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The Principle of Recurrent Planning

By RAGNAR FRISCH

THE MOST STRAIGHTFORWARD way to introduce intertemporal relations
in economic planning is to consider a sequence of “years” or “stages”, say
7 =1, 2... T—which would mean a T-year plan—and for each of these years
introduce a complete set of variables with all the equations and bounds that
go with it. We could then formulate a complete programming problem—
including a preference function—in all these variables. This may be called the
simultaneous multistage method.

In this approach the number of variables will be very great. To avoid this
difficulty attempts have been made at developing a recurrent method. The main
idea in this direction stems from the work of P. Massé (1946). The sequential
element was introduced by A. Wald (1950 and earlier), the generality of the
approach was forcefully brought out by R. Bellman (Dynamic Programming,
Princeton, 1957). Compare also the Presidential Address by Kenneth Arrow.
Econometrica 1957.

The logical principle of the recurrent method is simple but the application
to a full-fledged macroeconomic decision problem is, I believe, not a practical
proposition in the present state of the theory. The principle itself, is, however,
so interesting and may offer so many possibilities of improvement—leading
perhaps finally to practical applications—that an exposition in macroeconomic
terms may be useful. .

I shall formulate the exposition in terms of capital, income, consumption,
saving and total utility. The principle itself is, however, independent of the

terminology used.
%

First consider only two years, Nos. 1 and 2. Let K, __; be the capital at the
beginning of year 7 (z = 1, 2, 3) with K, given. Let Y, (v = 1, 2) be income
in year 7, and let

Y. =rK._ (=12 )
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where r is a constant (usually r < 1). In other words we assume that there is
plenty of labour available and that capital is the only scarce production factor,
Let

Y: = CH+I: (r=12) 2)
and

K.=K,_1+1I hence Y 4.1 = Y; +rl; (t=1,2) 3)

Finally let U(C;) be the total utility function for consumption in the year
7, and V(K,) the total utility function for terminal capital, all the utility func-
tions being viewed from a given point of time, say the beginning of year 1.
Instead of total utility functions we may, if we like, speak of total preference
functions.

Up to this point there are two degrees of freedom, which may be represented
by I, and I,. These two variables should satisfy the conditions

0=L=1I 0<C:=Ce (r=12) “

where I, and C, are given lower bounds.
If I, and I, are chosen (and Y; = rK, given) the total utility gained over
the two years will be

DL, L) = Uy(Y,— 1) + Uy(Y, +rl,— 1) + V(Ko + 1 + 1) &)

The decision problem—as viewed from the beginning of the first year—
consists in maximizing (5) over I, I, under the constraints (4). Even in this
over—simplified example the problem is difficult unless we replace the utility
functions by segments of linear functions. If this is actually done, the problem
is simple even if we use many breakdowns for Y: and Ir i.e. interpret these
two symbols as vectors.

If a T-year (a T-stage) problem is considered, we have

Y, = given =C,+1
Yo=Yi+rl; =C+ 1,
Yo=Y, +rl, =C+ 1

Yr=Yr_1+rlr_1=Cr+1Ir 6
and (5) will be replaced by
O, L. . Ity =U(Y,— L)+ U(Yy + rl;, — L) +
Uy + b+ L) —I)+ ...+ Uy +r(h + L+ ...+ Ir—)—Ir) +
+ V(K + L+ L+ ... +I7) (7
There are here 7 decision parameters to choose, namely I;, /,...Ir. The
variables will be bounded by (4), now applied for v =1,2...T.
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The same problem can be attacked by the recurrent method in the follow-
ing way.

We start a recurrent reasoning beginning in the /ast period. The basic idea
of the recurrent method is that we say: Suppose that Yr has already been
determined. How should then It be chosen? The past history of the system
up to and including the year 7— 1 will now be of no interest, and we are
only concerned with what addition to utility we can achieve by choosing Ir
in the best possible way. To investigate this question we consider the partial
utility function

Dr(Ir) = Ur(Yr—In) + V (YTT + IT) ®)

This represents the addition to utility which is achieved by choosing the value
Iy, when Y7 is given. In particular we are interested in the maximum of (8)
over Iy, when Yris given. This maximum will itself be a function of the given
value of Yr. We denote it

Dr(Yr) = N?Tlx [UT(YT—IT) + V<YTT + IT)] ®

where the variable Ir is subject to the conditions
Ir2Ir=Yr—Cr (10)

We will look a little closer into the maximization of (8). We assume that
the functions Urand ¥V have continuous derivatives and consider the derivative
of @r with respect to Ir

Dr(lr) = — Ur(Y7r— I1) + V'(YTT-i—IT) (11)

We can assume that the marginal utilities U’ and ¥’ are monotonically de-
creasing as their arguments increase, hence @7 (Ir) will be constantly decreasing
as It increases, i.e. @(Ir) will be a concave function of Ir. There is consequently
a unique value of Ir that makes (11) vanish and it will produce a maximum,
not a minimum. Let this value be I7.

Since the variables I; and C. are bounded by (4)—now applied for 7 = 1,
2...T—we see that the optimum value I, i.e. the value that maximizes (8)
is given as the following function of Y (whose value we have for a moment
assumed to be given)

Ir if D7(Ir) =0
Ir=I(Yr)={ I} if @7(Ir) S0 and ®r(Yr—Cr)=0  (12)

Yr— Crif ®3(Yr— Cr) S0
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We will assume that I7(Y7) has been worked out as a function of Yr over a
whole range of Yr, not only as a number corresponding to some specific value
of Yr. This is an essential feature which distinguishes the recurrent method
fundamentally from the simultaneous multistage method. On a computing
machine one would have to choose a grid of values for Y7 and the tightness
of the grid would be a delicate question depending on the rapidity of change
of I'r as a function of Y7. I shall make some further comments on this functions
aspect in the sequel.

For a moment suppose that the function jT(YT) has been worked out over
a Yr-range which is sufficiently large for the uses we are going to make of
the function. Enlightened guesses about the needed Yr-range can, perhaps,
be made from previous knowledge of the problem.

Inserting in (8) the function Ir(Y7), we get the optimal value of @r as a
function of Yr. We denote it

br(rn) = Un(te—bx(r) + v (2 4 I (13

We assume that also the function @(Y7) has been computed over the Yr—range
considered.

Next let us move one step further back and now assume that Yr_ 1 is known.
The past history of the system up to and including the year T—2 will then
be of no interest to us, as long as Yr_ ; is known. But we are greatly interested
in the question of how Ir_ and Ir should be chosen.

Suppose that tentatively 77—, has been chosen. Then Yr = Yr—+rir_11is
also known. It is clear that whatever value we fixed for It_ 1, the best thing
we can do with respect to I is to put it equal to I7(Y1), where now Y. is the
value that emerges after the tentative selection of Ir_ (when Y7 is given).
So it looks as if it would be of considerable interest to consider the following
function of Ir__; (when Yr_; is given)

Or_(Ir1) =Ur— (Yr—1—Ir—1) + éT(YT_—1 +rlr_y) (14)

The first term in the right member of (14) expresses the consumption utility
that is actually obtained in year T— 1 by choosing the value Ir_; and the
second term expresses by (13) the maximum utility (Ur+ V) in the terminal
year that can be achieved when Ir_ —and hence Yr=Yr 4 rlr_; —is
already fixed (and we make the optimal choice of I7 that corresponds to the
given Y7).

All this applies whatever value of I7_ ; we have chosen. It must consequently
also apply if we choose Ir_; in the best possible way. Therefore the maximum
total utility that can be realized altogether in the last two years T-1 and T,
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must be equal to the maximum of (14) considered as a function of Ir_ (with
Yr_, given and Ir—, satisfying (4) for 7= T- 1 and Yr following Ir—).
This maximum value of @r_ ; will be a function of Yr— ; and so will the value
of Ir__ that maximizes (14). We denote these functions

P Max -
Dr_(Yr—1) = IT___l[UT—l(YT—l —Ir— )+ Or(Yr—1Frlr—1)] (15)

Ir—(Y7— 1) = the value of I7_ ; that produces the maximum of (15). (16)

If the function @T(YT) defined by (13) has previously been computed for a
sufficiently large range of values of its argument Y7, it is in principle possible
to carry out the maximization indicated in (15). In general it will be a much
more complicated task than the maximization of (8) which led to (9). And
we must face the problem of carrying out the maximization of (15) for a whole
range of values of Y7_ ;. On the extension of this range we may, perhaps,
make enlightened guesses using previous knowledge of the problem. But
these are practical and computational questions to which I shall revert. In
principle it is possible to construct the function b 1(Yr—1) defined by (15).
And in the process of constructing it, the function Ir—1(Yr_ ) will come out
as a by-product.

In this way we can continue. Assuming that Yr__, is given, we may disregard
the history of the decision process up to and including the year T—3. For any
given choice of Ir_ , the additional utility produced altogether in the years
T—2, T—1 and T, on the assumption that Ir_ | and I7 are to be chosen in
the way that is the best possible one when Ir_, (and Yr_ ) are given, will be

Dr_oIr_2) = Ur—o(Yr_2—Ir—2) + Dr_ (Y72 + rlr_2) (17

Maximizing (17) over Ir_, (with given Yr._,), we get the functions Dr__,
(YT_z) and fT_z(YT_z). And so on.

To summarize: We consider the recurrent definition of the two sets of
functions @.(Y>) and I(Y:) by the relations

DY) = MIaX [UYe— L) 4 By (Yo +1I)] (v = T—1, T—2, ... 1) (18)

LZLZY.—C (t=T—1,T—2,...1) (19)
L(Y:) = value of I, that maximizes (18). (20)
As an initial condition the function @7(Y7) is determined by (9), the solution
of which is indicated in detail in (12) and (13).
Continuing this process we will end up with the function fl(Yl). And from
this point the whole solution can be unfolded because we assume that K| is
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given, which is the same as to say that Y, is given. The‘optimal value fl follows
then simply by inserting the given ¥; in the function /,(Y;). From this follows

the optimal value Y,=Y, + rl,, and hence the optimal value I, by inserting
Y, for ¥, in the function fz(Y2). And so on.

In the more complicated cases this method leads to problems that are at
present not solved, neither mathematically nor computationally. It may
nevertheless be of interest to indicate here the directions in which it would
be necessary to develop this theory in order to make it macroeconomically
applicable in practice.

In the first place generalizing without introducing higher dimensionality,
we may replace (6) by

Ye=aY._ |+ bl (21)

where a and b are constants.

Secondly, in (18) there is only a function U; of the single variable (Y;—1I).
We may add another function depending on I; or, more generally, we may
replace U in (18) by a function U, of the two variables Y; and I; so that (18)
takes the form

dY,) = 1‘{;‘" [UdYr, I) + o 11 (Ys 4 11)] (22)

A drastic simplification would occur if we assumed U, in (22) or U; in
(18) to be independent of 7. Such a simplification would hardly be acceptable
in macroeconomics. If for no other reasons, it would be made impossible by
the “perspective shortening” of the evaluation of future goods and possi-
bilities. This could be expressed approximately by a discount factor, but the
particular form in which a dependency on 7 is introduced is of lesser im-
portance. The essential fact is that some sort of dependency on 7 must be
introduced.

From a theoretical viewpoint it may be of interest to investigate the situa-
tion that arises if the number of years, i.e. stages, tends towards infinity.
Intuitively one would guess that in the special case where U in (18) or (22)
does not depend on 7, convergence would be produced by the fact that the
coefficients @ and b in (21) are non negative and less than unity (“resources
are used up”). If U depends on 7, a still more important element in the con-
vergence will be the way in which U depends on 7 (“the perspective shortening”).
In all practical situations the limiting case of an infinite planning period would,
however, seem to be of little practical interest in macroeconomics. The way
in which U depends on 7 would be such that after a relatively small number
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of years the difference between a T year plan and a T+1 year plan would
be much smaller than could be revealed by the data, which will always be more
or less inaccurate.

A much more important direction in which to perfect the theory would be
to introduce higher dimensionality in the decision process of each year, i.e.
at each stage. Let

YLy ..., Yrand 1L, I2....,I7 . (23)

be variables characterizing the situation in the year 7. Let L, ..., I be
variables to be chosen, and let all the Y, { 8TOW out of the ¥ and the decision
variables I by a rule of the form

Y’+1:17£+1(Y1...Yﬁ, IL...1m (24)

T

where the 77+ are given functions.

Finally let
N0 ST LAY LA L) (25

be the utility of the state (23).
By analogy with the reasoning above, we would be lead to consider a recur-
rence scheme of the form

M

D(YL... Y7 =a

a);tm [Ur(le:‘ . sz Ii- I+ @1+1(771+1' : "’]:+1)] (26)
where the 7, .| are to be replaced by their expressions (24). A definition of
the admissible region in the Y; and I; would have to be added.

The recurrent decision functions, i.e. the functions that express the policy
to be adopted in a year characterized by Y;. . .¥Y7 would follow as a by-product
of the maximalization (26) and would be of the form

=YL YT (u=1,2...m) @7

Now for an evaluation of the practical possibilities. It is true that by a re-
current method the dimensionality of the problem is greatly reduced as com-
pared to the dimensionality involved in a simultaneous formulation of a
multistage problem. But there is a very heavy price to be paid for this reduction.
Instead of a problem concerning the fixation of a certain number of variables,
we will have to compute the numerical shapes of a certain number of functions,
namely the @, and the I¥, each depending on n variables, namely the Y.
The storage of information about such numerical function shapes represents
very serious problems. The tightness of the Y,-grids needed would have to be
decided on in the light of computational experience, and even assuming that
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the grids have been well fixed, the storage would represent practically un-
surmountable difficulties as soon as the number of variables ¥; on which
the functions depend, is somewhat large, as it always will be in macroeconomic
problems.

Considering all these difficulties, I must confess that at the present ctate
of affairs I do not see much hope that the computational task can in a general
way be drastically reduced by turning from the simultaneous multistage for-
mulation to the recurrent formulation.

A thorough study of the special structure of the problem may, of course,
lead to special reformulations that may mean an enormous saving. This is
perhaps at present the most hopeful aspect. But this possibility is open not
only in the recurrent but also in the simultaneous formulation.

The formulation (26) is closely related to the general theory of constructing
sequential decision functions. In the language of this theory Y7 will represent
“the information available” at time v, UJY:... Y7 I....I7) the “pay-off”
in period v and the functions ny((Ys... Y% It...I7) “the information
transmitted” to the next period. The stochastic element may be introduced
by letting U, depend on certain stochastic variables and introducing in the
recurrence formulae (26) the mathematical expectation of U instead of U:
itself. Formal theories expressed in this language may be extremely valuable
in special problems of low dimensionality, but—for the reasons stated above—
the immediate application to macroeconomic problems of high dimensionality
does not seem possible and we must look for other more drastic simpli-
fications.

Since we need to consider different types of approaches to the problem of
intertemporal planning, I do not think it would be a happy terminology to
use the term ‘“‘dynamic programming” only for methods built on the recur-
rence idea. The term dynamic programming should be used for all forms of
intertemporal planning—crude or refined—while the special approach through
(27) or some similar equations, should be designated by a more special term.
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