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Mixed Linear and Quadrat%c Programming
by the Multiplex Method'

In a paper presented at the Tokyo-meeting of the International Sta-
tistical Institute May— 1060 and in a memorandum from the Uni-
versity Institute of Economics, Oslo, of 27 August 1960, I give detailed
computing instructions as well as a detailed numerical example of how
to use the multiplex method for finding the solution of mixed linear
and quadratic programming problems. Special considerations in this
memorandum on coding for automatic computations were worked out

.in cooperation with Mr. Ole-Johan Dahl, research mathematician at the

Norwegian Defence Research Institute.

The purpose of the present paper is to give a non-technical presen-
tation, exhibiting the main lines of thought underlying the multiplex
method and its use for mixed linear and quadratic programming.

Vector and matrix notation will not be used. This notation is entirely
unnecessary both for technical and non-technical discussions on linear

or quadratic programming.

O_riiinally the multiplex method was developed for completely linear

Wlﬂmﬁ, but it has turned out that the method may be
used in more or less the same way for rather general forms of the pre-
ference function. In this contribution only the mixed linear and quad-

@y atic case will be considered (including the strictly linear and the strictly

quadratic).

The completely linear case has been coded for automatic computa-
tion on the Norwegian Defence Organization’s electronic Mercury
computer (Ferranti) by Mr. Ole-Johan Dahl, and for the English Elec-
tric Deuce, it has been coded by the Indian mathematician Mr. C. P.

1 This contribution to the volume in honour of my old friend Johan Akerman is
also issued as a mimeographed memorandum of 7 November 1960 from the Uni-
versity Institute of Economics, Oslo. -
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Saksena, formerly a research associate in the University Institute of
Economics, Oslo.

»

1. The problem

Consider N variables x; (j=1, 2 ... N) connected by the m (<N)

independent linear equations

N
(I.I) aio+2'a.-pc,-=o (i=!, 2... m)

j=1
where aio and a; are given constants.

Since the equations (1.r) are assumed linearly independent, it is
possible at least in one way to select n=N—m (o) basisvariables X
(k=u, v ... w or shorter k=bas) and solve the equations (1.1) in
terms of the remaining m variables, the dependent variables. Let the
expressions thus obtained be

(1.2) x,-=b,-o-LZb,-kx:, (j=1,2...N)

where the bj, and b are coefficients that are uniquely determined
when the coefficients of (1.1) are given.’

If by convention we put
when j is one of

1 if j=k . ops
. - —ep= b
(1.3) bjo=0 bir=¢jr {o oth 'se} the basis affixes
uy...w
the equations (1.2) hold for all j=1, 2 ... N (or shorter j=all), and
not only for the non-basis values of j.

We assume that the variables are bounded by
(1.4)  %<x%<% (j=all)
where x; and %; are given constants, satisfying
(1.5) %<% (j=all)
As special cases we may for one or more of the j have xj=—° and|or
fi"——-'- <400,

* The following terminological remark may be helpful: In the simplex method
the “basis” is the m.m matrix whose inverse permits to solve the equations (1.1) in
the form (1.2). In this method a series of different selections of the set x,
(k=u ... w) ~ and hence of the “basis” — is considered. In the multiplex termino-

logy the set x;, (k=u ... w) defines the “basis variables”. And in this method one
will as a rule only consider one such set.
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We consider a preference function of the form

_ : 1
(I .6) f=Po - 2 PxXx 2 PrXk — 2 2 PKHxKxH
K=U..W 2 K=U..W H=U..W
xm=u. JU. W . w

where po, px and px may be any arbitrarily given real numbers, and
Pxy a real (symmetric) positive definite and non-singular matrix. The
variables xx (x=4, v .. ) U ... W (... w or shorter »=lin) are lineo
variables, i.e. variables that occur only linearly in the preference func-
tion, while xx (K=U ... W or shorter K=quad) are quadrato vari-
ables, i.e. variables that actually occur in the non-singular quadratic
form (and may or may not enter also linearly in the preference func-
tion). The two sets: lineo and quadrato are mutually exclusive. To-
gether they make up the complete set of n basis variables xr (k=
—u ... w). The inverted parenthesis in (1.6) means “exclusion of”.
@That is, x=u ... JU...W(...wmeans the basis affixes with the ex-
clusion of the quadrato affixes K=U ... Ww. The constant po in (1.6)
;s immaterial, but is included for formal completeness. The matrix ele-
ment Py is interpreted as zero whenever K andlor H is the affix of a
lineo variable.

Any mixed linear and quadratic programming problem — with a
singular or non-singular quadratic part - can be reduced to the form
(1.6) with a non-singular Pxx. The essence of the problem is that if this
is done, there may - and virtually always will — appear certain vari-
ables that enter only linearly in the preference function. In the de-
singularized form the bounds on the transformed variables will still be

linear.
® The partial derivatives of (1.6) in the point x are
0
(1.7) f, =3£;=pk—ZH P x, (k=Dbas)
If x° is any given point, the expression for the preference function
can also — by Taylor’s formula - be written

(1.8) f=f+2f (x,—x) _észPm (xx— %) (xy— %)

where the superscript o refers to the point x°.

The problem is to maximize (1.6) - or, if we like, (1.8) - subject
to the constraints (1.4) where the x; are given by (1.2).

In many practical problems the quadratic part of the preference func-
tion will have a much lower rank than the number of degrees of free-
dom in the problem, (e.g. the case where the preference function is
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simply a quadratic function of one of the dependent variables or of a
linear form in a few of them). This means that a number of lineo
variables will emerge when the quadratic form in the preference func-
tion is reduced to a non-singular form. Hence it is essential to consider
the mixed linear and quadratic case. The completely quadratic case
(with a non-singular matrix) is so special that it has little practical
interest.

2. Graphical illustration of the multiplex method

Fig. (2.1) illustrates the situation in the completely linear case. The
interior of the pentagon PQRST and its boundary represent the set of
points where all the constraints (1.4) are satisfied. This is the ad-
missible region. Each of the sides of the pentagon represent points where
one of the variables is on one of its bounds. For instance the straight
line TS may represent the points where x, is at one of its bounds, while
SR may represent the points where x, is at one of its bounds, and so
on. It is a classical fact that the admissible region bounded by linear
constraints of the form (1.4), where the x; are given by (1.2), must
always be convex, i.e. such that the segment of straight line joining
any two points in this region must in its entirety lie in the admissible
region. The convexity of the admissible region is a feature that con-
siderably facilitates the programming problem, whether attacked by
the multiplex method or by some other method.

The dotted lines in fig. (2.1) indicate contour-lines of the (strictly
linear) preference function, ie. lines along which the preference is
constant. The value of the preference function increases towards north-
east in the diagram. The gradient on these contour lines is exemplified
by the arrows starting from the point A and the point B. These arrows
are orthogonal to the contour lines.

The essence of the multiplex method is that we may start in any
point in the admissible region (its boundary included) and from this
starting point we move as if the point were pulled by a gravitational
force represented by the preference gradient.

What will happen in the example of fig. (2.1) is obviously that the
point will move from A to B, then follow the boundary from B to S,
and next follow the boundary from S to R, this last point being the
optimum, i.e. the point in the admissible region where the preference
function assumes the highest value which it can reach in the admissible
region. We can visualize this movement from A to R by turning the
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paper in such a way that the preference gradient points directly down-
wards, and then think that the moving point seeks to find the lowest
possible position.

The essence of this approach is that the point may move either com-
pletely unconstrained, as from A to B, or constrained by a part of the
boundary. In the two dimensional diagram in fig. (2.1) it is not possible
to illustrate all the cases of a boundary movement that may occur in
several dimensions. In the general case of n degrees of freedom the

Fig. (2.1)

point may move either constrained by one boundary condition (i.e.
move in an (n—1) dimensional manifold), or move constrained by
two boundary conditions (i.e. move in an (n—2) dimensional mani-
fold) ... etc. or possibly move constrained by (n—1) boundary con-
ditions, (i.e. move along a one dimensional manifold, i.e. along an edge
on the boundary). Hence the term multiplex: We may move in any
such manifold - or even move completely unconstrained - until we
reach an optimum point.’

* The simplex method represents the special case where we only move along a one

dimensional manifold, i.e. always move along an edge, going from one vertex to
another, finally to reach an optimal vertex.
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Fig. (2.2) illustrates the case where the preference function is of the
form
(2.3) f=xx—x2
i.e., it contains one lineo variabel x. and one quadrato variabel xx.

AX
K
14 &

Fig. (2.2)

The contour lines of the preference function are in this case the
parabolas indicated in the figure. The value of f along any given con-
tour line is indicated by the number written to the right (and may also
be read off as the value of x. in the point where the parabola in ques-
tion intersects the x.-axis).

If the variables are not bounded at all, there does not exist in fig.
(2.2) any finite point where the preference function reaches its maxi-
mum. Indeed, if the quadrato variable xx is kept constant, we may

. o TR

PN
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render f arbitrarily great by increasing xx. On the other hand if the

lineo variable xx is kept constant, a finite maximum is always reached

by putting xx=o0. In this specialized maximum we have f=xx.

If the admissible region from fig. (2.1) is superimposed on fig. (2.2},
we see at a glance that the optimum is in the point P. Reading off from
the diagram by the eye, we see that the optimum value of f is approxim-
ately equal to o.

In fig. (2.2) the optimum occurred in one of the vertices of the ad-
missible region. This needs not always be so. We can exemplify this if
we replace the admissible region of fig. (2.2) by an admissible region
with an eastern border that has a point of tangency with one of the con- .
tour lines of the preference function. This point of tangency will then
_, .be the optimum.

In the general case of n degrees of freedom we must be prepared
for the following situation: If there are no lineo variables, the optimum
may occur either in the interior of the admissible region (i.e. where no
variables are bound-attained) or in some point on the boundary. And
in the latter case there may be any number » of variables (v=1, 2...)
that are bound-attained in the optimum. If one or more lineo variables
are involved, the optimum must occur in some point on the boundary.
And this may be a point where any number » of variables (v=1,2...)
are bound-attained.

It will be readily recognized that the time-honored method of Lag-

range multipliers — which frequently is so effective for locating the

| ‘maximum of a continuous function under constraints expressed by con-

tinuous functions — cannot produce the solution in the general mixed
linear and quadratic programming problem here considered.

But the multiplex method will produce the solution by a well de-
fined algorithm. Although the algorithm must necessarily contain a rule
that covers a number of different cases which may occur in the course
of the computation, and thus prima facie does not appear very simple,
it can be worked out in a mechanical way which is fairly simply to apply
both for desk machine computation and for automatic computation.

One advantage of the multiplex method is that when we use it, we
are fairly well protected against the computational difficulties that may
arise when a number of the variables are (exactly or nearly) linearly
dependent. In many practical problems with a great number of variables,
it will often happen that the admissible region is surrounded by thick
layers of variables that are (exactly or nearly) linearly dependent, and
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this may cause considerable difficulties unless we have a method that
can handle such situations. Further explanations on what is meant by
linear dependencies are given below.

3. Decisions to make in each round of the algorithm

For the sake of simplicity we will first consider the case of a com-
pletely linear preference function, i.e., a preference function containing
only lineo variables. The subsequent generalization to the case of a
mixed linear and quadratic function will then be easy.

The algorithm in the completely linear case proceeds in rounds which
in fig. (2.1) are illustrated as follows:

Round o: The move from the initial point A to the first breaking-out
point B. Round 1: The move from B to the second breaking-out point S. ®
Round 2: The move from S to the optimum point R.

Round o is characterized by the fact that we make a free preference
move, i.e. we move along a beam defined by the basis direction numbers

(31)  de=pn (k=bas)

The basis direction numbers di are simply the direction numbers of
the beam, i.e. numbers such that the values of the basis variables along

the beam are given by
(3.2) Xe=x7 + Adp (k=Dbas)

where x? is the initial point and 4 is a parameter whose increase from
zero through positive values generates the beam.

‘When we reach the point B - the first breaking-out point - we can-
not proceed further in the direction (3.1). In the further move we ®
must impose the condition that we shall move along one of the boundary
constraints, namely the one defined by the constancy of the variable
that is bound-attained in the point B. In the beginning of Section 2 this
was exemplified as x,=constant. We will express this by saying that in
the move from B, x, is included in the operation set.

This exemplifies the following general problem: In any given point
on the boundary we will have to decide which ones of the bound-
attained variables that are to be included in the operation set. We can-
not always include in the operation set all the variables that are bound-
attained in a given point. Indeed, for effective computation we must
impose the condition that all the variables that are to be included in the
operation set, must be linearly independent. What is meant by this can
again be exemplified by the situation in the point B.
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Suppose for instance that there were two variables, say % and x,,
which are such that we always have

(3.3) x,=a+bx
where a and b are given constants. The meaning of (3.3) is that this
equation shall hold good — with the same constants a and b - regardless
of what values are chosen for the basis variables. In this case we will
say that x, and x, are linearly dependent.’

Further suppose that the two constants 4 and b are such that in the
point B x;=x" and x,=x," where x," is the bound which x; has reached
in B, and x," is the bound which x, has reached in B. This means that

(34) %" =at+bx’

® Hence
(3.5) (x—2x")=blx—x") (for all values of the basis variables).

In other words, to impose the condition that x, shall remain equal to
the value it has attained in B is in fact the same condition as to impose
that x, shall remain equal to the value it has attained in B (provided
b+0). These two conditions are in fact one and the same condition.
Or, geometrically expressed, the line TS is 2 double line, depicting at
the same time the condition x,=x," and x,=x.". In order to avoid com-
putational indeterminacies we must only include one of these two
bound-attained variables in the operation set.

In the general case where several variables are bound-attained in a

.given point, we must make a pick between the bound-attained vari-
) bles and only include in the operation set such bound-attained vari-
ables that are linearly independent. That is, variables such that there
does not exist between them any linear relation that holds good regard-
less of what values we choose for the basis variables. This illustrates the
first problem we have to solve in a point on the boundary: The inclu-
sion problem, i.e. what variables to include in the operation set.

In point S in fig. (2.1) a second type of decision is illustrated. Here
two variables are bound-attained, x, and x; X being bound-attained
along TS and x; being bound-attained along SR. And these two variables
cannot be linearly dependent (since the slopes of the two lines are dif-
ferent). Therefore, the requirement that the two variables shall be
linearly independent, does nor prevent us from including both of them

in the operation set.

* Or, more precisely, that x, is linearly dependent on x,.
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But there is now another consideration that prevents us from retain-
ing both of them in the operation set. If we did, we would by this fact
petrify the point S. We would not be able to move away from S. In-
deed, the two conditions that both x, and x shall remain constantly
equal to the values they assume in S, are sufficient to determine the
point exactly. But a mere inspection of the diagram tells us that if we
remain in the point S, we will not be able to reach the maximum in R.
Hence in S we are facing a new problem: The exclusion problem. In
S we have to drop one of the variables from the operation set. In the
simple case exhibited in fig. (2.1) it is easy to see from the diagram
which one of the two variables we have to drop. We must drop the
condition on x, (which compels us to move along TS) and only retain
the condition on x. (which compels us to move along SR). This decision
is simple in fig. (2.1), but in the general case we need a criterion for
which one (or which ones) of the variables to drop from the operation
set.

We now have to consider how the inclusion criterion and the ex-
clusion criterion can be formulated in the general case of n basis vari-
ables, i.e., n degrees of freedom.

4. Directional admissibility. The inclusion criterion
Suppose that from any given point x; we attempt to make a move
along a beam defined by any set of given direction numbers di (k=Dbas).

The meaning of these direction numbers is given by (3.2).
If the basis direction numbers are di, the increments of any of the

dependent variables x; are given by

(4.1) xj=x +Ad; (j=dep)
where
(4.2) d,'=k _2; ffkdk (j=dep)

This simply follows by inserting (4.1) into (r.2). The definition
(4.2) can be applied also to the basis variables x: if we adopt the con-
vention (1.3).

If x; is bound-attained in the point x°, the move will be possible only
if

non-negative when x7 is at its lower bound X
(4.3) d; is non-positive when x? is at its upper bound %;
arbitrary if x’is not at any of its bounds

If (4.3) is fulfilled for all j, basis-affix or dependent affix, the move
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considered is possible. In this case we will say that the beam defined
by the basis direction members dx is directionally admissible. (This con-
dition is not to be confounded with the point-admissibility expressing
that any given point, such as x; satisfies (1.4)). If there is at least one j
for which (4.3) is not fulfilled, we will say that the beam defined byd:
is directionally non-admissible. It is seen that (4.3) only imposes a
condition for the x; that are bound-attained. In other words, any x; that
:s not bound-attained, has by definition always an admissible direction
number.

Now suppose that we are in any given point x; on the boundary,
i.e., any point x; such that a certain number of the variables - basis
variables or dependent variables — are bound-attained. And suppose that
we attempt to move in a free preference direction, i.e., by putting
dw=pr. If by so doing, we find that one or more of the variables get an
inadmissible direction number, it seems indicated to include in the ope-
ration set at least one of the bound-attained variables with inadmissible
direction number. In order to avoid difficulties with linearly dependent
variables we will always include only one variable at a time. ‘We may
conventionally choose the one that has the most inadmissible direction
number, i.e., the one which has the largest absolute value of the (in-
admissible) dj. If there are several j which give this same largest ab-
solute value of the (inadmissible) dj, we may decide by a random draw-
ing. If we want to simplify, we could even decide by random drawing
amongst all the variables with inadmissible direction numbers, regard-
Jess of the absolute size of these direction numbers. In a regular run
of the algorithm we will most frequently only get one inadmissible
direction number — if any — so that the manner of choosing amongst
the variables with inadmissible direction numbers is not of great prac-
tical importance.

The above rule for deciding which variable to include in the opera-
tion set concerned the case where we previously had no variable in the
operation set. It is, however, easy to generalize the rule to the case
where we had already one or more variables in the operation set. To
explain this generalization we must now consider in more detail what
is meant by an operation set.

5. A preference move on the boundary

The fact that the bound-attained variables x; (i=a, ... 7) are in-
cluded in the operation set, means that for any further move we impose
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the conditions x;=x;", where xi" is the bound (either Xi or %;) which
the variable x; has reached in the point considered. This can be ex-
pressed by the equational constraints

(5.1) bia"';-z_‘bikxk=xi* (i=a, B8...7)

This represents » (linearly independent) equational constraints in
the movement of the point, » being the number of variables in the ope-
ration set.

If Y<<n—1, the conditions (5.1) do not determine the direction of
the move uniquely and we may add a supplementary condition. This
supplementary condition can be defined in a number of ways that all
lead to the same computational result. We may for instance say that
W€ want to proceed in a direction di which s the projection of the
preference direction p on to the manifold expressed by (5.1). Or we
may say that we want to maximize the increase in the preference func-
tion subject to the conditions (5.1). Or again we may say that we want
to determine a direction d, which satisfies (5.1) and has maximum
correlation with p: (over the field of variation k). In all these cases
we are led to the same solution, namely

(52)  de=pe+Biby (k=bas)

=g, .y
where B; (i=aq, 3. .. 7) are constant coefficients satisfying the » linear
equations

(5.3) M;o"‘fo- =0 G=a,8...9)
where

— SBoL. i=a, f...y
(54) M= Zbubn G=a 520

The coefficients B; are called the regression coefficients.

The matrix M;; of the equations (5.3) is positive definite (since it is
a moment matrix), and it is non-singular (since the variables in the
operation set are linearly independent). The solution of the equations
(5.3) is therefore a straightforward computational process.

The preference direction number do which expresses the increment
of the preference function along the beam d, defined by (3.2), i.e., the
constant d, such that

(s5)  f=f+id,
is equal to

[
(5.6) do T_;:;Plzdk
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We can prove that d, is always non-negative. If the basis direction
numbers are determined by (5.2), the direction numbers of all the
dependent variables follow from (4.2). It is, therefore, now possible
to say whether a certain operation set gives rise to a directionally ad-
missible move or not, according to the criterion (4. 3). For precision
we may now speak of directional admissibility with respect to the given
operation set.

If the move is directionally admissible, we take it as indicating that
there is no need to include any further variable in the operation set.
But if one or more of the d; are inadmissible, we include one (and only
one) of these x; with inadmissible direction number, according to the
. @ same rule as we formulated at the end of Section 4.

We now have a complete and unambiguous rule for inclusion: If
there is no need to include any more variables, we can make a pre-
ference move with the operation set considered. During such a move
the direction numbers of all the variables in the operation set are zero,
ie., di=o (i=a, # ... 7). And all variables that are linearly dependent
on the variables in the operation set, will also have their direction
numbers equal to zero.

We can proceed along the beam now defined until at least one vari-
able breaks out of the admissible region. Such a breaking-out variable
must necessarily be one whose direction number is different from zero.
The value igop of 4 which defines the breaking out point, is given by

@57 ew=Mind,
where
”;” if d>o
(s8) 4=
x: ';i’—‘f if di<o
— Wy -

By (5.8) 4; (necessarily non-negative if the point x7 is admissible)
is defined only for those j for which dj=o0. And by (5.7) Asop is defined
as the smallest of these i. There may be several j which produce this
smallest 4;, and if so, all of these variables x; will simultaneously be
breaking out variables.

If the preference direction number do=>o (it cannot be negative),
the preference function will actually increase during the move con-
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sidered. The new point is determined by putting A=Aue in (3.2) and
(4.1).

In the case of a strictly linear preference function we will always
find that the breaking out variable has an inadmissible direction number
with respect to the operation set through which we arrived in the
breaking-out point in question. If there are several variables which
are simultaneously breaking out variables, they will all have inad-
missible direction numbers with respect to the operation set through
which we arrived in the point considered. Therefore without making
any directional admissibility analysis in the new point, we can just as
well immediately include one of the breaking out variables in the
operation set.

In the mixed linear and quadratic case (as well as in the stricﬂ’
quadratic case) it is no longer true that a breaking out variable will
get an inadmissible direction number with respect to the operation set
through which we arrived in the point considered. Nevertheless, it will
not do any great harm if it is included in the operation set, since we
will by the exclusion criterion get rid of it again if it does not belong

in the operation set.
We must now consider the exclusion criterion in more detail.

6. A sufficient optimality criterion. The exclusion criterion

Our exclusion criterion will be worked out by considering the cri-
terion for optimality.

Consider a point x& which is admissible, i.e. satisfying (1.4) and suc‘*‘
that in this point the (linearly independent) variables x:i (i=a, ... 7}
are bound-attained, and further such that all the corresponding regres-
sion coefficients defined by (5.3) are sign correct in the sense that

(6.1) B is [non-negative when x; has hit its lower bound x:
' ' non-positive when x; has hit its upper bound %;

It can be proved that this point is an optimum point in the sense that
the value which the preference function assumes in such a point can not
be surpassed in any other admissible point if the computed do is o.

This suggests a rule for excluding variables from the operation set:
We exclude all variables which do not have a sign correct regression
coefficient.

We now also have a complete and unambiguous rule for excluding

variables from the operation set.
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We can further prove that in the optimum the preference direction
number do is exactly zero, while if d, is not zero, we can not be in an
optimum point, and can make a move which will increase the pre-

ference function.’

2. The algorithm in the completely linear case

The above considerations lead to the following algorithm which tells
us what to do when we are in a certain point X; and are in possession of
a certain operation set x: (i=aq, g...7):

I If not all B are sign correct: Drop from the operation set all x;
with sign incorrect Bi.

If all B; are sign correct: Compute the corresponding basis direc-
tion numbers di and the direction numbers d; for the dependent
variables. If at least one of these direction numbers are inadmiss-
ible, include in the operation set one (and only one) of the vari-
ables with inadmissible direction number, according to the rule
at the end of Section 4.

I[II. If all the B;: are sign correct, and all direction numbers are ad-
missible, and the preference direction number d, is strictly posi-
tive, make a preference move and determine the breaking-out
point by (5.7)-(5.8). We have now actually changed the point,
while in the cases I-II we have only made preparatory operations
without changing the point.

ﬁ} ) In the new point we can start by an admissibility analysis with
respect to the operation set through which we arrived in the
breaking-out point considered, and decide by rule II if any new
variable is to be added to this operation set. There is, however,
_ neither in the strictly linear nor in the mixed linear and qua-
dratic or strictly quadratic case -~ no harm in proceeding in a
simpler way, namely simply adding the breaking out variable (one
of them, if there are several) to the operation set. If this variable
does not belong in the operation set, it will subsequently be
thrown out again by the exclusion criterion I

IV. If all B; are sign correct and all direction numbers admissible and
do=o0, we are in an optimum point. (In this case it will turn out
that all i and hence all d; are zero.)

 Compare Section 10 of the Tokyo-paper.




This algorithm covers all cases, and does so in an unambiguous way.
We can therefore proceed according to this algorithm round by round
until an optimum point is reached.

8. The gradient phase in the mixed linear and quadratic case

We will now consider what modifications in the algorithm are needed
in the case where the preference function contains one or more qua-
drato variables.

In this case we simply start by a phase of the algorithm where we
proceed round by round in exactly the same way as in the strictly linear
case, with the following two modifications:

I. The preference gradient f, in any point x| that is the starti
point for a preference move (r="round No.”) is not put equal to the
constant gradient pe, but is determined by (1.7). This means that the
direction numbers di — or, more precisely, d, — will also depend on the
starting point x,,.

II. In addition to the parameters i; defined by (5.8) we now com-
pute the parameter

= fid
A k= bas

(8.1) fo= S = P ad

< - KH "k *H

K=quad H=quad

where f; is the preference gradient in the starting point x; for the pre-
ference move. And we let this 1, compete with the 1; - defined by
(5.8) - when we look for the smallest of the parameters 1. This is dof@®
in order to cover the case where the highest value of the preference
function along the beam may occur somewhere before we reach the
breaking out point. In the strictly linear case, this possibility did not
exist.

The phase of the algorithm where we proceed round by round in
this way, may be called the gradient phase, or the gradient method.
It is possible to continue all the time by the gradient method. If we do,
the algorithm will converge towards the solution. But it may - and in
general will — do so only through an infinite number of rounds. To
ilustrate that this is so, consider the case where the actual optimum
point is situated somewhere in the two-dimensional plane generated
by the two basis variables x. and xu.

Fig. (8.2) illustrates the contour lines of the preference function as
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From the point B we wijj _ according to the gradient methoq de-
fined by I and II above - again move along the Preference gradient,
and thys jp, fig. (8.2) reach the new point of tangency C. From this
point we will again move orthogonaHy to the contour line apd thus
reach the pojne D. And o on. ‘ |




wards the optimum point R. But we will not — except for an improb-
able coincidence — reach the optimum point R exactly in a finite number
of steps.

It may happen that the admissible region has such a shape that dur-
ing this process we will in one of the rounds not be stopped by a point
of tangency (i.e. by the fact that 4, is the smallest of the A’s), but by a
breaking-out (i.e. by the fact that one of the 4; is the smallest of the
#’s). Such a breaking-out will, however, cause no trouble in the con-
vergency. If it happens, we only have to continue according to the same
gradient method, that was defined by I and II above. As long as the
optimum point R is situated in the interior of the admissible region, the
process will always converge towards this optimum point.

If we follow round after round the gradient method and we discover @

that the operation set remains stationary (i.e. with exactly the same
variables in it) at least for a few rounds, we can suspect that we have
reached a boundary manifold which is such that the optimum point is
situated in it. And if not only the operation set remains stationary, but
it also happens round after round that 4, is the smallest of the 4’s, we
may suspect that the optimum point is located in the interior of the
admissible region in the manifold defined by the stationary operation
set, i.e., that we have a situation similar to the one exhibited in fig.
(8.2). In this case we may say that we have a tangentially stationary

operation set.
If the suspicion of a tangentially stationary operation set is correct,

it is possible to switch from the gradient method to another method o

which will bring us directly, i.e, in a single round, to the exact
optimum.

9. The maxidirection phase in the mixed linear and quadratic case

If the suspicion mentioned at the end of Section 8 is correct, we can
obviously reach the optimum point in one stroke simply by disregarding
the conditions expressed by the admissible region, and determining the
point x2* that will maximize the preference function under the linear

constraints

(9.1) bio‘tggixxxt:\iﬁKXK=xr (i=a, B...7)

These constraints express the conditions that each of the variables x:
(i=a, B ...7) in the (stationary) operation set shall remain constantly
equal to the bound x:* on which this variable remained during the
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rounds of the gradient method that brought out the tangential statio-
nariness of the operation set.

Proceeding in this way means that instead of continuing, say from the
point C in fig. (8.2), along the gradient in C, we proceed now along a
beam that leads directly towards R.

The way in which the x{** are determined, is discussed in detail in
Section 8 of the memorandum of 27 August 1960, and will not be
further considered here.

When the x2* are computed, the basis direction numbers d; to be
used when moving from the point xj, (the last point known in the
sequence of rounds where the operation set remained tangentially sta-
@tionary), are defined by
(92)  di=x¢—x

Apart from the special definition (9.2) of the beam along which the
move is made, we proceed exactly in the same way as described under
I and II in Section 8. The move is now called a maxidirection move.

If during this move 4, turns out to be the smallest of the 4’s, we will
actually reach the optimum point. In this case this smallest 4 will -
apart from rounding errors — be exactly equal to 1 (if rounding errors
occur, we modify the value so that it becomes exactly 1).

The problem will now be solved, and a new round, No. r+1 — the
optimum test round — will only confirm that the optimality criterion is
now fulfilled, i.e., that d** =o and all d;"* =o and hence all 47" =o,
within rounding errors.

If, on the contrary, we are during the maxidirection move stopped
by a breaking-out (i.e. if one of the /; turns out to be smaller than 4,),
no harm is done. We now simply continue by the gradient method
from the breaking-out point reached, and proceed round by round by
the gradient method until we reach a new tangentially stationary ope-
ration set, and again can make a maxidirection move.

The occurrence of a breaking-out during a maxidirection move is in
practice very seldom if the operation set from which we started was
tangentially stationary during several rounds.

10. The prospective form and the stage form

Under favorable circumstances a considerable saving in computa-
tional cost can be achieved by using a refinement which may be called
the prospective form of the multiplex method. It consists in using cer-
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tain criteria which permit us to conclude that during a given preference
move there are certain variables that cannot become breaking-out
variables. This being so, we may save the computation of the direction
numbers d; for these variables. In big problems, particularly in problems
with many dependent variables, this may mean a considerable saving.

The details of the prospective form of the method are discussed in a
memorandum (in Norwegian) of 20 October 1960 from the University
Institute of Economics, Oslo, and will not be further discussed here.

There is also another refinement which may be mentioned. It is
possible to impose the condition that one is never allowed to solve any
regression equation system - nor any other linear system - of higher
order than a given number x. This number x# may be fixed by col)
deration of the capacity of the automatic computer, or by the desire
not to work with desk computers on linear systems of too high order.
It is possible to proceed in this way if we change the composition of
basis set each time we reach a situation where we would in the straight-
forward method have needed to consider a linear system of higher
order than x. This procedure may be called the stage form of the mul-
tiplex method, the consecutive rounds where the content of the basis
set is not changed, being called a stage of the algorithm.

The details of the stage form are discussed in a memorandum (in
English) of 19 October 1960 from the University Institute of Eco-
nomics, Oslo, and will not be further discussed here.

11. Non-linear bounds )

In all the preceeding parts of this paper we have assumed that the
bounds are linear. Indeed, inserting (1.2) into (1.4) we see that these
bounds appear as inequalities between certain linear functions of the
basis variables.

If we drop the assumption of linear bounds, the problem becomes
considerably more complicated. In the most difficult case the admissible
region will now appear as non-convex. But even if the admissible re-
gion remains convex, a considerable complication is introduced.

The essence of the problem will now consist in defining in a plausible
way a one dimensional path which is situated in a given »-dimensional
part of the (non linear) boundary, and which is such that by following
this path, we will increase the preference function. I have given some
thought to this problem, but not yet reached conclusions which warrant
publication.
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