magnitude of N. Suppose that a certain sum of money R; is given to the first
individual and another sum R, to the second individual and that prices of the
two goods are not controlled but left to be determined by the play of forces
in the market. Suppose that each individual acts as a quantity adapter under the
conjectural assumption that prices are constant. Finally, suppose that the central
production authority has full knowledge of the preference functions of the indi-
viduals so that it is able to calculate what the prices will become under a given
set of conditions, and also suppose that the authority distributes the available
labour force between the two industries so as to achieve proportionality between
marginal labour costs and prices. Under this régime we will have

(6.1) For individual 1: :—i:% 21 Xt pr X =R,
(6.2) For individual 2: 33: }’;-j 1 Xia+ pa Xoa= R,

" f-1
(6.3) Production policy equation: pe_ S (A (Xt X))

pr S (R (Xt Xae))

Finally we have the production constraint (4.12). This gives a total of six
independent equations which determine the six variables X,,, Xj,, X3, X,
p1 and p,. In the present case where the absolute magnitudes of R, and R, are
given, the absolute prices—not only the relative prices—will be determined.
Thus, the régime considered leads, in general, to a well-defined equilibrium
point. The equilibrium point now considered satisfies the conditions (4.12) and
(4.17), hence is Pareto-optimal under the production constraint (4.12). This
applies whatever the magnitudes of R, and R, (within admissible limits); hence
the equilibrium point will show a prescribed distribution coefficient.®

The pure exchange market without production but with given initial quan-
tities can also easily be analysed in terms of this example with a central authority

. . . . . . .
'B}‘(6Al)-(6.3) the ratio between R; and R, is a technically given function of the four quantities X,,.
Maximizing and minimizing this expression, we may get upper and, or Jower limits for the ratio R,/R,.
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that gives certain amounts R, and R, to the two individuals. This is a distribu-
tion condition expressed by

(6.4) R,=given R,=given

The “production” constraint is now expressed by (6.18). Necessary and sufficient
for Pareto-optimality under this condition is easily seen to be simply the pro-
portionality of marginal utilities (see (6.21)), i.e. the first member of (4.17), with
the appropriate sign condition. A point of this character is alway reached if the
central authority gives arbitrarily given amounts R, and R, to the two indi-
viduals. The equilibrium point will then be given by the six equations (6.1),
(6.2) and (6.4). This determines the four X and the two p. In this case the
absolute prices are determined. On the other hand, if the central authority fixes
the real expenditures R,/p, and R,/p,, only the relative prices are determined.
The quantity combination is determined and is the same as before. The exchange
market with given initial quantities is only a verbal reformulation of this case.

This case has not much in common with “free competition” under realistic
circumstances. Indeed, who shall determine the given initial quantities that
characterize the real income distribution? Some dictator?

The crucial question in a modern society 1s, of course, just this: does the
excessively skew income distribution that is produced by the “free play of the
forces”, represent a state of affairs that in some sense of the word can be con-
sidered as optimal within a certain class of states between which we choose? The
case with given initial quantities has therefore no realistic relevance whatsoever
for a discussion of whether the régime of free competition can be considered an
“optimal” system or not.

But suppose that the income distribution is corrected, say, by an income tax
system? Would it not then be an “optimal”” procedure to leave the market to the
free play of the forces? It would not. As will appear from the examples below,
no régime of “‘free competition” with an income tax on labour can produce an
equilibrium point that is Pareto-optimal under the production constraint.

Case 2

We will now change the model somewhat in the direction of a free economy,
but still maintain it within the framework of (4.6)-(4.12), for which we have
determined the region that is Pareto-optimal under the production constraint.
We assume that there has by custom or by regulation of working hours or in
some other way been fixed certain amounts of work Ny, and N, which the
individual No. 1 performs in the industries 1 and 2, respectively. Similarly we
assume certain fixed amounts Ny, and N, for individual No. 2. These four
magnitudes, which we prefer to write in the order

(6.5) N Ny Naoo Na

are for the time being assumed given. That is to say, no adaptation of the work-
ing hours is supposed to take place as a consequence of changes in prices and
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wages, etc. Consequently the total amounts of work performed in the two
industries are also given, namely

(6.6) Ne=NatN. (=1,2)

Suppose that we now let the prices of the two goods, i.e. p, and p,, as well
as the wage rates in the two industries, ¢, and ¢;, be determined by the play of
the forces in the market, each of the two industries acting as a quantity adapter
trying to maximize profit.® Each of the two individuals will, as before, try to
maximize his preference function, but the budget equation is now obtained by
expressing that the value of the goods purchased is equal to the value of the
wages received—after correction for taxes.

We consider a tax T imposed as a certain constant—a per capita tax—on
individual No. 1, the proceeds of the tax to be given to individual No. 2. The
magnitude T may be positive or negative, it may be looked upon simply as an
income redistribution parameter. Under this régime the following equations will

hold:

(6'7) Z—i::% P1X11 +P2X21 = 41]\'u‘!r‘121\'721‘ T
(68) P P Xt peXe= i Nut G Na+ T
. “’21_P1 P1A1e T PoeRge={q1iV12 T ol Ve

’ 41

6.9 1
(69) fi=t
(6.10) fr=2
P2

(6.7) and (6.8) are the adaptation equations of the first and second individuals
respectively, (6.9) and (6.10) are the adaptation equations of the two industries.
In addition we have to reckon with the two production equations

(6-11) Xu+ X12:f1 (Z\Yu‘{‘z\’rm) X21+X22=f1 (Nzrf‘i\‘rzz)

This gives a total of eight independent equations. .

We may attribute to the nominal value of the income redistribution para-
meter T an arbitrary value, with the proviso, however, of distinguishing
fundamentally between a zero and a non-zero value of T as explained below.
To any such given value of T there will correspond an equilibrium point under
the régime (6.7)-(6.11), and a comparison of the form of these equations with
those of (4.18) shows that the equilibrium point now reached is Pareto-optimal
under the single production constraint (4.12). Since (4.12) is a weaker con-
straint than (6.11) and we know that the point now considered satisfies this
stronger condition (6.11), we can conclude that it is Pareto-optimal under the
stronger production constraint (6.11).

10 The fact that total labour in the industrics is objectively given does not prevent bidding by the entre-
prencurs under a conjectural variation where they take account of marginal productivities.
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This fact, however, must not be interpreted to mean that under the régime
considered it is possible to reach an equilibrium point which is Pareto-optimal
under the production constraint (6.11) and gives a preassigned real-income
distribution as defined by the distribution coefficient A in (4.20). To believe
this would be an error of the “homogeneity-kind”, that is an error which has
emerged by not being sufficiently aware of the particular form of the equations
with respect to homogeneity.

The situation under the régime (6.7)-(6.11) is as follows: by changing the value
of T one would simply change proportionally all prices and wage rates. Hence the
real value of T, that is, its deflated value, would remain unchanged. This deflated
value of T is determined by the régime (6.7)-(6.11). That is to say, under the
régime considered it is necessary to perform a specific real-income redistribution, in
order that the system of equations shall have a solution. The amount of this income
redistribution, reckoned in real, i.e. deflated, values must be a specific number in
order that the equations shall be solvable. In other words, if the production
functions and the preference functions have arbitrarily given shapes, we can
not influence the real income distribution.

This follows from the nature of the solution. First consider the equation
obtained by taking the sum of the two budget equations for the two individuals.
This equation is

(6-12) h (X11+ X12)+P2 (X21+ Xzz): q (N11+ 1\’12)—1—(12 (A 721+1\v22)

In other words, the two industries taken together must produce with a zero
profit. That this emerges as a consequence of the two budget equations of the
individuals shows that the régime now considered is a plausible one for dis-
cussing distribution as a problem between the two individuals. If we should intro-
duce the concept of a surplus going to the industrics, i.e. a part of the national
income which did not go to one or the other of the two individuals, the whole
problem of the Pareto region would have to be reconsidered, now with (at
least) one third party besides the two individuals (compare Case 7). What
sorts of concrete arrangements one could apply in the industries in order to
assure the fulfilment of (6.12) is not relevant in this connection.

Equation (6.12) together with the first two equations of (6.7) and (6.8) and
the equations (6.9)-(6.11) give a total of seven independent equations in the

seven variables X, Xjz, Xo1, Xoe and I’%, Z—l, ;1)—2 Eliminating the last three of these
1 1 2

variables, we get the following set of four independent equations between the
four variables X;, X2, X1, X! the two production equations (6.11) and the
two equations

1 |
Wy Wy : : P Wi Wiz |

(6.13) —= = —— which may also be written | | =0
Wi Wi | Wa Wag

and

(6.149)  wo(Xy+N). (1—€)Fw (X — Xap) . (1—€2)=0 (for an arbitrary i)
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The equation (6.14) may be taken for an arbitrary i. If it holds for one i, it
will by (6.13) hold also for the other i.

The functions ¢; and ¢, are the passus—coefficients of the two production
functions, i.e.

" N.
(6.15) e-zf' : (i=1, 2)

€;, like f;, is a function of one variable. As its argument we may take N, or X,.
Over a region where the production function f,(V;) is monotonic, it does not
matter whether we take N; or X, as the argument of ¢,.

The four equations (6.11), (6.13) and (6.14) contain—when the four N
are given—only the four variables X;;, X,, Xs1, X;,. This set of equations will
therefore—apart from degenerate cases—define the point X in four-dimensional
space that will be realized under the régime (6.7)-(6.11). By means of the four
equations mentioned, this definition of the point X is achieved direaly without
any reference to how prices and wages will work out or how the income
transfer T is fixed. The point X determined by these four equations is not
subject to any argument of the form: “it cannot hold because then this price—
or this wage rate—would change”. It is a great advantage to have the point X
fixed by such a system of equations.

When the point X in four-dimensional space is fixed, we derive from, sav,
the first of the budget equations of the individuals

(6.16) szl[&—elﬁkfﬁx{lﬁ ‘%‘]

P Xy Ny wyy X Ny
The right member of (6.16) depends only on the point X (and the given values
of the N;). Hence, since the point X is fixed by the régime, the real (deflated)
value of T is also fixed.

This argument shows immediately what conditions must be put on T from
the viewpoint of zero or non-zero values. If the nature of the preference
functions and the production functions is such that under the given values of
the N;; the equilibrium point in X,;, as determined by the four equations
mentioned, turns out to make the right member of (6.16) zero, then only zero-
values of T are permissible. That is to say, if under these conditions we tried
to impose any form of income transfers, we would run into an incompatible
system. That is to say, the model could not give a realistic picture of what
would actually happen. We could only say that some of the relations con-
sidered would in the world of realities have to break down. The most effective
way to discuss this situation might be the introduction of the pressure co-
efficients of the decision-model—thev can describe the tension towards
“instability” and “crisis—but I shall not enter into details on this here.

On the other hand, if in the equilibrium point the right member of (6.16) is
different from zero, then only non-zero values of the income transter T are
permissible. More preciscly: only values of T are permissible which are of the



80 FRISCH

same sign as the value which the right member of (6.16) assumes in the equili-
brium point (and it is wanted to have a regime with a positive price p;).

The wage-rate ratio Z—l is also determined as a function of the equilibrium

2
point. From (6.7), (6.9) and (6.10) we get indeed

G wn _fll
6.17 h_onJ
( ) ds Wi2 f;
The price ratio? is given as a function of the equilibrium point by any of the
1

equations (6.7) or (6.8).

To see whether the equilibrium point now reached is Pareto-optimal under
the production constraint, let us determine the region of points that now have
this property. The production constraint can now be written

(6.18) Xu+ X=X, (given) X+ X=X, (given)
Taking X, and X, as independent variables, we have

20, 20,

?;—Xl ;——wn 8721—0)12
(6.19)

20, 50,

E"X—n: —Way 5)“(2‘1':-0’22

The condition for Pareto-optimality under the production constraint in the
present case, namely

20, 20,
eXn e X .
(6.20) an: = an: = negative,

Xy Xn
can therefore be written
(6.21) Dn_Yn wyy and w,, of the same sign.
Wy Weg
Thus Pareto-optimality in the present case does mot require proportionality
between marginal utilities and marginal productivities as, for instance, in (4.17).

The fulfilment of (6.21) is assured by (6.7) and (6.8) (apart from the sign
condition, which we may assume to hold except in pathological cases).

To summarize: if the real value of the income transfer is fixed at the magni-
tude which it must have in order to make equilibrium possible, the equilibrium
point produced by the régime considered will be Pareto-optimal under the
production constraint. If the real value of the income transfer is not fixed at
this magnitude, no point satisfying the régime exists.

In the pari passu case, that is, in the case where both production functions are
homogeneous of the first order, i.e. both ¢ and ¢, identically equal to 1, the
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equation (6.14) drops out and the régime considered has a solution with one
degree of freedom. In this case a certain leeway is left in the fixation of the real
value of the income transfer. If we note the maximum and minimum assumed
by the right member of (6.16) over the one-dimensional region that now gives
the solution, the real value of the income transfer (the deflation being done by
p,) may be fixed arbitrarily at any magnitude between this maximum and
minimum.

If 2 model of this sort is to be reasonably realistic, we will have to assume
that there is only a small span between the maximum and minimum referred
to. The pari passu case is, indeed, not a realistic one, as witnessed by the fact
that so much of the discussion in other sectors of distribution theory proceeds
on the assumption that output is not for all values of the input proportional to
input. In the present case we must therefore take arbitrarily given shapes of the
production functions and discuss what consequences will follow from such a
general assumption. These consequences are contained in the above remarks on
the real value of the income transfer,

Case 3

One might perhaps think that if the amounts N; of the labour inputs were
considered as variables to be adapted by the individuals according to the price
and wage structure, the situation would be radically changed and then it would
be possible to achieve an equilibrium point which is Pareto-optimal under a
condition which simply consists of the production constraint, and at the same
time gives a preassigned distribution of the national income. Closer examina-
tion will reveal, however, that this is not so. It will turn out that the above
conclusions about the real value of the income transfer are valid also under the
new régime now considered.

Indeed, consider a model with X,;, Xy, Xo1, Xee and Ny, Nig, Ny, Nog, as
basic variables. Suppose that each individual has a preference function

(6'22) Qi (X157 XZJ’) I\'Tlh Z\’Tﬁ) (j: 1, 2)
with continuous partial derivatives

0Q; 0Q); i=1,2
(6.23) w;i=§7i“j wi(i)=éz-\f:’_ (j=1, 2)

As before, let the production functions be given. The production constraints
are then given by the two equations (6.11). Since the distribution of the labour
force between the two industries is now to be considered explicitly in the
optimization process, we have to take the production constraint in the form
(6.11), not only in the form (4.12).

Let us first determine the region which is Parcto-optimal under the produc-
tion constraint (6.11). We have n=2, m=8, s=2, hence min[m—s, n—1]=1,
so that the region to be looked for is one-dimensional.

Disregarding for a moment the sign conditions for derivatives, we make a

L.E.P.—F
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simple analysis by means of Lagrange multipliers. This leads to maximizing
the function

(6'24) (@191+@2Q2)+y3[XH—}—Xn——ﬁ (N11+N12)]+
+/‘4[X21+X22‘fz (N21+1 22)]

on the assumption that the four X and the four N are free variables while the

four parameters ©;, @,, u, and p, are constants. Equating the eight partial
derivatives to zero, we get

0,01, +p;=0 G)1‘1’1(1)‘,“43]‘1’—_—0
(6.25) 0O1watp =0 @1‘“1(2)—H4f2l:0
Oywy +p3=0 ®2w2(1)‘."-3f11=0
Ogwgatpy=0  Ouwyipy—pyfs’ =0
That is
%’:_wuza%llﬁ) gT":_wM___CB}Q
(6‘26) 1 1 2 1
Fa_ Wie By Wi
0, w12—7.2, : @-—wn——f;ﬁ
If we eliminate from the system the ratios between the multipliers (this takes
out three equations), we get the following five equations:

W15 T W) ’ .
(6.27) ot =——w:¢ =f, (i=1, 2)
6.28 Yu_Yn
( ) Wyg Wog

These five equations together with the two equations (6.11) determine the
one-dimensional region which is Pareto-optimal under the production con-
straint in the present case. For the argument which follows it is not necessary to
discuss the sign condition on the derivatives.

Now let us consider the following régime: as in Case 2, we assume prices p;
and p, as well as wage rates ¢, and ¢, to be determined by the free play of the
forces in the market, each of the two industries acting as a quantity adapter
trving to maximize profits, and each of the two individuals trying to maximize
his preference function under the same kind of budget equations as in (6.7) and
(6.8), but now not only with the X, but also the N as free variables. This régime
leads to the following equilibrium equations:

(6.29) ?7:: AT fr (i=1,2)
(6 30) Pi_@n_%n

2_.0)12 @s
22

These eight equations together with the two budget equations—the same as
those written to the right in (6.7) and (6.8)—and the two production con-
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straints (6.11) give a total of twelve independent equations to determine the

T
eight basic variables X;; and N,; together with the four variables ﬂ, f2 P2ond =

nrn p

In other words, we have exactly the same kind of solution as in Case 2. Also in
the present case will the equilibrium values of X;; and N; be independent of
the choice of the nominal value of T, a change in T only entailing a correspond-
ing proportional change in the prices and wages rates. The formula for the real
value of the income transfer will also now be (6.16). All the rest of the discussion
can be repeated practically word by word as in Case 2.

Case 4

This case will illustrate a general proposition which can best be brought out
by a still more simplified example.

Consider the case where there is only one individual (one typical individual
representing the whole working population) and one industry (representing
the whole production activity of the nation). Let X be the quantity produced
and N the input of labour. Let Q(X,N) be the preference function of the
representative individual and f(N) the production function of the representative
industry.

The region which is Pareto-optimal under the production constraint in the
present case is simply the social optimum point defined by secking the uncon-
ditional maximum of the function Q(f(N), N) of the single variable N. This
point is obviously determined by

Wy
(6.31) o f
o) cQ d
where w = 5% wl\,y:%—l, and f ,:K{]' Both members of (6.31) may be looked

upon as depending on the single variable N. Its optimum value is determined as
a root of this equation.

What sorts of régimes will lead to this social optimum point?

We shall assume that the representative worker is not necessarily remunerated
at a fixed wage rate, but at a wage rate that may depend on the input of labour
(a progressive or degressive wage rate). This means that the total wage bill
B(N) will be some function of the total input N, not necessarily a magnitude
proportional to N as in the case of a fixed wage rate. We assume that B is meas-

ured in terms of the good produced, i.c. the price of the good is conventionally
put equal to 1.

Consider the following régime:

(6.32)  Consumption equals production, i.e. the magnitude X that enters into
Q(X, N) is equal to X= f(N).

(6.33)  The representative worker consumes all he earns, i.e. X=B(N) (which is
only another way of saying that the profit of the industry is zero).
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(6.34)  The representative worker tries to maximize his preference function under
the constraint (6.33), i.e. he will try to maximize Q(B(N), N) with N
as a free variable.

(6.35)  The representative enterprise will try to maximize profit, i.e. it will try
to maximize f(N)—B(N).

The two institutionally determined types of behaviour (6.34) and (6.35)
lead to
—wy

(6.36) TUN_B(N)

Wy

(6.37) FN=BN)

(6.32), (6.33), (6.36) and (6.37) give four conditions on the two variables
X and N. Hence, in order that the system shall have a solution (under arbitrarily
given shapes of the preference function Q and the production function f), the
wage-bill function B(IN) must satisfy two point conditions. One of these may be
thought of as corresponding to the fixing of the wage rate in the orthodox
theory, the other is a condition which in the orthodox theory is generally
overlooked.

The necessary and sufficient condition which the wage-bill function must
satisfy, can be obtained as follows.

If B(N) does have a shape such that a solution is possible, the equilibrium
point must satisfy (6.31). This is seen by combining (6.36) and (6.37). In other
words, if a solution exists, it must be the same as the social optimum defined
by (6.31). In this social optimum point—which can be characterized by the
corresponding magnitude N, of N—it is by (6.32), (6.33), (6.36), (6.37)
niecessary that we have

(6.38) B(N))=f(N,) and B'(Ng)=f"(No)
The fulfilment of (6.38) in the point Ny—where f'(N,) by (6.31) is equal to

—wy . : : . e .
—¥_is obviously also sufficient for the existence of an equilibrium point.
wx

We can summarize this in the following proposition:

Proposition (6.39). In order that the régime (6.32)-(6.35) shall be consistent and
lead to an equilibrium point, it is necessary and sufficient that the wage-bill
function B(N) satisfies (6.38), i.e. that it has first order contact with the pro-
duction function in the special input point N, that corresponds to the social optimum.
If the wage-bill function has this property, the equilibrium point of the

régime will coincide with the social optimum.

From this proposition we deduce, for example, immediately that if the
production function in the vicinity of the social optimum point is homogeneous
of the first degree, i.e. gives an output that is proportional to the input, the
wage-bill function must have the same property, that is, it must be on the basis
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of a fixed wage rate in the vicinity of the social optimum point. If the pro-
duction function does not have this character, the remuneration of the
representative worker can not be on the basis of a fixed wage rate.

Although this example is simplified to the extreme, it does illustrate some-
thing of considerable importance. What is here taken account of in the form
of a wage-bill function would, of course, in the world of realities have to be
worked out in the form of social transfers, an appropriate form of a non-
proportional (positive or negative) income tax or some similar device.

Case 5

Let us reconsider Case 3, but now assume that the income transfer T is a
function of the four variables Ny;, Niy, Ny, Npp. This might illustrate the case
where the income transfer is achieved through some sort of income tax system.
To indicate this, T may now be called the tax function. The other assumptions
about the régime remain the same as in Case 3.

Assuming autonomous adaptation on the part of individual No. 1, we have
to maximize Q, (Xi;, Xo1, N1a, Ny under the budget constraint written to the
right in (6.7) where now T is a function of the four variables Ny;, Ny, Ny, Ny
of which Ny, and N;, are conjecturally constant for individual No. 1. Vice
versa for individual No. 2. This gives

6.40 Adaptation of individual 1: “2_%2_ T®@) T
( ) P PP i~ Tay @ Ty

6.41)  Adaptation of individual 2: “2_%2_ T%w@  T@)
( ) P v Pr = Tasy ga— Tiany

where

OT(Nups Nigy Nup, Nyg)  fi=1, 2
(6_42) T(‘j)z 11 1 21 22 ('21, 2)

ONy, J
We further have

(6.43) Adaptation of the two enterprises:  +=f (=1, 2)

In addition we have the two budget equations (6.7)-(6.8) and the two pro-
duction constraints (6.11). This gives a total of twelve equations on the 11

unknowns X,;, N, (11, 12

i i

» and gg. Hence the function T must satisfy one point
2 1

condition if there shall exist a point that satisfies the régime. If T is assumed
constant, we get back to Case 3.

So much for the consistency of the régime. Now let us see what additional
conditions this function T of the four variables N; must satisfy in order that
the point produced by the régime shall be Pareto-optimal under the production
constraint. This means that the function T must satisfy four additional point
conditions, namely (6.27). This entails
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(6.44) Ti11)= T12y= T(21y= T(22y=0 in the cquilibrium point.

In other words, it is necessary that the tax function is constant in the vicinity of
the equilibrium point, i.e. it must have the character of a per capita tax in this
vicinity. This can be expressed in the following proposition:

Proposition (6.45). No régime of the type (6.40)-(6.43) with a tax function T
that actually depends on the labour inputs N;; in the vicinity of the equilibrium
point, can lead to a point that is Pareto-optimal under the production
constraint.

In particular, any régime that includes an income tax (which in the vicinity of the
equilibrium point depends effectively on the income) is ruled out. Only a
régime with a tax which in the vicinity of the equilibrium point has the
character of a per capita tax, can produce an equilibrium point that is Pareto-
optimal under the production constraint. If the tax has this property and its
real value has the precise magnitude which it must have in order that a point
satisfying the régime shall exist, then this point is Pareto-optimal under the
production constraint. The magnitude of the real value of the tax can also in
the present case be discussed in the same way as in Case 3.

Case 6

Now consider the case of m goods Nos. i=1, 2... m, and # individuals Nos.
j=1,2... n. Each good is assumed to be produced in a single process using only
labour. Let
(646)  Xat+Xato.dXo=fi(Na+Nat+...+Nu)  (i=1,2...m)
be the production functions, N,; being the amounts of work furnished by
individual j to industry i, and X,; being the output of industry i which is
received by individual j. Also in this case will the main conclusions of Case 5
apply.

Pareto-optimality under the production constraint (6.46) is now—with an
analogous notation as before—expressed by

(6.47) —_T(:sz,' for all { and §
(6.48) ::“ =independent of j for all 7, j and k
it

Not all the equations (6.47)-(6.48) are independent, but all of them must be
satisfied in a point that shall be Pareto-optimal under (6.46).

This being so, consider a régime where each individual and each industry
behaves as in Case 5, the individual j being subject to a tax of the form

(6.49) Ty(Nuys Nas ... Noy) (j=1,2...n)
and a budget equation of the form

(650) ‘11-)\%:'“:‘(]2‘\?2;":‘- . ~+qumj:p1X1j+p2X2j+- . -+me'm5+ Tj
(j=1,2...n)
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The prices py, p; ... pm and the wage rates g, ¢, ... gm are assumed constant from
the viewpoint of any individual or any industry.

This régime leads to
(6.51)  Adaptation of the individuals: 2= Tiw_ Z@i for all i and §

i Wiq

(6.52)  Adaptation of the industries: i‘ =f/ forall i

P
where
Ty (Nys, Ny .. Nony) (i=1, 2...m
(6.53) Tiw= N, j=1,2 n)
From (6.47), (6.51) and (6.52) follows
(6.54) T;,=0 for all i and j in the equilibrium point.

This shows that if the régime shall lead to a point that is Pareto-optimal under
the production constraint, it is necessary that the taxes have the character of per
capita taxes, not income taxes, in the vicinity of the equilibrium point. In other
words, the essence of proposition (6.45) holds good also in the case of m
industries and n individuals.

This conclusion is rather far-reaching. It is independent of whether or not
the sum of the taxes is zero or not. That is, we need not assume

(6.55) Tl (Nll, N21 “se Alrml)'*‘. ..+ Tn (Afln, Nzn e Z\Tm ):0

If the taxes have the character of per capita taxes in a certain region, will an
equilibrium point of the régime exist in this region? More specifically: under
what further conditions on the income transfers T;... T, will such a point
exist?

In the problem we have 2mn variables X;; and Ny, further m prices p,, m wage
rates q; and n income transfers T, all reckoned in nominal, i.e. undeflated,
values. These 2m+n nominal magnitudes enter, however, in the equations in
such a way that only their relative values—expressed, say, in terms of p;—count
as unknowns. That is, the total number of unknowns is

(6.56) 2mn-+-2m4+-n—1

In order to rewrite the equilibrium equations in the form of a system of
independent equations, we first put

Wy Wig Wim  —Wi) T Wi(2) T Wi(m) .
(6.57) s . o i (j=1,2... 1)
This gives (2m—1)n equations. When these are fulfilled, we have (6.51)—in
view of (6.54). Adding the m equations (6.52) is sufficient to assure the fulfil-
ment also of (6.47). We further have m production equations (6.46) and

budget equations (6.50), in other words, a total of
(6.58) 2mn+2m
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independent equations, hence (n—1) degrees of freedom. If we further add the
condition (6.55), the number of degrees of freedom is reduced to (#—2). In
the case n=2, there is no degree of freedom. An example of this is Case 3 where
the real value of the income transfer is determined by the régime.

In the general case, (11— 1) of the per capita income transfers may, in principle,
be fixed arbitrarily. There may, however, by the nature of the preference
functions and production functions involved, be very close upper and lower
limits to how the choice can be made if an equilibrium point shall exist.
Whether the range is small or large, the income transfers must have the
character of per capita taxes in the vicinity of the equilibrium point of the régime
in order that this point shall be Pareto-optimal under the production constraint.

Case 7

So far we have considered only régimes where the industries taken as a
totality work with zero profit. Now let us drop this assumption. Consider a
single industry—“industry as a whole”—producing a single commodity—"“the
national output”—with a single factor of production which is supplied by a
single individual—"“the labour class”.

As in Case 4, let

(6.59) X={(N)

be the production function and let Y be the amount consumed by labour. This
means that the residual X— Y'is retained by the industry. It is immaterial whether
we call it “profit”, “investment” or ‘“‘consumption of the entreprencur”. The
essential point is that by considering the two variables X and Y separately, we
get two degrees of freedom. If labour tries to maximize an indicator Q(Y,N)
subject to the budget equation

(6.60) pY—gN=0

with the product price p and the wage rate ¢ constant, and industry tries to
maximize the profit (pX—¢N) on the same assumption about the constancy of
p and ¢, the equilibrium point is determined by:

Wy "'(1)(1)
6.61 ——
(6.61) 4
(6.62) pf'=4
where
9 cQ
(663) w1=ﬁ w(l):ﬁ

The two equations (6.61)-(6.62) in conjunction with (6.59) determine the
equilibrium point. In this case there is no over-determinateness because industry
takes up whatever may be left over in the equilibrium point as a residuum X—Y,
positive or negative. In other words, no condition on the magnitude of the (real
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value of the) profit X— Y is imposed besides the marginal condition (6.62).
The real value of the profit in the equilibrium point is

(6.64) X-Y=(1-6)X
where

dlog X f'N

(6.65) 6:dlog NT X

This expression (6.64) for the real value of the profit in the equilibrium point
follows immediately by noticing that in this point we have

(6.66) f=%

because both sides in (6.66) are equal tog in the equilibrium point.

If the production function fand the indicator Q have arbitrarily given shapes,
nothing prevents the equilibrium profit from being negative. If such a situation
is considered unrealistic, another régime must be introduced. If we proceed more or
less on Marshallian neo-classical lines, it would be natural to assume that € is
decreasing as N increases, and that there is some institutionally or conventionally
fixed “normal profit”

X-Y

(6.67) ="
which “industry as a whole”” must be assured in the equilibrium point. If (6.62)
is actually replaced by (6.67) where y is given, we have again, in general, a well-
defined equilibrium point. But in this point we will, of course, not necessarily
have (6.62), that is, marginal productivity will not necessarily be equal to the
real wage rate. If we would require af the same time that (6.62) is fulfilled and
that the “normal profit” y takes on a preassigned value in the equilibrium point,
we would get an over-determinate system. In a system where labour is assumed to
act as a quantity adapter and we do not have any taxes that can be manipulated,
it is—under arbitrarily given shapes of the production function f and the pre-
ference function Q—impossible to impose both a marginal and a total condition
on the adaptation of industry.

If we find that it is unrealistic to drop the assumption (6.62) in a market that
is reasonably atomistic, we shall have to look for still another régime.

We can always assure a given “normal profit” y and an atomistic marginal
adaptation on the part of the entrepreneurs if we put a point condition on the
shape of the production function. In our case this point condition will have to

be that
(6.68) e=1—y in the equilibrium point

where y is institutionally or conventionally given. Personally, I don’t think that
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this is a very realistic approach. If we want to be realistic, we do not have very
much freedom in the choice of assumptions about our technical production
function.

To me it would seem much more realistic to introduce a tax system and shape
this tax system in such a way that we can maintain our assumption about
atomistic marginal adaptation on the part of industry and still be able to produce
an equilibrium point which satisfies certain desiderata about “normal profit”.
If we do this, and discuss the character which the tax system must have in order
that the equilibrium point shall be Pareto-optimal under the production con-
straint, we will find that we get back to the same fundamental properties which we
found in the previous examples which were constructed in a rather different
way. Also in the present case must taxation of the workers have the character
of a per capita tax in the vicinity of the equilibrium point. And if the disposable
“normal profit” of industry shall have a given rate y, the real value of the per
capita tax on labour must have a specific magnitude in order that an equilibrium
point shall exist. The previous examples illustrated the case y=0. For the
question of determinateness or over-determinateness it is, of course, immaterial
whether we put y equal to zero or to some other given value.

To verify the above conclusions let T(gN) be the tax function on labour and
t(pX—gN) that on industry. We do not assume that we necessarily have

(6.69) T+t=0

T is a function of one variable, and so is £
The budget equation for labour is now

(6.70) gN--pY=T(gN)

and the equilibrium equation for labour now becomes

—wayy 4 '
——t=2(1-T
6.71) S 2=10-T)

T . :
where T'= PR the marginal tax on labour.

The equilibrium equation for industry is now

(6.72) (1=£)(pf'—9)=0

If ¢’ is not greater than unity, that is, if the tax on industry is not “over-pro-
gressive”, (6.72) reduces to the same condition as before, namely (6.62). Thus,
the equilibrium point of the régime is now determined by the three equations
(6.59), (6.62) and (6.71) between the three unknowns X, Y and N.

Will the equilibrium thus determined be Pareto-optimal under the pro-
duction constraint? Pareto-optimality is now determined by maximizing

(6.73) BUY, N)+40 (X~ Y) -+ [X—f (V)]
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where 6, v, u are constant multipliers, § and » positive. @ is an indicator of
utility to the industries. This leads to

(6.74) V(D’+,u=0 le—td)'———o Bw(l)—p,f'zo
where @’ is the derivative of @ with respect to its argument. These equations
entail amongst others
—w )
(6.75) Tew_g

wy
Comparing this with (6.62) and (6.71), we see that it is necessary that
(6.76) T'=0 in the equilibrium point

That is to say, T must have the character of a per capita tax in the vicinity of the
equilibrium point of the régime. If T does not have this property, the equili-
brium point of the régime cannot be Pareto-optimal under the production
constraint. This, of course, is in essence the same as Proposition (6.45). For the
tax on industry, ¢, no condition ensues (apart from ¢'<1).

7. WHAT DIiD PARETO PROVE ON WELFARE?

During my stay in Rome in the late fall of 1950, I had several intensely
interesting talks with Professor Gustavo Del Vecchio on welfare economics
and in particular on how Pareto’s work in this connection should be interpreted.
There is probably no living economist who knows the way of thinking of
Pareto so well as Professor Del Vecchio. Some of Del Vecchio’s views have
been incorporated in his introductory remarks to Volume IV of the Nuova
collana di economisti (pp. x-xi). On certain points he gave valuable further
comments in the course of our talks. I am authorized to bring these points
before the public.

First it might be well to restate Pareto’s own definition of what we would
now call a Pareto-optimal position. To do this one should not take as a starting-
point Corso di economia politica, Lausanne, 1896. The approach in these lectures
represents precisely what Pareto later tried to get away from. If one shall discuss
the Pareto optimum, one should refer to his Manuale, 1909. On p. 337 of this
work we find the definition which in English translation (checked by Del
Vecchio) can be rendered as follows: “Let us begin by defining a term which is
very convenient to use in order to save words. We shall say that the individuals
(i componenti) of a group (una collettivita) in a given position have maximum
ophelimity (massimo di ophelimita) if it is impossible to depart some small distance
(allontanarsi pochissimo) from this position in such a way that this departure is
useful for all the individuals of the group. Every small displacement from this
position would necessarily have the effect of being useful to some of the
individuals of the society and detrimental to some others.”

Professor Del Vecchio comments that Pareto had the habit of working fast
and not to bother too much with limiting cases. Therefore when Pareto here
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says “‘usctul for all individuals of the group™ it should be interpreted “usctul to
at least one of them and for the rest of them either useful or indifferent”.

In the appendix to the French edition of the Manuel d’économie politique, 1909,
Pareto not only developed the mathematical theory of free competition, but
also gave what Pareto himself seems to think is a mathematical demonstration
that the régime of free competition leads to maximum satisfaction. In the
subsequently published article in the Encyclopédie des sciences mathématiques*®
Pareto only develops the mathematical theory of free competition and stops
short, without adding anything on maximum satisfaction. The Encyclopédie was
published in instalments, and from all appearances—not least from a comparison
between the structure of the Encyclopédie article and that of the mathematical
appendix to the French Manuel—it would seem that a section on maximum
satisfaction was to follow in a subsequent instalment of the Encyclopédie article.
However, this continuation never appeared. Del Vecchio thinks that this was
an advantage. He thinks that Pareto attributed too far-reaching consequences to
his analysis on this point. Pareto wrote in terms which must lead the reader to
believe that Pareto has proved a proposition to the effect that a régime of free
competition produces a higher level of satisfaction than other régimes. It is
difficult to escape the conclusion that Pareto himself believed that he had actually
demonstrated this. See, for instance, the phrasing used in the Italian Manuale,
1909, p. 544: “Quindi le conclusioni . . .” (“hence the conclusions . . D). At
any rate it is an indisputable fact that many people have thought that Pareto’s
demonstration was of this general character. This applies certainly to Barone
in his “Il ministro della produzione nello stato collettivista”,** 1908, and to a
great number of mathematical economusts.

This being so, a logical explanation of the fact that the continuation of the
Encyclopédie article never appeared, would be that Pareto—who frequently
worked over his manuscripts many times—had in the meantime become aware
that the demonstration in his previous works was not a general demonstration
of the sort he was in search of and had believed that he had produced.

In spite of all efforts made by Del Vecchio to find out definitely the reason
for the discontinuation of the Encyclopédie article, an authentic answer has not
been found. Pareto’s own manuscript for a possible continuation has never
been unearthed.

As the matter now stands, we must say that Pareto has not established any
mathematical proof of a general proposition that free compeution produces
maximum satisfaction. What Pareto has done is only to give a particular sort of
definition of maximum satisfaction. This definition in itself is one of great value
and we should all be grateful for the analytical tool it has provided.

* Published in English as “Mathematical Economics”, International Economic Papers No. 5, 1955—ED.
*% Published in English as *“The Ministry of Production in the Collectivist State”’, Appendix A of Cuilecti-
vist Economic Planning, edited by F. A. Hayck, London, 1935—Eb.
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