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QUADRATIC PROGRAMMING BY THE MULTIPLEX
METHOD IN THE GENERAL CASE WHERE
THE QUADRATIC FORM MAY BE SINGULAR

by

RAGNAR FRISCH

In previous memoranda from the Oslo University Institute of Economics some
preliminary attempts were made to apply the multiplex method to quadratic pro-
gramming.”  Other preoccupations prevented the completion of these attempts.
Recently I have taken this problem up again and have clarified it to a point where
an algorithm for solution can be indicated.

For practical applications in the macroeconomic field it is absolutely essential
to have at hand a method by which one can handle the general case where some
of the variables enter only linearly in the preference function and where furthermore
the matrix of the quadratic form for the variables that do enter quadratically, may
be of a lower rank (sometimes of a much lower rank) than the number of degrees
of freedom in the problem.” Most of the discussions in the sequel have, indeed,
been necessary only in order to cover the perfectly general case.

1. Definitions and symbols

We consider N=m+n variables x;(j=1,2,---, N) satisfying the m basis equations

(1_1> x]:b]0+ Z bjkxk (j:l’ 2,"')“, -v’...’w (...N)
k=u-w

where xi(k=u, v, -, w) are n=N—m basisvariables. The inverted parenthesis to the
right in (1.1) denotes “exclusion of u,v...tww”. Whatever the values of the bjo and
bix in (1.1) the set of variables considered has degrees of freedom.

If by convention we put

1) In particular 15 November 1956 : “Kvadratisk preferansefunks jon bestemt ved intervjudata
og anvendt for konveks programmering” and 21 January 1957: “The multiplex method
for linear and quadratic programming”.

A technique for determining the preference function in the non-linear case is discussed
in 14 February 1957: *“Numerical determination of a quadratic preference function for use
in macroeconomic programming” (will be printed in the volume in honour of Professor
Gustavo del Vecchio.)

2) This is why for instance the Houthakker method (Econometrica, January 1960) is not

.

applicable to the type of problems I consider.
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(1.2) bio=0 br=en=| 5 =k o] when j=u, v, - w

the equations (1.1) will hold for all j=1,2,--, N, but, of course, only N—n of these
equations are linearly dependent.

The variables are bounded by the conditions

(1.3) z; 22,2 Z; (j=1,2,-+,N)

where the z; are arbitrarily given lower bounds and the Z; arbitrarily given upper
bounds. Some of the z; may be —oo and some of the Z; may be +oo. This
simply means that the bounds in question do not exist. For many reasons it 1s
much better to handle the problem in this general formulation of the bounds, than
to transform it to a non-negativity form for all the variables.

The preference function is taken in the form

(1.4) f=po+ Z kak”‘% Z Z Prn T Tn

k=u-w k=u-w h=t-w

where po, the pr and the pin are given real constants. The constant po is unessential
for the problem, but is written for the sake of formal completeness. Any of the
coefficients pr may be positive, negative or zero. The matrix pin is assumed non
negative definite but not necessarily non singular® That is to say, the quadratic
form expressed by the double sum in the right member of (1.3) can never assume
a strictly negative value when the zx are real, but it may assume a zero value for
one (or more) sets of values zx even though not all the x: in the set are zero. If—
and only if— a zero value of the form can be produced by a set xx where not all
zx are zero, the form is singular. Otherwise it is nonsingular.

2. The desingularized preference function with or without lineo-variables

For the reasoning in the sequel it is useful to state briefly some classical facts
from the theory of quadratic forms.

If the matrix in the right member of@ is singular, say of rank r<lz, it is
always possible to perform a linear and non-singular real transformation on the
variables, i.e.

(2.1) Vi = Z axn XTn (k=u, -, w) |ain] %0

hA=u--w

such that the quadratic form in (1.3) after the transformation appears as a non-
singular form that contains only some of the yi, namely precisely r of them. It 1s
even possible to do this in an infinity of ways, i.e. there exists an infinity of non-
singular real transformations ax. that have the property in question.

This is only another aspect of the classical fact that it is always possible by a

1) The term “definite” is here used in the same sense as in Maxime Bocher * Introduction
to Higher Algebra”, 1922, § .52, that is, definiteness is not taken to imply non-singularity.
If definiteness is taken to imply non-singularity, the case of Bocher-definiteness and non-
singularity is usually termed semi-definiteness. Definiteness and sigularity are two rather
different features and should be handled as such. A form that is (in the terminology of
the text above) non-negative definite and non-singular, may be called strictly positive de-
finite, or shorter positive definite, while a non-negative definite form may or may not be
singular.




RAGNAR FRISCH 285

non-singular real transformation to bring the form over into a sum of squares taken
with certain constant weights (a principle axese transformation), i.e.

(2.2) Z Zpkh Ik Tn= Zzn Yn
k R h

where the 4, are constant weights.

Although the value of the weights 2. will depend on the specific properties of
the transformation chosen, the number of them that are positive, the number of
them that are negative and the number of them that are zero, will always remain
the same. These three numbers are algebraic invariants characterizing the structure
of the matrix axn. (The law of inertia of real quadratic forms).

The non-negative definiteness of the matrix is characterized by the fact that in
the weighted sum of squares obtained there are no negative terms—i.e. no negative
weights An—.

The rank r is the same as the number of weights that are different from zero.
Hence in the case of a non-negative definite form, the rank is the same as the
number of weights that are strictly positive.

Furthermore, if there are no negative weights, we see immediately that the
minimum of the quadratic form is obtained by putting all the y¢ that occur with
strictly positive weights, equal to zero and leave the other yx free. This way of
disposing of the yi is tantamount to defining a linear manifold of dimentionality
(n—7) in the zx space. Exactly the same reasoning applies if the original form is
reduced to any non-singular form in the y: (not necessarily a sum of squares as in
(2.2)). Hence the set of points where a non-negative definite quadratic form in the
2 reaches its minimum has (n—7) degrees of freedom in the zw. If r=n, there is
only a point where the minimum occurs.

A further classical fact is that there even exists (at least) one orthogonal trans-
formation which carries the quadratic form over into a weighted sum of squares as
in (2.2).

The orthogonal specification means

(2.3) Z arg dgn=ewmn=1 if £=0, but otherwise 0, where d,,=an,=transpose of ay.
g=u-w
Such a transformation is necessarily non-singular since by (2.3) |a|-|a|=|al*=
le] =1. Furthermore its reciprocal is simply equal to its transpose which is recog-
nized by multiplying (2.3) by «; and summing over Z.
If in the original quadratic form we insert the expressions for the z» in terms

of the yi, we get ZE_Z Prn sk am-j[ytyt.. If this shall be of the form th i where
kh t

st
the 2, form a set of so far unspecified constant weights, we must have

(2.4) Zplch ask ain=-est 4
K

Inserting in the right member of (2.4) for es. the expression taken from (2.3),

namely stk aw, and substituting Zekh ain for aw, we get
k h

(2.5) Z(th—lz exn)ask an =10
kh
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For any fixed # we may look upon (2.5) as a linear system stk Uc=0 to de-
k

termine the unknowns Uk:Z( prn— 7 exn)an. Since ask is non-singular, the solution
h
is Ux=0 for all %, hence

(2.6) Z(pkh——ll exn)a=0 for all ¢ and .

For any given ¢ this is a linear system to determine the aim. A solution where not
all a. are zero (which is obviously necessary for the non-singularity of the matrix
a:n) is only possible if the matrix of (2.6) is zero, i.e.

2.7 Determinant | Prn— 4 exn| =0

Hence, if an orthogonal transformation to a weighted sum of squares is possible
(which we know it is), the weights 4, must be the characteristic roots of the original
matrix pn.

If the roots of (2.7) are single—which is equivalent with the rank of the matrix
in (2.7) being (n—1)—the system (2.6) determines the characteristic vectors ain
uniquely, apart from an arbitrary factor depending on ¢ but not on 4, and this

factor is finally fixed by the condition ZaEhZI derived from (2.3). If some of the
h

roots of (2.7) are multiple, the rank of the matrix in (2.6) for some ¢ becomes
lower than (n—1) (note the difference between the rank of the matrix in (2.6) and
the rank of pi.). Such multiplicities produce an indeterminateness in the orthogonal
transformation. In practice one will frequently have extreme cases of near multi-
plicity, ie. a very high degree of indeterminateness in the principal axes. A strik-
ing example is given in (2.22)-(2.26) of my “ Statistical Confluence Analysis”, Oslo,
1934.

The fact that some of the characteristic roots coincide, has no effect on the
rank of the quadratic form or on the possibility of reducing it to a weighted sum
of squares. It only means that the orientation of the principal axes is to a certain
(and sometimes large) extent arbitrary. The extreme case is that where the original

form is simply the unweighted sumsquare Zri
k

The connection of the orthogonal transformation with the extremum problem
for the quadratic form over the unit sphere is fully—and in very simple terms—
discussed in Sections 10 and 11 of my “Maxima et Minima”, Paris 1959.

In the sequel we will not be particularly interested in the reduction to a
weighted sum of squares, but only in the fact that a reduction to a non-singular
form is possible. The possibility of this reduction is expressed by the identity

(2.8) Z Zplch Xk xh:Z Zp;c"yx VH . identically in al xu, x», -**, Tw
k h K H

where £ and A run through the n affixes «, v, ..., w, and K and H through a subset
U,V,--,W of u,v,--,w. The number of affixes in the set U, V,---, W is equal to
the rank of the matrix prn.

The connection between the xx and the yi in (2.8) is given by the non-singular
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transformation (2.1). A simple substitution for the uxx using this transformation
shows that

(2.9) PKIIIZ Zp;m Ak Any
P (/,b/)

When this transformation is made, the total preference function (I3, assumes the
form

) X 1
(2.10) f:Po+Z PA:y/.—.—-_Z“Z ZPKﬂyKyH
k H

K
where % runs through all the n affixes #,v,---,w and K and H through the subset
consisting of the » affixes U, V,---, W.
The P are given by

(2.11) Py= Z Praik (k=u, v, -, w)
h=u-w
The above transformation only concerns the basis variables in the original
problem. All the dependent variables z; (j=1,2,-*)u, -, w(---, N) are retained, but
their expression in term of the new basis variables y: (k=u, v, --, w) must be deter-
mined.
A simple substitution in (1.1) gives

(212) z=bpt ) biem (=1, 2, -ty =, (-, N
k=u-w

where
; i1 2 ey e (e N
(213) b:;k: Z bj/’/a’_l,‘k (] 5 & Ju, ,w( 5 )
k=u-w

(k:u? v? ...7 w)

If the original programming formulations contained bounds also for the original
basis variables (which will usually be the case), we must continue to consider them
in the new formulation. That is, we must now introduce as n new dependent
variables

(2.14) xj= Z a3k Yk (j=u, v, w)

This being done, we must continue to take account of all the 2N bounds (1.3).
But for the new dependent variables y:, there are no bounds, unless there should
for concrete reasons be necessary or desirable to introduce special bounds also for
them. To cover the most general case we will reckon also with such bounds.

It will be seen that the whole problem is now in exactly the same form as
originally formulated except for the following two features :

First, the quadratic form in the preference function is now positive definite and
non-singular.

Second, the linear part of the preference function may contain more basis
variables than the quadratic part. This is a fundamental aspect of the problem
which must be considered in realistic programming.

The basis variables that occur in the (non-singular} quadratic part of the pre-
ference functions—and possibly also in its linear part—we will term the quadrato
variables.
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And the basis variables that occur only in the linear part, but not in the quad-
ratic part, we will term the lineo variables.

With a slight and obvious change of notation we can now reformulate the
problem as follows :

Let z; (j=1,2,+---,Nj be N variables, bounded by (1.3).

We assume that the variables have n (ZN) degrees of freedom and that within
this domain of variation the n variables zx (k=u, v, -, w) are linearly independent.
We take them as basis variables and express all the other variables in term of these
basis variables. Assuming the relations to bz linear, we can put them in the form
(1.1).

We consider a preference function of the form

(2.15) f=pot+ Z Pe Tt Z PKxK_%' Z Z Pruxx xun

= U W (w K=U-W K=U-W H=U-W

where Pxu is a strictly positive definite—i.e. positive definite and non-singular—
matrix of order »=n. Obviously it does not restrict generality if we assumz Pxu
to be symmetric. If it were not, we could interchange the summation affixes K and
H and take the arithmetic average between the two expressions obtainel.

The r variables zx (K=U, V,---, W) are the quadrato variables, and the (n—rj
variables z. (k=u, v, --)U, ---, W(---, w) the lineo variables. The total szt of n vari-
ables xx (B=u, v,--,w) are the basis variables.

As a special case there may be no quadrato variables. As another special case
there may bz no linzo variables. In this case (2.15) will be said to be linzo empty.

The problem is to maximize (2.15) subject to the conditions (1.3). In this for-
mulation the problem is quadratic in the preference function but linear in the
bounds. Since the bounds are linear, the -admissible region is convex, which, of
course, is a fundamental simplification of the problem.

The form (2.15) may be called the desingularized form of the preference func-
tion.

A simple example will show how necessary it is to desingularize the preference
function and to take full account of the distinction between lineo and quadrato
variables.

Suppose we start from the formulation (1.1)-(1.2), and that our preferences are
only concerned with one specific of the variables, say xz; and that the preference
function depends quadratically on this variable, i.e.

1
(2.16) Jf=potpxs ——Z—Px?,

where po, p and P are given constants, P strictly positive. If z; happens to be
amongst the basis variables, the form (2.16) is a natural starting point for the
analysis. But if xs is one of the dependent variables, and the preference func:ion
is expressed in terms of the basis variables, we would gzt a preference fuaction of
the form (1.4) where the matrix pu. is very singular. It would, indeed, only be of
rank 1, and before any useful computations could bzgin, we would have to procesd
to a more natural formulation.

In other more complicated cases there may be other special sets of variables
that enter, in part linearly and in part quadratically. By introducing the desingu-
larized form (2.15), we clear the ground for effective computation.
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3. The unconstrained maximum of the preference function

Let us first consider the problem of maximizing the preference function (2.15)
without any constraints, neither in the form of equations connecting the basis
variables, nor in the form of the inequations (1.3), expressed through the basis
equations (1.1).

A first remark is that if at least one lineo variable occurs, the maximization of
/ has no proper meaning, because in this case f can be rendered arbitrarily great.
Indeed, in this case we can choose any arbitrary values for the quadratic variables,
keep these values constant and either increase ad infinitum one or more of the
lineo variables with positive preference coefficient p., or decrease ad infinitum one
or more of the lineo variables with negative p.. Or we can do both.

In order to give a meaning to the maximalization in this case, some sort of
specification must be introduced.

We do it by saying that we attribute some arbitrary and fixed values to the
lineo variables and then proceed to the maximization, considering all the quadrato
variables as independent. This leads to a uniquely determined maximum. And the
maximum value of the preference function will be a linear function of the lineo
variables.

Indeed, letting partial derivatives be denoted by subscripts, the first order condi-
tions for a maximum are

(3.1) ZPKII Tu= pk (KN=U,---, W,
H
Since Pkn is non-singular, this leads to the solution
(3.2 x?,es:ZP,‘,‘KpK (H=U,---, W)
A

The superscript des indicates ““desired ”.

Since Pxy is strictly positive definite, we certainly have a maximum, neither a
minimum nor an indefinite situation.

The maximum value of the preference function is

. X 1 7
(3.3 fdes:I:Po—Ez ZPZ-}; PKP/IJ%T"Z/), e
K T &

where the &, are the chosen values of the lineo functions. If there are no lineo
functions, the bracket in (3.3) gives the uniquely determined maximum value.

4. The single step building up of the inverse of a symmetric matrix

Before proceeding to the discussion of the maximization of :2.15) under a set
of constraints in the form of linear equations we need to indicate two computational
techniques that are particularly useful in handling linear equations and linear de-
pendencies. The first is a technique for building up the inverse of a symmetric
matrix, the second a tool for determining the rank of a matrix and reducing it to
a non-singular form. The former of these techniques will bz discussed in the present
section and the latter in sections 5 and 8.

Suppose we start from a symmetric, non-singular matrix

’ . i:a)|3$ R 7‘\
(41) ain (h:a, ‘B, ...,T)
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whose inverse

(4.2 Au=ai! hoag ol
is known.
We also assume that the determinant value of (4.1)
(4.3) A: ‘aih!
is known.
The data (4.2)-(4.3) are recorded in the upper part of a table built like (4.5).
A numerical example is given in tab. (4.26).
Because of the symmetry we only need to record the elements in the upper
right triangle including the principal diagonal.
The row sums

(4.4) Av= ) Au (i=a B, 1)
h=a-p
are also indicated. When computing them we work along the “angle-road”. That
is to say, we start from the top of the column that corresponds to the row for
which we want to compute the sum. We work vertically downwards to the diago-
nal, include the diagonal element and then continue horizontally and finish b, re-
cording the total A:. in its proper place on row i.

The determinant value 4 is recorded in a separate cell on the row 7 and below
the text indicating the level a, ---y. To the left of this text column is a column
for zero checks which are not used when the inverse elements on the level a, 5oy
are given, but whose analogue is used in the matrix on the next higher l:vel a, 37,0
—compare (4.16) and (4.19). For the sake of standardization of the work sheets,
this zero checks column is included also in the datum table a, By from which we
start.

The same applies to the bottom row “Final checks”.

The original elements ain (i=a, B, -, 7, h=aq, 3,--,7) are not indicated in tuab.
(4.5), only the new column ai; that defines the enlargement of the matrix. The new
column ¢ is the same as the new row. These data are recorded in the detached
column * Original column 6” to the right in the upper part of the table. In larger
matrices it is frequently adviceable to record each column in the original matrix
separately. Or one may fold the table of the complete matrix and use this fold:d
sheet instead of the detachzd column indicated. In electronic computaiion something
analogous to the separate column recording is always used.

Summary

The following is a summary of the successive steps and the formulae to be
used. The Arabic numbers of the formulae indicate the order in which they are to
be used. These numbers are also indicated in the lower part of tab. (4.5):

I. 4.6), 4.7) with check (4.8).

II. (4.9) with two signatures.

III.  (4.13), (4.14), (4.15) with check (4.16).
IV. (4.17), (4.18) with checks (4.19).

V. (4.20) with check (4.21), possibly (4.22).
VI. (4.23) with check (4.24).
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Tab. (4.5) Singel step building up of the inverse of a symmetric matrix
A numerical example is given in tab. (4.26)
| 0 Rew | zer | | Original
h=«a B A 7 Row : Zert;( column
i | | sums chocks K
!
iI=xa N ¢
ﬁ o ¥
I . . Level
Ain A;. ! aﬂ'“r !
. H ais
|
i
{ ;
r 4 T
Final : “ 5
' checks - i
E’fte“'j Ch (4.6 <_ C, Check 48 y ; Signat.ﬁ ;v T :
51§n h (4.6) 4.7) (4.8) 4 (4. Signat. \ Auxiliary rowz
: sums used for!
h=a 3 7 3 L Zero final checks
) sums checks
’ i=a ! L a ‘
B F
o 2, (4.17) AL AL
(4.14) | (4.18) (4.19) i
Level | : :
o © o (4.20)
afB--rd
s .
: A? LI : 3
d %9 As. . (4.16) d
1 (4.13) (4.15), (4.23)
i+ i H
Final (4.22) (4.21) " Check
checks ’ : i (4. 24)
i i
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In the sequel these computations I-VI are explained in detail. The lay out is
very mechanical and the explanations are given in such a way that they can easily
be followed by a semi-trained computor without supervision of a qualified mathe-
matician. If the checks are carefully followed, the computations are absolutely safe.
Otherwise they are not.

Only the practical computation rules are indicated, without proofs. The proofs
follow most easily by using Sylvester’s formula for the minors in the adjoint of a
given matrix.?

*

We start by adding a row—the row “Extension 6”—which may be looked upon
either as an additional bottom row on the level («, B, ---,7), or, perhaps more logically,
as a top row on the level (a,B,:,7,0) as is done in tab. (45). On this row we
record the elements C, (h=a, B, --,7) and C. computed by the formulae

(4.6) Crh=— Z aisAin (h=a,B, -, 7)

i=aey

@7 C== ) and:
i=a.y
In making the computations (4.6), we use the elements A from the angle-road
that starts at the top of column % in the upper part of the table. The elements ais
are taken from the detached column to the right.
This computation of all the C» and C. is checked by

4.8) ), Gi—c=0
h=a..y
where the Cr and C. are now taken from the recordings in the row “ Extension 6.
Because of rounding errors the expression (4.8) may not be exactly zero. The
value actually obtained is recorded in the cell to the right of C..
When (4.8) checks within rounding errors, we compute the item

4
(4.9) I Z Crans+ass
h=a.r

. .4 . .
At this stage the ratio 7 s looked upon as a single figure defined by the right mem-

ber of (4.9).

The part of the computation which is defined by (4.9) is of strategic importance,
and no simple sum-check is here available. The result from a first computation
according to (4.9) should be recorded in the cell indicated to the right on the row
“Extension 6” and the operator who makes the computation should put his signa-
ture in the upper half cell “Signat.” to the right of the item (4.9) recorded.

When this is done, another computor should perform the same operation (4.9)

and at the end (without taking a total) enter in the machine the previously computed
)

item — as it is read off from the recording in the table, taking, however, the item

1) Sylvester’s formu'a is stated in simblz tzrms i5 (13.41) i1 my * Maxima et Minima ”, Dunod,
Paris 1959.
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with its opposite sign.  Only now a grand total is taken. If this total is exactly
zero (with no rounding error in the digits recorded), the second operator enters his
signature in the lower half cell “Signat.”, below the first signature.

The fiilling in of the elements in the enlarged inverse can now begin. These
elements are denoted

(4.10) Al =inverse elements in the matrix
obtained by adding the row 6 (}ll:“, .g, T 43)
and the column § to the ori- TOE L0

ginal matrix

(4.11) A=) A,
h=a--<7'6
(4.12) 4’ =determinat value of the matrix

obtained by adding the row o
and the column d to the origi-
nal matrix.

We first fill in the bottom element Aj; in the last column in the enlarged inverse.
It 1s computed by the formula

1
(4.13) Aly=7—7

T

yi}
where the denominator (7) is the element recorded (and double signed) to the right

on the top row in the lower part of the table.
The rest of the elements in the last coulumn of the enlarged inverse are now
computed by using A, as a fixed factor in the formula

(4.14) AL=C:iAl, (i=a, B)

Here C; is taken from the cell No. 7 in the top row in the lower part of the
table and the results A% is recorded on row 7 in the column in the lower part.
We also compute

(4.15) az=¢tl

64'_<£
7)
and record the result in the cell to the right of A3,
The sum in the last column in the lower pant is now checked by

(4.16) Z Al — A2 =0
i=amgs

The sum in the fiirst term of (4.16) is taken straightforward as the sum of the
recorded elements in the column 4 in the lower part of the table, and A? in (4.16)
is taken as the element now recorded to the right of A, The value obtained for
(4.16) is recorded in the zerocheck cell to the right of A% This value should be zero
apart from rounding errors.

The elements in the triangle outside the last column in the enlarged inverse are
computed 70w by row according to the formula

P . i:a’ ﬁ’ ...) r
(417) Afh. —azh,"‘_ch.Agﬁ (h:a, ﬁ, .-l T)



294 THEORIE DE L’ INFORMATION

On any such row 7 one only needs to compute the diagonal element A} and the
elements to the right of this diagonal element.

For each row i the element A% to the right in (4.27) is a constant factor read
off from the now recorded element on row 7 in the column 4§ ine the lower part of
the table, while Ci is a wvariable factor read off as the Ci element that is situated
in the top row and in the same column as that where the element Al is to be
recorded.

Another formula is obtained by interchanging ¢ and & in (4.17). It contains a
constant element C; and a variable elerment A%,. This formula is not so convenient
when the work sheet is taken in the form (4.5).

For each row 7 one also computes the element Aj. by the formula

(4.18) Al=A.+(C.+1A; (i=a,B,-,7)

In the right member of (4.18) the item A:. is taken from the column “Row sums”
in the upper part of the table, and C. as well as A} from the column 6 in the lower
part. The latter column is situated directly under that where A:. is found.

The values obtained for the right member of (4.18) is recorded in the column
“Row sums” in the lower part of the table.

This being done the computed elements A, (h=a,8,--,7,0) on row i are checked
by
(4.19) Z Al,—AL=0 (i=a, B, -, 7)
h=a..78

The elements in the summation over 4 in (4.19) are taken from the angle road
that ends with the element A?%. The value of (4.19) is recorded to the right of
the element A%. It should be zero within rounding errors.

All the elements in the inverse on the level («, B, -, 7,0) have now been com-
puted, and they have been checked step by step.

A final aggregated cheek is obtatined by first computing the auxiliary sums

(4.20) ai.= Z ain (i=a, B,-,7,0)
h=a..7s
These auxiliary sums can be recorded in the column to the extreme right in the
lower part of the table. The final check is performed by

(4.21) Z ai. Al —(v+1)=0 where u-{—l:unmberNof affixes

) in the set a, B, -, 7,0.
i=a..7é

The elements A% in (4.21) are read off from the colum “Row sums” in the lower
part of the table, and the a:. from the muxiliary column.

The value obtained for (4.21) is recorded in the cell on the bottom row and in
column 4. This final check should be made in all cases.

If more detailed final checks are wanted (for instance when locating an error),
one may use

(4.22) Z ainAj.—1=0 for each h=a,8,---,7,0.

i=q...78
If this type of checks is used, the value of (4.22) is recorded in column A of the

bottom row of the lower part of the table.
One could use a check for each separate i and %, but this would involve a
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number of multiplications of the same order as that needed in an independent inversion.
The determinant value 4° is computed by
s
(4.23) m:4<j>

3

where 4 is read off from its place in the upper part of the table, and (7) from the

last cell in the top row of the lower part.

The value 4° as computed by (4.23) is recorded in the cell to the right of the
check (4.16) on row ¢ in the lower part.

The value thus recorded is checked by computing

4
e 6:
(4.24) N =0

In this formula 4 is taken from its cell in the upper part of the table, A}, is
taken from its cell in the lower part and 4° from the item just recorded on row J in
the lower part. The value of (4.24)—which should be zero, apart from rounding
errors—is recorded immediately below the recorded value of 4°.

The computation and checking of the inverse on the level (a, 8, ---,7,0) and of
the determinant value 4° is now completed.

The following is a numerical example of the technique described above.

A nwmerical example

Tab. (4.25) gives a 5-rowed symmeltric matrix of original elements a:;, and the
upper part of tab. (4.26) gives the inverse of the matrix consisting of the first 4 rows
and columns of tab. (4.25) as well as the determinant value of this 4-rowed. The
lower part of tab. (4.26) gives the inverse of the complete datum table (4.25) as
well as the determinant value of this 5-rowed.

Tab. (4.25). Datum matrizc

_ <y . ) y = :
h=1 2 3 4 1) . Row sums

-5.2090  -5.4480  -5.0550  -3.8690

i=1 ~3.6620  -23.2430
2 ~7.0000  -6.5000 -6.1000 -5.7000  —30.7480
3 } -6.2000  -5.7300 -5.3000  -28.7850
N :
5

18600 -1.8520  -19.4110
~1.2520  -17.7660

Column _93 9430 -30.7480 -28.7850 -19.4110 -17.7660 - 119.9530 .

sums |
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5. Determining the rank of a nonnegative definite matrix and finding a
large principal minor in it

The technique of Section 4 can also be used to great advantage in the case where
an inverse is known and we only want to compute the determinant wvalue of the
enlarged matrix. In this case we can disregard the lower part of tab. (4.5) and only

compute the bottom row in the upper part, i. e. the row with the C,. This leads to
J

) 4 ) . . .
the item oL and from this we can immediately deduce 4° since 4 is recorded on

the row immediately above.

In this way we can easily compute all the superdeterminants obtained by adding
one row and column to the matrix whose inverse is known. Any such computation
would only involve one row added in a list which forms an elongation of the given
inverse.

This technique is particularly useful if we want to determine a large principal
minor in a non-negative definite matrix.

In this case we first note that if a non-negative definite (but not necessarily
non-singular) matrix is given—which is the same that a moment matrix is given—and
we normalize it by dividing each element, 7.5, by | ¥7e. mssl i.e. if we introduce
the correlation coefficients
Map

51 =TT ———,
(5-1) T | Vittaa mss|

we get a matrix where the following lemma holds:
Lemm (5.2). In a matrix of correlation coefficients each minor is at most as large
as any of the principal subminors contained in it.

This lemma is proved by complete induction using the general formula?

(5.2) Azt flawgdd _ flad A(a..qij):D(a...ﬁ) @) Dlawp) GO

where 4% is the principal minor formed by (a--7) and D@ @ the (possibly
non-principal) minor obtained from 4% by adding the row i and the column j.

In the case of a real symmetric total matrix the determinant D¢ is symmetric
in ¢z and j, and hence '

(53) Jlar®) d(a...rj)i‘,j(a...r) J((L..;«ij)

If n (the number of affixes «, -, ) is equal to 1, the lemma (5.2) is obviously true
because it simply states 1>1—77;,. And if the lemma holds for », it must hold for
(n+1). Indeed, if it holds for n, we have

(5.4) A T flard

Hence by inserting %9 for J4%-# in the right member of (5.3), and remembering
that none of the principal minors cansidered can be negative, we see that we must
certainly have

(5.5) Jaaty fJlaid Z fJlawidd  flawril

If J¢9 75x0, which in the case of a non-negative definite total matrix must
mean J@ >0, we can divide by 4%-» and ohtain

(5.6) Alawrd = flauridd

1) This formula is only a special case of Sylvester’s fundamental formula on the minors in an
adjoint.
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If dt-p=0 but 4<r0>0, we again deduce (5.6) by interchanging ¢ and j.

The above reasoning only shows that a principal minor in a correlation deter-
minant must be not larger than any of its principal subminors that are non-singular.
But by a passage to the limit, remembering that all the minors are continuous in
their various elements, we see that the lemma must hold in any case.

We can express it by saying that if in a correlation matrix any principal minor
tends towards zero, it will chase all its principal superminors of all orders to zero,
because they must be even smaller (or at least not larger) than the one that tends
towards zero.

This lemma being established, a natural technique for finding a non-singular and
“large ” minor of the highest possible order in a non-negative definite matrix is the

following.
First reduce the matrix to a correlation form by normalizing all elements using

(5.1)
Next compute all the two rowed principal minors—in all combinations (af)—di-
rectly by the formula

(5.7) dep=1—712,

Consider the largest value of (5.7) obtained.
If this maximum value is zero, we conclude that all rows in the total matrix are

proportional and hence the total matrix of rank 1. We can disregard the trivial case
when all the elements of the total matrix are zero, and hence the rank is 0.

If the maximum value of (5.7) is strictly positive, we pick the combination (aj)
that yields the maximum. If more than one combination yields the maximum, we
make a random pick amongst the combinations that yield the maximum.

In the (@3) combination chosen we compute directly the inverse

(58) 1 —TaB

. 2 . 2
1 T 1 g

—~Tap 1

1—7k;, 1—72;

From now on we use the technique described in Section 4.

We compute the values of all the three rowed principal superdeterminants J4¢#
obtained by adding one row and the same column—namely No. i—to the two rowed
matrix in the set (af).

Again we look for the highest value obtained. If this highest value is zero, we
conclude that the matrix is of rank 2. And we now know a two rowed principal
determinant that is large, and we also know its inverse and can proceed accordingly
for whatever purpose we may have in mind.

If the maximum obtained by adding a row and the same column to (ag) is
strictly positive, we pick the three-set (afy) that yields the maximum (or, more
generally : one such three-set chosen at random amongst those that yield the maxi-
mum) and we compute its inverse by the method of Section 4.

In this way we can continue until we have determined the rank of the total
matrix. As a by-product we have obtained the inverse of one of the principal minors
that are “large”.
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6. The equationally quadro constrained maximum of the preference function

Suppose that we impose the condition that the basis variables xx (k=u, v, -, w)
shall satisfy the equations obtained by putting the v (Z7) variables z: (i=a, 8, -+, 7)
equal to prescribed values z¥, for instance one of the bounds z; or T, or any other
prescribed values. The variables z: may be basis variables or dependent variables.
Compare the formulation (1.1).

The set of variables z: (i=a, f,--+,7) shall be linearly independent over the quadro
variables. That is to say, we assume the vX7r matrix '

baU baV b baﬂ’

6.1) pU TRV T TR

..................

by by - byw
is of rank v. In other words we assume that there exists at least one vXv deter-
minant in (6.1) that is different from zero. If any of the variables in the set a, 8, ---,7
is a basis variable, the elements in the corresponding row of (6.1) are given by (1.2).
This is the same as to say that there does not exist any set of v numbers
(i=«, B, ---, r)—independent of H—not all zero, and such that

62) Z wibin=0 for all H=U, V, -, W

i=a..r

If there exists at least one vXv determinant in (6.1) which is different from zero,
such a set of v numbers cannot exist. Indeed the w; would then have to satisfy the
v homogeneous equations (6.2) obtained by letting H run hrough the v columns in
(6.1) that form the non-singular determinant in question. And this non-singular sys-
tem the @: could not satisfy without being all equal to zero.

Note that we require that the v vectors b:s to be not only linearly independent
over all A=u,v, -+, w, but even linearly independent over the subset A= u,v,---  w.
This will in general be a stronger requirement if lineo variables occur.

A set of v variables x; (i=a, 8, ---.7) of this sort will be said to form a quadro
operational set. This terminology is derived from the fact that in (6.1) only columns
pertaining to quadro variables occur.

Instead of saying that the set is linearly independent over the quadro variables,
we may sometimes say for brevity that the variables in the operational set considered
are guadro independent.

Suppose that the values x¥ (i=a, $,---,7) in a quadro operational set are given.
This is the same as to impose on the z basis variables zx (k=u, v, ---, w) the follow-
ing v equations .

(63) xik:blo“!" Z bikxk (z:a, ‘B, ey r)
k=u-w

We may speak of these equations as the equational quadro constraints or shorter
the quadro conditions.

Since the vectors bi are quadro independent, the v equations (6.3) are certainly
linearly independent over the quadro basis variables.
To be more explicit we will write these equations in the form
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(6.4) xl*zberZbu xf—!-Zbi,/\' K (i=a, 8 -, 7)
x K

where « runs through the lineo affixes and K through the quadro afhxes. As a
special case all the terms in (6.4) containing x. may be absent. If so, the conditions
may be termed iineo empty.

We consider the problem of maximizing (2.15) under the constraints (6.4).

We will first approach the problem by assuming given values k. for all the lineo
variables and then maximize (2.15) over the quadro variables under the v constraints
(6.4). The solution obtained will ke a function of the .. Subsequently we will
consider the maximization of the new preference function, now a function only of the
z.. This two-stage approach to the problem is very effective. ~ The solution of the
first stage may be called the quadro optimum.

The first stage maximization leads to the equations

(6.5) ZPKH x}I:PK+ZﬂibiK (K=U,V,--, W)

where the v numbers y; (i=a, B, -+, 7) are Lagrange multipliers. Solving (6.5) for the
xg we get (remembering that the non-singular matrix Pxy and hence Prix are
symmetric? )

(6.6) xH:xC};S+Z#1- [Zbik P?&;] (H=U,V,-, W)
i K

where zdesis given by (3.2).
Inserting the values (6.6) of xx into (6.4), we get for the p; the v equations

67 ) Qum=at—bo— ) buz—) bucais (i=a, B, 7)
5 & K

where

i:ay [
(6.8) Qij:Z ;P}fy; bik bin (ja:, g, ‘e, 77:>

X
The vXv matrix Qi; is obviously symmetric since Pk} is so. Furthermore, Q;;
is positive definite and non-singular. Indeed, Py is positive definite and non-singular,
its inverse Prk or, if we like, Pz, is also positive definite and non-singular. Hence

it possesses a real non-singular (but not necessarily positive definite) square root

1 )
P 2 i e. a matrix such that

(6c9) = K;:z cH

1) To wverify the symmetry of P/, we miltiply ZPKG Pz =exn by P, and perform a
G

summation over K. We get in the left member, since Pxg is symmetric,
KL

V[ L Pox PRy | Pai=) cor Pghy=Pily
K G

a

In the right member we get Zemz P, =P3},.
K
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1
The square root PrZ must be symmetric?.
Introducing (6.9) into (6.8) we see that Q,; can be written in the form

(6.10) Qij:ZBi(: Bje ].:a, A, ---,7)
> j=a, ﬁ7 T
where
-3 i:a»ﬁ,"‘,T
e i z
(6.11) Bio=) bix P} (G:U, S
K

The vectors Big cannot be linearly independent over G. Indeed, if numbers w;
exist with the property that

(6.12) Zwi Bic=0 for all G

1

we get by inserting (6.11) into (6.12)

(6.13) Z[Zwi bix] Pt=0 for all G
K

The bracket in (6.13) depends on K, and hence (6.13) can be looked upon as

. ) . _1
a system of equations to determine this bracket. Since P2 is non-singular, the
bracket must vanish for all KX, i.e.

(6.14) Zwi Bix=0 for all K

1

Since the vectors bix are assumed to be linearly independent over K—i. e, (6.1)
of rank »—the homogeneous equations (6.14) are of the same rank as the number
of unknowns w:;, and hance all the @:; must be zero. Consequently the B are
linearly independent over G.

Since Qi; by (6.10) is the moment matrix of vectors that are linearly independent
over G, we conclude that Qi is positive definite and non-singular. The equations
(6.7) can therefore be solved in the form

(6.15) /u:RerZRiK . <l =6 by >

#=lineo affixes in the preference function

1) Indeed, if we premultiply (6.9) by P2, and perform a summation over K (and afterwards

write K insted of H), we get P;3=) P}, P;\.  Similarly, if we postmultiply (6.9) by
¢

3 . 1 1
P%; and perform a summation over H we get PKEL:ZP;(‘GPgL. Adding these two equa-
G

ions, and taking afterwards the difference of the expression far L, K and for K, L, we get

1 1 1 1
Z(P?m“‘PgK)PZé;‘*’(PEG_PEG>P;(10:0 for all K and L. In particular for K=L this
G

Qe

. 1 1 _ . .
gives Z(P';’(G—PEK>PK‘G:O for all K. Since PZl; is non-singular, this gives P%G: Pz,
G

for all G and K. From the symmetry of P%G (and the symmetry of P we conclude

(by considering the difference between the first two equations in this footnote) that also

1
P 7% is symmetric.
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where

(6.16) Rm:ZQ; [x —bjo~ me dﬂ

(6.17) = —ZQ by

Inserting (6.15) in (6.6), we get in the quadro optimum

(6.18) xK:SK0+ZSK: L (K=U,V,--, W)
where

(6.19) S=a+) " ) R bio Pak (K=U,V, -, W)

i G
— . . -1 > b ’
(6.20> SK‘—Z ZRZ‘ blGPGK <,C = u,v, '”)Uy'"> W("', w)
i (2]

By (6.18)-(6.20) the optimum values of the quadro variables are expressed explic-
itly as linear functions of the given values of the lineo variable.

The quadro optimum value of the preference function under the constraints
(6.4) with the given values z. of the lineo variables is obtained by inserting (6.18)
in (2.15). This gives

(6.21) f:Mo+ZM‘ x—';—z ZM,., z. 25
I ' é
where
(6.22) MQZPQ_ZPK SK()_— ZPKH Sko SHo

(6.23) M. pﬁZpKSK; ZZPKHSKOSH; (r=10, v, U, -+, W (-, w)

- k=u,v, U, -, Wi, w
(6.24) M:J_Z ZPKH Ske Sks (52% v, YU, -, W(-, w>
K H

The expression (6.21) considered as a function of the original lineo variables .,
may be called the quadrato optimal shape of the preference function.

. As a special case the original preference function (2.15) may have been lineo-empty,
and if so, the quadrato optimal shape is simply a constant. That is, the quadrato
optimal value of the preference function is then uniquely determined. Its value is
simply given by the first term M, in (6.21). In this case no further problem will
arise.

If the original preference function (2.15) actually contained one or more lineo
variables, the further problem arises of what will happen if we now change the z.
so as to obtain a still wider maximum of the preference function. This is the second
stage of the problem.

We now have to seek the maximum of (6.21) over the z. (,k=u,v, - )U,---, W
(+--,w). This new maximization may be attempted with or without equational const-
raints. The equations (6.4) are certainly fulfilled for any values of the x. we may
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choose (this we have assured), but there may perhaps be additional equations now to
be imposed.

Whether in the second stage we seek the constrained or unconstrained maximum
of (6.21), the nature of the (n—7r) rowed matrix M,; in (6.2) is essential. We can
show that this matrix is a moment matrix and hence is positive definite, but we can-
not take for granted that it is non-singular. The solution of the new maximum
problem will, therefore, depend essentally on the rank of M.;. If M.; is non-singular,
i.e. of rank equal to its dimensionality, the new function (6.21) will contain no vari-
ables that are lineo within this function. A unique maximum will therefore always
exist, and it can be determined by the method of Section 3. But if M.s is of lower
rank, it may (and as a rule will) happen that the new preference function (6.21)
contains certain variables that are lineo in the new preference function when it is
reduced to a shape where its quadratic form is non-singular.

To see that this is so, and to give a necessary and sufficient criterion for the
singularity of M.;, and indicate a method of desingularizing it, we will first reduce
the formulae (6.24) by inserting for Sk« and Sus from (6.20). This gives

(6.25) M= Z Pru Ric bic Pok Rjs bj Py
KHIGFL
In the six fold summation in (6.25) the four affixes KHGL run independently
over the r values U, V, -, w while the two affixes 7, j run independently over the v
values «, 8, -+, 7.

In (6.25) we first perform ZPKH Pgk=enc. Next we perform Z eng Prii =Pk,
K H

and finally ZP;}; b bj=Qs; (by (68). Hence
GL

(6.26) Md:ZQU— Ri. Rys.
]
Inserting here for Ri and Rj; from (6.17), we get

(6.27) M=) Qi Qi b Qi s
ijrs
In the four fold summation in (6.27) all the affixes i, J» r» s run independently
through the v values a, 3, ---, 7.

In (6.27) we first perform ZQU Q:}=ejr and next Z eir Q75 =0Q5%  This gives
i 5
finally

(6.28) ] ‘,,:ZQ;; bre bs;

Here the two affixes 7, s run independently through the » values «, 3, -, v, while
£ and 0 may each of them be any of the (n—r) affixes (u, v, «--)U, -, W (++, w).

Since Q7] is positive definite and hence possesses a symmeric square root, we see
by an argument similar to the one in (6.8)—(6.10) that M.s; is a moment matrix and
hence non-negative definite. In (6.11)—(6.14) we could build on the linear independ-
ency of the v row vectors bik (i=a, B, ---,7) over the field K="U, V,--,W—compare
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(6.1)—and we could therefore conclude that Qs; is nonsingular, i. e. is strictly positive
definite. But in (6.28) we cannot take for granted that the (n—7) column vectors
bic (k=u,v,---)U, -, W (-, w) are linearly independent over the field i=a, B, ---, 7.
Whether they are so or not depend on the rank of the vX(n—7) matrix

bau bav “') bay -+ baw (... bow
bﬂu bﬁv '“) bﬁ(] eee bﬁW (... bﬁW

....................................

er bﬂ; "') er i bTW ("' brw

(6.29)

The (n—r) column vectors b are linearly independent over the field i=«,8,---,7
if and only if the matrix (6.29) is exactly of rank (n—7). Indeed, (n—r) weights o,
—independent of 7 and not all zero—and such that

(6.30) Zbi: 0n,—=0 for all i=«,8,---, 7

exists, if and only if the rank of the matrix bi. is less than the number of the
weights? o, i.e. less than (n—7). This means that such a system of weights does
not exist if and only if the matrix (6.29) is of rank equal to or larger than (n—r).
This is the same as the case the rank is exactly (n—r), because the rank can obvi-
ously never be larger than (#—7). In other words we have the following

Proposition (6.31). The (n—7r) column vectors bi. (k=u,v, - )U, -, W(--+,w) are

linearly independent if and only if the rank of (6.29) is exactly (n—r).

From this we conclude in particular :

Lemma (6.32). If the number v of the quadro independent conditions (6.4) which are

to be fulfilled when we seek the quadro optimum, is less than the number (n—r)

of the variables x.—the lineo variables in the original preference function (2.15)

—the matrix M.; in (6.29) is always singular. This applies for instance if there

are no conditions and at least one lineo variable in the original preference func-

tion.

We can sharpen (6.31) to saying that the (n—7) column vectors &;. are = fold
linearly dependent if and only if the rank of the rectangular matrix (6.29) is
(n—r)—m=.

Applying this to (6.28) we conclude—because of the non-singularity of the posi-
tive definite matrix. Q;;—that we have :

Proposition (6.33). The rank of the square matrix M.; defined by any of the for-

‘mulae (6.24)—(6.28) is exactly equal to the rank of the rectangular matrix (6.29).

7. A simple example

To illustrate the various cases that may occur, let us take the example where
there are only two variables x and y in the preference function (2.15), and that this
function is of the form

7.1) Sf=potax+by— -;- Py?

where P,, a, b are any three real constants and P a strictly positive constant. In
other words; z is a lineo variable in the preference function (2.15), and y is a quadro
variable, both z and y being basis variables.

1) See for instance theorem (8.40) in my ‘“ Maxima et Minima ~. Dunod, Paris 1959.
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We consider only one side condition which we take in the form
(7.2) Ax+By=C

here A, B, C are any three constants. In terms of (6.4) we can say that C represents
(x¥—biy) where zf is the given value of some variable, basis variable or dependent
variable.

The problem is to maximize (7.1) under the condition (7.2).

In approaching this problem the values of Py and & are wunessential in the sense
that whatever they are, we can only insert them in the final formulae and read off
the solution which this gives. We therefore need not distinguishing these values in
the discussion of how the solution is obtained.

On the other hand the two cofficients A, B are essential in the sense that we
must distinguish between zero and non zero values when we work out the solution.
This gives 2°=4 cases. In addition some of these 4 cases are such that we have to
split them in two, accordingly as C, respectively a, is equal to zero or unequal to
zero. This gives the 7 principal cases listed below as I-VII.

Another way to count is to say that we consider all the four parameters A4, B, a, C
as being equal to zero or unequal to zero. This gives 2*=16 subcases out of which
any two may be joined if they are such that one of the parameters in the specification
is arbitrary, and any four subcases may be joined if they are such that two of the
parameters are arbitrary. In the 7 principal cases below this gives the following
number of subcases

(7.3) 24+1+1+44+242+4=16.

This is a check that all subcases are concerned, and each of them only once.
We will discuss the 7 principal cases one by one.

Case I. A=B=0, Cx0, a arbitrary.

In this case the side-condition is infeasible. It is not possible to choose any
(finite) values of the variables x and y which will satisfy the side-condition. In this
case the problem is clearly impossible.

Case II. A=B=C=0, a=0.

In this case no side-condition exists (or, if we like, there is one side-condition
which is “feasible” but has no effect for any of the two variables z and y), and
the original preference function is lineo empty. The final solution in this case can
be written down at sight, namely

(7.4) Final: z=arbitrary, y=‘b—, f:Po-f-%éP:

We can interpret this solution by saying that the optimum point has one degree
of freedom, but the optimum value of the preference function is unique and remains
the same regardless of the way in which we choose the maximum point within the
degree of freedom which it has.  This character of the solution is due to the fact
that x is in this case essentially an extraneous variable that has nothing to do with
the maximum problem, and further such that no condition is imposed on it.

If we follow the reasoning of (6.4)<(6.21), i. e., first determine the maximum
under a given value of the original lineo variable z, we reach a quadro optimal
solution which is identical with (7.4). We can interpret it by saying that the
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quadratic form in the quadrato optimal shape (6.21) is now of rank zero, i.e. it is
singular (n—7r=1 being in our example the rank that would indicate non-singularity).
This is in conformity with lemma (6.32) since we have no side-condition and one
lineo variable. Nevertheless, it so happens that when the quadratic form in (6.21) is
“reduced to a non-singular form”, the function (6.21) will contain no variable that
is lineo within this function. This is because of a peculiarity of the numerical
values of the coefficients in this case, namely a=0.

Case III. A=B=C=0. a=x0.

In this case no side-condition exists, and the original preference function actually
contains a lineo variable. We recognize at sight that in this case the value of the
preference function can be rendered arbitrarily great (by choosing y arbitrarily and
afterwards increasing x an infinitum when >0, but decreasing it when a<0).

From the viewpoint of the reasoning (6.4)—(6.21) we now get the quadro optimal
solution

. b r 15
(7.5) Quadro: x=arbitrary, y=-7=, f= LPO—I-*{——jJrax
P 2 P

The quadro optimum point has one degree of freedom. The quadratic form of
the quadro optimal shape is singular—also now in conformity with lemma (6.32)—and
when the quadratic form is ¢

»

‘reduced to a non-singular form”, there remains a
variable which is lineo within the new function. Taking the quadro optimal solution
(7.5) as a starting point, we see that we can produce an arbitrarily large value of
the preference function if we proceed to seeking the enlarged maximum.

The essential difference between this case and the foregoing is that now the
quadro shape of the preference function exists (as it always will), but no finite value
of the preference function exists in the final stage.

Case IV. A=0, B=0, C arbitrary, a arbitrary.

In this case a side-condition exists, the final solution determined by taking
account of this side-condition can be written down at sight as
C b p 1 bﬁ‘ aC
A0 P A

Following the reasoning of (6.4}——(6.21) we see that while it is quite true that
a side-condition exists, this condition does not contain the quadro variable y. Ex-
pressed in general language, the side-condition is not “quadro independent”, hence
we can not take account of it when seeking the quadro optimum. This means
that the quadro maximization has to take place under no side-condition. The result
18

(7.6) Final: z=

(71.7) Quadro: x arbitrary, ¥ :'— [Po-i— :}—Fa:c

The quadro solution is the same as in case IH, but if we start from this quadro
solution and search for the enlarged optimum, we must now take account of an
additional condition, namely

(7.8) Additional condition: Ax=C

Using this in addition to (7. 7), we verify that we get the same final solution as

we wrote down at sight in (7.6).
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The essential difference between this case and Case III is that the final maximum
is now uniquely determined, it cannot be rendered arbitrarily great. This result
emerges even though the quadro optimal shape contains a variable that is lineo
within this function.

In the present case there is no need to distinguish between a zero and a
non-zero value of a. This difference will appear automatically when we insert the
value of a in (7.6) or, if we like, in (7.7).

Case V. A=0, Bx0, C arbitrary, a=0.

In this case there also exists a side-condition. The final solution, written down
at sight, is
C(2Bb—PC)

282

To determine the quadro solution we must note that the existing condition is

(7.9) Final: =z arbitrary, y:—%, f=Py+

now quadro independent and must therefore be taken account of when working out
the quadro solution. This condition is

(7.10) Quadro independent condition: By=C

Using this we get a quadro solution which is identical with (7.9). Interpreting
now this solution from the quadro viewpoint, we can say the following: The
quadratic form in the quadro optimal shape is singular. It is not so by virtue of
lemma (6.32), but because the matrix (6.29) is now

(7.11) ol

hence, by proposition (6.33), M.; of rank 0. It is therefore possible that in the
quadro shape we may now have a variable which is lineo within this function,
Because of the particular value of @ in this case, this variable drops, however, out,
so that the quadro shape of the preference function becomes the same as that written
to the right in (7.9).

The case now considered is similar to Case II in the respect that the quadro
solution is identical with the final solution, but the reasons for the identity of the
two solutions are different. And the actual numerical forms of the solution are also
different (except for the fact that the same numerical values may be produced by
coincidence).

Case VI. A=0, Bx0, C arbitrary, a=0.

In this case we recognize at sight that the final value of the preference function
may be rendered arbitrarily great.

The quadro solution is obtained by using one quadro independent condition. We
get

Bb—P
C(2 C) 4

) C
(7.12) Quadro: x arbitrary, y= 5 =P+ By

The quadro shape is singular as in the Case V, and for the same reason, namely
(7.11). But in distinction to Case V the singularity is now followed by the presence
of a variable that is lineo in the new function. Hence we conclude from the quadro
shape (and from the fact that we now have no additional constraints) that the
preference function can be rendered arbitrarily great.
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Case VII. Ax0, Bx0, C arbitrary, a arbitrary.
In this case we can solve directly by inserting
C_By
A

(7.13) =

in the preference function, which gives

C —
o AbeB, 1

r
(7.14) f= LPo-I- A 5

Maximizing this over y, we get
_ACP—B(Ab—aB)  Ab—aB 1 (Ab—aBY) +LC
= AP Y= Tap 2 AP A
This is a final solution which in character is only a generalization of (7.6) in
Case IV. We can, indeed, derive (7.6) from (7.15) simply by putting B=0. But the
character of the quadro maximum is so different that the two cases should be kept

distinct.
In determining the quadro maximum we note the matrix (6.1) is now

(7.16) 1Bl

which is of rank 1 (which it was not in the Case IV). We therefore have to consider
the condition (7.2) when working out the quadro solution. We can do so by means
of a Lagrange multiplier or simply by expressing y in terms of the given x as
C—Ax
B
The expression for the quadro preference function will in any case come out as
the same. We get

(7.15) Final: , =P+

(7.17) y=

. C—Ax
x arbitrary, Y=g
(7.18) Quadro : - (2Bb ) A ) A
] C(2Bb—PC { ABL—PC) | 1 s,
S= BT E }“f T B ]x 2 BT

In this case the quadratic form in the quadro shape is non-singular. This checks
with the fact that the matrix (6.29) is now

(7.19) 1Al

and hence now of rank 1.

We therefore know that if we now maximize f in (7.18) over x, we get a unique
solution. If we actually carry out the computation of the maximum over z in (7.18),
we reach the same final solution as in (7.15).

*

The above gives a survey of the various cases and illustrates the fact that in all
cases where a unique maximum exists, we can find it as surely by proceeding through
the first stage represented by the quadro maximum, as by the direct approach. And
furthermore the quadro maximum has a sense in all cases, even in those where the
final maximum of the preference function has no finite value.

8. A method of determining the rank of any rectangular matrix and of
expressing it in a basis form

Sometimes it may be easy to determine by 'sight the rank of the rectangular
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matrix (6.29) and to perform the subsequent computations in a way appropriate to
the situation. But in the case of many variables—and in particular if the computations
are done automatically—we need a general and mechanical procedure.

The method now to be considered is applicable to any rectangular matrix, but
in order to keep the notation conform to the particular problem here envisaged, we
consider the matrix (6.29).

The method will also be applicable to the description of the structure of a
statistical cluster of points in several dimensions (describing its “rank” and “basis
form” etc.), but here we shall not discuss the problem from this angle.

In (6.29) we can leave out any column that consists exclusively of zeros, because
the rank of the remaining matrix will be equal to that of (6.29). Suppose that (6.29)
is the result obtained after having left out these zero columns. In other words we
assume that none of the columns in (6.29) consists exclusively of zeros.

We start from the remark that the rank of the rectangular matrix (6.29) is by
proposition (6.33) equal to that of the square matrix (6.28). This is essentially due to
the fact that Q7! is non-singular. The same conclusion would be obtained if Q7!
is replaced by any other non-singular matrix. For convenience we replace Q7! by
the unit matrix e,s. This leads to the moments

(8.1) Mes = Z bic bis

Since the rank of the rectangular matrix (6.29) is exactly equal to that of the
square moment matrix 7.; defined by (8.1), we can approach the problem by studying
[ ((TTR

We will for convenience normalize the elements by transforming m.; to the
corresponding correlation coefficient
o me (/c:u, 0,) U, W (oo 10

I '\/mﬂ' m‘”l b:ua 'U:“'>(/'Y7'“>W<"'>w

The matrix (8.2) can be treated by the very mechanical and streamlined method

of Section 5 (using the single step building up method of Section 4) and thus we can

find a “large” principal minor chosen amongst the principal minors of highest order,
that do not vanish.

(8.2) Txé

Let this ““large” principal minor be the one formed by the rows (pe---¢) and
the same columns from the matrix (8.2). The number of affixes in the set (pe---6)
1s at most equal to (2—r) which is the number of columns in (6.29), that is to say
the number of lineo variables in the preference function.

By the method of Section 5 we have not only been able to locate such a principal
minor of (8.2), but we have as a by-product obtained its inverse Ticoensy (E=p, &, 0;
0=p, ¢,~--#). From this inverse we immediately derive the inverse of the corresponding
minor in 7%.;, namely

-1
— rn}(ps...y) KE=10, 5’...,0
(8'3) m‘o-l(“,su‘”):'—‘x/f_——l \_t i 0
1 Mex M55 | 0=0, &,

Since the determinant in the set (ps---¢) is different from zero (it is even “big”),
while all the higher rowed principal minors in the matrix (8.2) are zero, we know
that the vectors b4,,, b..,--- b;, are not linearly dependent over the field i=«, §,---,7, while
any higher set—chosen amongst bi, with r=u, v, ) U, ,W(---,w—is linearly dependent
over this field. This means that any vector . can be expressed as a linear form in the
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vectors b,,, bi,,b;,. In other words thers exists linear expressions of the form

(8.4) bi= Z bis Egn (c=1, v,) Upor, W (v, )
gmot
where the E4. are constants independent of i.
These constants are easily determined if we multiply (8.4) by bir (¥=p, &,---,0)
and perform a summation over 7. This gives

(8.5) Z Mys Ege =My, (for any « and ¥'=pe,---,0)
Papm
We know that the mataix of (8.5) is non-singular, and we even know its inverse
from (8.3), so that we can write down immediately

(8:6) Es= Z M35 p0...00 Mye (for any « and ¢=p, &,---,0)

where mj#,..s is given by (8.3).
The formulae (8.4) and (8.6) give a reduction of the singular matrix (6.27) to a
non-singular basis form.

9. The concavity propositions

Consider any point that is given by the values z% (k=u, v,--,w) of the basis
variables. The first and second order partial derivatives of the preference function
(1.4) in such a point are

(9.1) Y =pr— Z Prn Zn (b=u, v,-,w)
h=u-w
0 k=u, v,--,w
(9-2) fkn:Plch h—
=u, v, , W

If the preference function is written in the desingularized form (2.15), the partial
derivatives are

e il k=u-) U W(w

9.3) SE= 1 pe Z P 2% if k=Uy,W
\ H=U-W
0 if either 2 or 2 (or both) is any of the numbers
©0.4) . uyor) Upos, W (oo 0

{ P, if % is one of the numbers U,---,W and also A one
of the numbers U,---, W

It should be noted that if the (non-negative definite) matrix pw. is singular, the
variables in (2.15)—and hence in (9.3) and (9.4)—heve different meanings from those
in (1.4)—and hence in (9.1) and (9.2)—.

A simple Taylor development of the preference function around the given point
x% gives

(9.5) f—f°= Zf?c(xk—x‘}c) —%Z Zpkn(xk—x‘%)(xh—x%) [in the case of (1.4)]

k=u---w k=u-—w h=u-w
1 .
k=u-w K=U--W H=U---W
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Again it should be noted that variables in (9.6) have different meanings from
those in (9.5).

If we want to express the fact that the first order derivatives in (9.6) for k=u,--
YU,---,W (---,w are independent of the point, we can write the first term in the right
member of (9.6) in the form

9.7) ) fa-a=) s (=) + ) f¥x— 20
k=u-w rs K
where ¢ runs through u,---) U,--,W(---,w and K through U,---,W.
Let 2% be any point in (9.6) and consider the tangency plane in this point. This
plane is defined as the linear manifold in zi that satisfy the single linear equation

9.8) Zfsz (e—22)=0

The positive side of this plane is defined as that where the linear form (9.8) is
strictly positive, i. e. where

(9.9) Zf;; (ze—2%)>0

And the negative side of the plane is defined as that where the linear form is
strictly negative, i. e. where

(9.10) Z £ (e 2%) <0

Since the first order partial derivatives f% defined by (9.3) are uniquely determined
in any point z%, the tangency plane (9.8) is also uniquely determined except in a
point where all the first order partial derivatives vanish. Such a point, obviously,
does not exist if the preference function actually contains at least one lineo variable
—i. e. where at least one of the P. is different from zero—. If no lineo variables
occur in the preference function, one and only one point will exist where all the
partial derivatives vanish. This follows from the non-singularity of the matrix Pxu.
The point is given by (3.2). If such a point exists, it has—by virtue of the positive
definiteness of Pxu—the property that in this point the value of the preference func
tion is larger than in any other point. If such a point exists, we may call it the glo
bal unconstrained maximum point.

Now consider any point x% that does not have this global maximum property.
Its tangency plane is given by (9.8) and the positive and negative sides of the plane
are defined by (9.9) and (9.10) respectively.

Because of the positive definiteness and non-singularity of Pxu, we deduce from
(9.6) the following three concavity propositions :

(9.11) In any point xx on the negative side of the tangency plane through 2%—
i. e. where (9.10) holds—the value of the preference function is strictly less than
the value which it assumes in x%.

(9.12) In any point zx that is situated in the tangency plane through zi—i. e.
where (9. 8) holds—but outside of the point z’ itself the value of the preference
function is strictly less than the value which it assumes in x%.

(9.13) On the positive side of the tangency plane through xi—i. e. where (9.9)
holds—there are some points where the preference function is strictly less than the
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value which it assumes in x%, and other points where the value is strictly larger

than and still other points where it is equal to the value which it assumes in z%.

In the case of (9.5) where the matrix Pi» may be singular, the above three
propositions (9.11)—(9.13) still hold, except that in (9.12) the words “strictly less
than” must be replaced by “not larger than”. And we must now consider the
possibility that there may be a whole set of points, namely those for which

(9.14) Zpkh Trh=px for all k=u, v,--,w
h
—with pi. singular—where a well determined tangency plane does not exist.

The three properties expressed by (9.11)—(9.13) are essentially connected with
the fact that the quadratic preference function which we consider, is a concave
function. We can generalize the analysis by defining a concave and non-singular
function as one for which (9.11)—(9.13) holds for any point x%, except possibly for a
unique point. And we can define a concave but not necessarily non-singular function
as one where (9.11)—(9.13) hold with the words “strictly less than” in (9.12) replaced
by “not larger than”, and exception is made for a certain well defined set of points.

The properties (9.11)—(9.13) are the essential foundations of the multiplex algo-
rithm for quadratic programming. This being so, it is possible to adopt the general
definition of a concave function suggested above and develop the whole multiplex
technique for this general case. At present we will, however, for simplicity confine
the analysis to the quadratic case.

10. A sufficient criterion for optimum

By the concavity propositions (9.11)—(9.13) we can derive an extremely useful
sufficient criterion for an optimum under quadratic programming. By considering

the expression Z f% (xx—x%) we can, indeed, reduce the optimality argument to one
k

that is essentially similar to the one applicable to the case of a linear preference
function. We have the following proposition.
If the point z% satisfies the following four conditions:

(10.1) The point z% (k=wu, v,--,w) is aamissible, i. e. it satisfies all the inequalities

(1.3), 1. e. we have ZxZ 2522 (k=uwu,v,-,w) and z;Zbj+ Z bk %2 X
k=u., w

(j———l, 2,.'.) u’...’w(.."N)‘
(10.2)  There exists a set of v (v=0,1,2,---) linearly independent variables x., z5,-*,
z, (where a,8,---;7 form a set of v affixes belonging to the set j=1,2,---,N)

such that for each i=aq, §,---,y the value xi=bi+ Z bic 2% is either at its
E=u--w

upper or lower bound, i. e.

(10.2.1) 2 :{ either x;
- * Aor xi

This is the same as to say that all the v linearly independent variables
Zay X, are bound-attained.

(10.3) The preference vector f$% in the point 2% is linearly expressible in terms
of the v vectors bur,---,b,, 1. e. there exists v constants B! (i=«, B,---,7)

e
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independent of % (but possibly depending on the point x%) such that

(10.3.1) ot Z Bbu=0 for all k=u, v, w
imanr

(10.4) All the coefficients B? of (10.3.1) are sign correct, i. e. B} is non-negative
if 2% is at its lower bound z: but non-positive if z{ is at its upper bound x;
—then the point z% is certainly an optimum point in the sense that there exists
no other admissible point where the preference function assumes a value that is

strictly larger than the value f° which it assumes in the point z%.
The fact that the v variables Z.,---,x, are linearly independent and the v vectors
bak,++ by are linearly independent—or more precisely expressed: linearly independent

over the field A/—means that the v X n matrix (v=Zn)

I bau bav A baw
bﬂu b/}v b bﬁw

1)711. brv s brw

{10.5)

is of rank v. Obviously any set of more than n vectors bux, -0, 1. €. v>n, can not
be linearly independent over the field £ Therefore the highest order of linear
independency which can exist, is 7.

The validity of the criteria (10.2)—(10.3) does in fact not depend on the linear
independency of the variables z.,---,x; and of the vectors ba,--,0;«, because if a linear
expression of the form (10.3.1) exists where not all the vectors b, b, are linearly
independent, it is easy to deduce a similar expression involving a smaller number of
vectors bar,---,0.; that are linearly independent over the field %4  For simplicity of
formulation we assume that this reduction has been made, and we therefore express
(10.2)—(10.3) in terms of linearly independent variables x.,---.x; and linearly independent
vectors b, bk

It should be noted that (10.3) is always fulfilled if the number v of linearly
independent vectors bar, -+,0.x is equal to », the number of basis variables. Indeed,
in this case any vector wy (with components @ for k=u,v,--,w) can be expressed
linearly in terms of the vectors buk,---,0;x.  We may, therefore, replace (10.2)—(10.3)
by the single condition that there exist » linearly independent variables x? that are
bound attained in the point considered. This is a correct but, of course,w eaker
formulation. In any case (10.1) and (10.4) must be retained, the B! now denoting
the coefficients in (10.3.1). Such an equation will certainly exist in the case conside-
red. These coefficients are given by

(10.6) Bi=— Z f% bl
k=u-w
the matrix b now being a square and non-singular matrix.
To prove the proposition expressed by (10.1)—(10.4) we note that if (10.3.1)
holds for all £, we have in any point xx, admissible or not

(10.7) Z % (e—a%)=— Z B (xi—2Y)

k=u--w i=a..r

Indeed, by inserting into the left member of (1.7) for f% its expression in terms
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of bk, +-,b;x obtained from (10.3.1), we obtain — Z Z Bl bix (xx—2%). This reduces
k i

to the expression to the right in (10.7).
If it shall be possible to find a point xx which will make the left member of (10.7)
strictly positive, there must be at least one of the terms in the right member of
(10.7) that is strictly negative. This means that there must be at least one value of
the afhx 7 such that

{either B! is strictly negative and (x:—x) strictly positive

(10.8) or B! strictly positive and (x:—x%) strictly negative.

This, however, is impossible if all the coefficients B} are sign correct. Indeed, if
2 is equal to the wpper bound x¢, there is no admissible point where the factor
(xi—a?) is strictly positive. And if we take a point xx such that (x;—2% becomes
strictly negative, the product B} (xi—a%) cannot become strictly negative, because by
(10.4) B is now non-positive. Similar argument if 2? is at the lower bound z;. In
other words there exists no admissible point xx for which it will be possible to satisfy
(10.8). Hence it is impossible to find a point zx which will make the left member
of (10.7) strictly positive. _

Since by (9.11)—(9.13) the strict positivity of the left member of (10.7) is a
necessary condition for a point zx to produce a value of the preference function which
is strictly larger than the value f° it assumes in x%, we conclude that if (10.2)—
(10.4) are fulfilled, it is impossible to find an admissible point xx which produces a
value of the preference function which is larger than the one which this function
assumes in x%. (This conclusion would follow even in the case where the quadratic
form of the preference function may be singular).

This being so, the only additional condition we need to impose on z% in order
to assure that x% is an optimum point, is that z% itself is an admissible point. This
is taken care of by the condition (10.1).

The criterion (10.3) may be replaced by the following two conditions whose fulfil-
ment forms a necessary and sufficient condition for (10.3) to hold:

Maa Maﬂ b Mar
M. Mgs--- M
(10.9) B 88 8r > 0

.....................

(10.10) dy=0
where
MOO MOa e MOr
Ma() Maa i Mar

(10.11) do=Myo+ Z My: BY=

.............
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(10.12) Moo= Z (fe)
k=u--w
(10.13) Myi=M;ip= Z bix f% (i=a, B,-+y)
k=u---1w
= — . . i1=a, .3,"',7)
(10.14> MU_MJZ_ )g:Zu...mblk b]k (j:a’ 13>"',T

In the special case where either i or j, or both, belong to the set of affixes
k=u, v,--,w of the basis variables, we have

(10.15) Mixr=Mii=bx if k=u, v, w

In particular

T when % is one of the basis affixes
u, v,-+,w, and h one of the basis
affixes u, v, -, w

The numerator to the right in (10.11) depends on the point x%, but the denomi-
nator does not.

The correctness of (10.9)—(10.10) as a necessary and sufficient condition for the
fulfilment of (10.3), is easily recognized by noticing that the non-vanishing of the
moment matrix (10.9) is the necessary and sufficient condition for the v vectors
bak, -+ ,bx to be linearly independent over the field %k, and that the actul vanishing of
the moment matrix in the denominator to the right in (10.11) is the necessary and
sufficient conditions for the (v+1) vectors f%, bk, -,b;x to be linearly dependent over
the field &.

The identity of the two expressions for dp in (10.11) follows by multiplying
(10.31) by bx; and performing a summation over k.  This shows that if coeffi-

cients B} exist which will make (10.3.1) fulfilled for all £, these coefficients B? must
satisfy theli near system

(10.16) Mkh:ekh:[(]j

otherwise

(10.17) Miot+ )| M B=0 (h=a, B+ 1)

i=a..r

This system is non-singular by virtue of (10.9), and hence

(10.18) Bi=— Z M Mo (i=a,B, 1)

By inserting this value of B? in the middle part of (10.11) we get

(1019) Moo+ Z M()i Bg:Moo“ Z Z Moi M;I} MILO

i=a..r h=a..r

The expression to the right in (10.19) is identical with the ratio between the two
determinants to the right in (10.11).

The middle expression in (10.11) is most convenient for numerical computation,
while the expression to the right has theoretical interest. It shows among other
things that dy is always non-negative, and that it is zero when and only when an
equation of the form (10.3.1) holds.

The coefhcients B! computed for different points % and different sets z; (i=«,
B,-++,r) of bound attained variables, play an important role in the multiplex algorithm,
whether it is applied to the case of a linear or to that of a quadratic (in general a
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concave) preference function. In the linear case the coeflicients B} are independent of
the point 2% and depend only on the set (a, 8,---,7), while in the non-linear case they
will depend also on the point.

For reasons not to be discussed in this connection, the coefficients Bi—or in a
more explicit notation BY,_,,—are termed the regression coefflcients.

11. Some remarks on necessary conditions for an optimum

Obviously (10.1) is not only a part of a sufficient condition, but it is by itself a
necessary condition for the point z% to be optimal in the sense specified in the text
after (10.4).

The condition (10.2) is in essence not an actual condition but only a definition
of a set of linearly independent variables that are bound attained in the point z%
considered. This set may be empty, i. e. v=0, in which case the existence of an
equation of the form (10.3.1) simply means that all the first order partial derivatives

% are zero. Incidentally, this remark shows that in the case of a linear preference
function an optimum can never be realized in the interior of the admissible region.

The condition (10.3) is—as will appear from the reasoning in Section 19—also ne-
cessary, because if dp is strictly positive, it is possible to depart from z% (assumed
admissible) in such a way that the preference function is actually increased. This
applies regardless of whether the condition (10.4) is fulfilled or not.

On the other hand the condition (10.4) is not necessary. It may be that a point
2% is optimal even though (10.4) is not fulfilled. But if so, it will be possible to find
another set of v linearly independent variables zi, such that in the same point z% all
the conditions (10.2)—(10.4) are fulfilled. In this particular sense we can say that
a condition of the form (10.4) is necessary.

12. The beam variation

Suppose that we start in any point % admissible or not.

From this starting point x% we move along a beam defined by a set of given
direction numbers dx (E=u, v,---,w). This means that we consider the one dimensional
set of points xx generated by

(12.1) T =% + Adk

where 1 increases from zero through positive values.
We will assume that

(12.2) ) £ dso
E=u_.w
This assumption is simply a definition of the positive direction along the beam,
the parameter 2 being, as specified, confined to move from zero through positive values.
If (12.2) is not fulfilled, we simply consider the opposite beam, i. e. the beam defined
by (—dx).
Along the beam defined by (12.1) and (12.2) the preference function f will change
as the following quadratic function of 4

(12.3) r=ro42 ) prdimg ) ) Pewdrdn
. k=u-w KE=U~W H=U-W
This formula follows simply by inserting (12.1) into (9.6).
The formula (12.3) taken in conjunction with the definition (12.2) of the positive
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direction along the beam and with the fact that the matrix Pxy is positive definite
and non-singular, leads to the four cases for the beam variation of f which are
classified in tab. (12.4) and described in the text following the table.
Tab. (12.4). The four cases of beam wvariation of the preference function

All dx=0 ; Not all dx=0
(K=U,---, W) ; (K=U,---,W)
| |
) fadi=0 I | 11
| k e e o
) fLd>0 11 v

Case I.  The preference function is constant along the beam.
Case II. The preference function decreases monotonically and quadratically with 4.
Case III. The preference function increases monotonically and linearly with 4.
Case 1V. The preference function will first increase monotonically up to a well
defined maximum, and then decrease monotonically. In other words, for
a sufficiently small 4 f is certainly larger than f°.
In Case IV the value 4y for which the maximum occurs, is given by

Z £ de

k

Z ZPKH dx du

K H

At least one dxx0

(12.5)

If we want to distinguish between lineo and quadro variables in the numerator
of (12.5), we can write the formula

Z pedo+ Z Fod
Z — '3 K
Z ZPKH dx dn
K Ve

The formula (12.5)—or, if we like, (12.6)—can be interpreted as characterizing all
the four cases. In Case 1 the ratio (12.4) is indeterminate, i. e. it indicates that
the maximum occurs “everywhere along the beam”. In Case II the ratio is zero,
indicating that the maximum has occurred already at A=0, In Case III the ratio is
plus infinity, indicating that the maximum occurs in the positive direction but not

(12.6) At least one dg=0

at a finite distance. And in Case IV the ratio indicates a finite and well determined
positive value of 4 for which the maximum occurs.

For practical purposes it is, however, only the two cases where Z Z Pxru dx du
K H
is strictly positive—i. e. where at least one dx*0—we need to take account of. The

Case III where this double sum is exactly zero while Z f% di is strictly positive need
k

bother us, because in this case there is no harm in continuing the beam variation
(in the positive direction) as far as is possible. And the Case I where the double
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sum is exactly zero and Z f% di=0 will be taken care of in another way.
k

Indeed, if we insert in Z I% di, dv=f%+ ZBi bix, we see that Z f% dr emerges
3 =y k
as the same magnitude do that was considered in (10.11), and, as will appear from
the sequel, this magnitude occurs in the algorithm in such a way that Case I is
covered. We therefore conclude that we only need to compute (12.5)—or, if we like,
(12.6)—in the case where at least one dx=0.

The above remarks are. formulated without regard to the admissibility of the
points generated along the beam. Now let us consider admissibility.

Let us assume that the initial point z% is admissible, i. e. it is situated either in
the interior of the admissible region or on its boundary. The latter case is the one
where at least one of the N variables z; (j=1, 2,--,N) is bound attained in the
initial point x%.

There will then exist a certain non-negative A range for which the point
generated by (12. 1) remains in the admissible region. In extreme cases the range
may consist only of the single volue 2=0 (namely if the initial point x% is on the boun
dary and the positive direction of the beam points out of the admissible region),
but 1n other cases there will exist a finite (positive) 4 range for which the point that
moves along the beam remains admissible.

The exact value Zex (S0) for which the point breaks out of the admissible
region (ex=exodus) is determined by

(12.7) Zex=Min %; 1 di>0
where
(12.8) A= x°.—Jx~
T ] d;<0
(12.9) o= Z b di (=1, 2,+,N)

If j is one of the basis affixes, the coefficients &;r are interpreted by (1.2)

The values (12.8) are only defined for those affixes j for which the general
direction numbers (12.9) are different from zero.

The formula (12.7) is easily derived by noticing that for any j we have along
the beam

(12.10) z;=2%+2d; (=1, 2,--,N)

where d; is given by (12.9). Writing down the condition that all the expressions
to the right in (12.10) must be situated in the interval (1.3), we get (12.7).

If we add the condition that we shall not move so far along the beam that we
go beyond the maximum of the preference function, we get the following formula
for the value of 2 where we should stop

(12.11) Astop=Min [Ao, Zex]
This formula, together with (12.6) and (12.7) determines the move to be made
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when any beam di—with positive direction (12.2)—is given from any admissible point
Z%.

The increase in the prefefence function achieved during the move is obtained
by inserting Agop for 4 in (12.3). This increase is always non-negative.

12. The equationally constrained beam direction. Regression analysis.
Suppose that we start in any point z% and want to proceed along a beam dx
which is such that during the move along this beam a certain number of the variables
—say z: where ¢ runs through a given set of affixes—remain constant. This set of
variables we call the constancy set. The expression for the constancy requirement

considered is

(13.1) b+ me(x‘}c—kldk):x‘,’ for all 4 and for ¢ in the constancy set

This condition reduces to
(13.2) zZ bu di=0
k

Since this equation is to hold for all A—and consegently also for some non-zero
i—the condition is equlvalent to

(13.3) Z by d=0 t in the constancy set
k

This can also be wriiten

(13.4) di=0 t in the constancy set

where the s, are defined by (12.9).

If not all the variables x; are linearly independent—which is the same as to say
that not all the vectors & are linearly independent over the field 2—it is not necessary
to take account of all the conditions (13.3). It suffices to pick in the set ¢ a highest
linearly independent subset i=a, 3,--,7, i. e. a subset of the highest order v (» being
the number of affixes «, j3,---,y) that is linearly independent. If there are more than
one highest independent subset, any such subset chosen at random amongst the
highest ones, will do in principle. But for computational reasons it 1s desirable to
chose a subset which is “as far as possible” from being linearly dependent.  This
may, if necessary, be tested by a similar procedure as that discussed in Section 8.

The highest linearly independent subset chosen will be called the operation set.

For the operation set we impose the conditions

(13.5) Z bix di=0 (i=a, B,---.1)
k
which is the same as
(13.6) di=0
When the conditions (13.5) are imposed, all the conditions (13.3) follow automa-
tically.

The number of conditions (13.5) can at most be equal to n, the number of basis
variables, because 2 is the largest number of vectors bi that can be linearly indepen-

~dent over the field £. In the case v=n all di must be zero because bu in (13.5) will
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then be a square and non-singular matrix. We can interpret this as expressing the
order: “Dont’t proceed any further.”

If v n, the conditions (13.5) leave a certain amount of freedom in the di and the
question arises of the perticular way in which we should dispose of these degrees of
freedom.

From the discussion in Section 10 it emerges that an essential point in approaching
an optimum will be to try to express the preference vector f% linearly in terms of a
set of linearly independent boundary vectors bu (i=a, B,---,y). These considerations
can be formalized in different ways, for instance by saying that we want to move
along the projection of the vector f% on the linear manifold defined by the conditions
(13.5), or to say that we want to increase as much as possible the correlation between

® and di over the field %2 subject to the conditions (13.5), or in other ways which
will not be further discussed in the present connection. In whatever way we formalize
this approach, we are led to assume that the direction numbers di should be of the form

13.7) de=f%+ Z B bu (=, v,w)

where the B? are constants independent of 4. This leaves the exact number of degrees
of freedom which are needed to comply with the conditions (13.5). The problem is
then only to determine the Bl

Multiplying (13.7) by bwe (h=a, j8,--,7) and performing a summation over &,
utilizing (13.5), we are led to the same equations for determining the B} as (10.17).
If the B} are determined in this way, we find as a check that (13.6) is fulfilled. This
is the particular way of satisfying (13.5) which we will adopt.

When the B? are determind in this way, and the di(k=u, v,--,w) are computed
by (13.7), the other d; may be computed by any of the two formulae (12.9) or

(13.8) di=Mu+ )\ My (=1, 2, N)

FR——
Computationally it will as a rule be simplest to use (12.9).

When the di are determined, the magnitude Z % di—which plays an important

role, as is seen from the discussion in Sections 10 and 12—will be equal to

(13.9) Z £ di=dy= Moo+ Z Mq: B!

k=u-w
In determinant form dy can also be expressed as in (10.11). This shows that

dy—and hence Z f% di—1s strictly positive except when the criterion (13.3.1) is exactly

k
fulfilled. And in this case dp is zero. Compare (10.10).

In the optimality criterion (10.4) we considered the sign correctness of the B
This is important for subsequent applications. The determination of the B} and the
scrutiny of their sign correctness may be called regression analysis. So far as the
mere fulfilment of (13.5) is concerned, the sign correctness of the B} is, however,
irrelevant.

If we are in a point where (10.3.1) is exactly fulfilled, all the di (k=u, v,---,w) as
determined by (13.7) are zero. That is to say the order: “Don’t proceed any further”,
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will emerge not only in the special case where v=2 (in which case (10.3.1) must ne-
cessarily be fulfilled whatever the vector f%, because any vector in the space k=u,
v,---,w can be expressed linearly in terms of n linearly independent vectors in this
space)—but the order will emerge in any point x% where the preference vector f% hap-
pens to be linearly expressible in terms of a certain number of boundary vectors b,
Bty bk

Inversely: If all dv=0 (k=u, v,--,w), when computed by (13.7), the preference
vector f% is linearly expressible in terms of the v boundary vectors buk, s, -+,0,x in
the point considered.

Computational Note. In all cases where the B! are computed by (10.17), the dk
by (13.7) and the other d; by (12.9), it should be carefully checked that all the d;

(i=a, B,---,7) are zero within rounding errors.

14. The admissible beam direction

In the preceding section we considered a beam variation which was subject to
the condition that a certain number of the variables remained exactly constant. We
will now consider a different type of condition: We require that some of the variables
shall not be increased and we require that some other varibales shall not be decreased.
In practice the former condition will be useful for varibales that are at their upper
bound in the point that serves as starting point for the beam variation, while the
latter condition is useful for variables that are at their lower bound. But in
principle the conditions of non-increase or non-decrease can be imposed for any set
of variables.

Conditions of the kind now considered will be termed admissibility conditions.
They must not be confounded with the conditions of sign correctness for the regres-
sion coefficients discunded in (10.4)

As essential difference between the constancy conditions discussed in Section 13
and the admissibility conditions discussed now, is that the former take out degrees of
freedom, while the latter do not take out degrees of freedom (except in limiting ca-
ses).

Therefore admissibility conditions may be considered for any number of variables,
less than, equal to or larger than 7, the number of basis variables. For instance, when
we speak of (linearly independent) constancy conditions, a beam variation is made
impossible, i. e. all dk will be zero if the number of these conditions is equal to 7,
while z (linearly independent) admissibility conditions need not make a beam variation
impossible. Nor does a larger number of admissibility conditions need make the beam
variation impossible.

For simplicity of formulation we will in the sequel speak of the variables for
which we require non-increase, as those that have reached their upper bound, and
the variables for which we require non-decrease will be spoken of as those that have
reached their lower bound. But it should be remembered that in principle the admis-
sibility criterion may be imposed for any set of variables.

With this convention we can formulate the admissibility condition as follows :

non-positive for the variables that have reached their upper bound
in the starting point for the beam variation, i. e. 2% =Z;,.

(14.1)  d;=

non-negative for the variables the have reached their lower bound
in the starting point for the beam variation, i. e. 2’ =x;.
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A variable that satisfies (14.1) will be said to have an admissible direction number.
Otherwise it will be said to have an inadmissible direction number.

By this definition any variable that is 7zo¢z bound attained has an admissible
direction number. Hence the scrutiny for admissibility need only be made for the
bound attained variables.

If we want to express the admissibility requirement in terms of the basis direction

numbers di(k=u, v, --,w), we only have to substitute ijk dx for d; in (14.1).
k

The condition (14.1) can be considered regardless of how the basiis direction
numbers dx (k=u, v,"--,w) have been determined. And in particular this condition can
be considered in the case where the dix are determined by (13.7) where the Bj are
determined by (10.17).

In this latter case the basis direction numbers are uniquely determined and the

extra condition Zf?c di>0 holds, except if dy=0. From the programming viewpoint
k
it is very natural to supplement the condition (14.1) by the condition Z:f‘}c di>0.
k

Indeed, we know from (9.11)—(9.13) that Zf‘}c di>0 is a necessary condition for the
k

preference function to increase along the beam. And from IV in Section 12 we
know that this condition is also a sufficient condition for the preference function to
increase, provided 4 is small enough.

The fact that the supplementary condition Zf,‘é di>0 is fulfilled automatically if
k

the basis direction numbers di (k=u, v,--,w) are determined by (13.7) where the Bj
are determined by (10.17), applies regardless of wheter the set i=a, j,---,y is an empty
set or not and if the set is not empty it applies regardless of whether the regres-
sion coeficients B! are sign correct or not. The only exception is the extreme
case do=0, which in the algorithm will be characteristic for the case where an
optimum is reached. From now on we will assume that the supplementary condition

Zf(}c di>0 is implied in the definition of admissibility. This will be taken care of

automatically because we confine our attention to the case where the di are determined
by (13.7), and dy>0.

This being so, we note that admissibility is a concept that depends on the operation
set considered. For precision we may therefore speak of admissibility wunder the
operation set i=a, f3,---.r.

15. The selection of the operation set

Suppose that we are in any admissible point % where a certain number (perhaps
none) of the variables are bound attained.

A preference move from this point is a move along any beam d, which is
determined by (13.7) and (10.17) and is such that all direction numbers &; (j=1, 2,---,N)
are admissible. .

The move will be termed a preference move regardless of whether the regression
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coefficients B} are sign correct or not. If the regression coefficients are sign correct,
we will speak of a sign correct preference move. If not all regression coefficients are
sign correct, we will speak of a sign incorrect preference move. If nothing is specified
with regard to sign correctness, we will simply speak of a preference move.

It seems plausible to make the move under the smallest possible number of
constraints in the form of constancy conditions. Frequently it will be possible to
make an admissible move without including in the operation set a list of (linearly
independent) variables which is large enough to keep all bound attained variables
constant. This is the case where we can and should proceed by loosing contact with
one or more of the bounds which have temporarily been reached.

The logical consequence of this consideration is that we should make the further
move under the smallest possible operation set. A variable should be included in the
operation set only if this appears necessary to assure complete admissibility of the
beam variation.

This leads to the following method of progressive inclusion in order to define
the content of the operation set in any given point x%.

We first attempt a free preference move from this point, that is, a move with no
equational constraints. In conformity with (13.7) it is definned by

(151) dk:f(;c

If this leads to no inadmissible direction number d;, this is accepted as the move to

make.
If one or more inadmissible direction numbers occur, one should look for “the
most inadmissible one”. It may be defined simply as the direction number d; which

has the largest absolute value amongst the inadmissible ones. To assure comyarability
of units of measurement one may normalize d; by considering

Zb,-k d
(15.2) d;

T @) ) ()

This is the correlation coefficient between the boundary vector &;: and the beam
vector d; over the field & Geometrically it is the same as the cosine of the angle
between these two vectors.

To choose j so as to make (15.2) as large as possible in absolute value (i. e.
as close as possible to +1 or —1 as the case may be) is the same thing as to pick
that one amongst the inadmissible direction numbers which is such that the boundary
vector for this variable forms the smallest possible angle with the beam direction. If
more than one j amongst the inadmissible ones give the maximum of (15.2), we may
choose one of these j at random.

The variable thus selected should then be added to the operation set.

In this way we may continue and add variables one by one until we reach an ope-
ration set that makes all the direction numbers d; admissible.

The solution of the equation for the B! which are needed in this process, will
not be too costly because one will add one row—and the corresponding column—at
a time so that all previous work can be utilized when a new variable is added. It
will in each step be found simpler to make a one way solution than to compute a
full inversion.
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As an extra precaution one may already in this building up of the operation set
drop any variable that turns out to give a sign incorrect regression coefficient, but
this occurrence will not be frequent if the additions are made by minimizing (15.2)
for each new variable to be included.

The regression coefficient for a new variable that is added because it has an
inadmissible direction number, must always turn out as sign correct, but some of the
previously included variables may have their regression coefficients changed from sign
correct to sign incorrect or vice versa.

Computationally it is not needed for the comparison in (15.2) to divide by the

JTe)

We could, of course, start by normalizing all variables in such a way that by

factor since this factor is independent of ;.

definition

(15.3) Z b= for all 7,
k

but this would involve some extra work which could profitably be saved, at least

when the computations are made on desk machines. The sumsquare Z b% . would
k

then only be computed for those j for which it turns out to be necessary in the

course of the algorithm.

The above is a perfectly general procedure—and in a sense a very effective pro-
cedure—which may be applied in any given point regardless of the way in which this
point has been reached. But the procedure does involve a computational cost which
is not negligeable.

It will involve less cost in each step to proceed from point to point in such a
way that one only includes one variable or exclude one variable according to the
criteria of Sections 17 and 18 below. Whether this simplified procedure or a complete
application of the method of progressive inclusion in each point will in the long run
be the most economical, can only be decided by extensive numerical tests.

[To be continued.)

SUMMARY

Linear and quadratic programming problems may be approached in many diffe-
rent ways. 1 feel that in quadratic progromming—or in programming with more
general forms of a preference function—the only practical procedure is to work
through a series of movements in n-space, being guided by some sort of steepest
gradient principle. I shall not attempt to survey all attempts that have been made in
this direction, but concentrate on the use of the multiplex method.

I was originally lead to develop this method for the case of a linear preference
function in an attempt to cover the case where many of the variables may be linearly
dependent either exactly or nearly. For the linear case the multiplex method has
been successfully coded by Mr. Ole-Johan Dahl and applied on the good-sized elec-
tronic computer of the Norwegian Defence Research Organization. And it seems that
the method will be equally applicable to the quadratic case.
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The purpose of my approach to the quadratic case can be briefly stated as fol-
lows :

First, I am not interested in determining local maxima. 1 need a methed that
will yield a point which is a global maximums in the sense that no other admissible
point exists which will yield a strictly higher value of the preference function.

Second, I need a method which can work fairly quickly and without the compli-
cations caused by a non-convex admissible region or by a preference function which
is such that one needs to go through a complicated discussion in order to distinguish
between a maximum and a minimum.

Within the desiderata as thus specified 1 want to consider the most general case
that is variable. This is the case where the bounds are linear and the preference func-
tion of a mixed linear and quadratic character, the quadratic term being minus a
positive definite and non singular quadratic form. This mixed case is essentially the
same as the case where there are no strictly linear terms but the quadratic form is
singular. For a great number of applications, and certainly in many macro-economic
problems it is absolutely necessary to cover this case. In principle the method can
be applied to the case of any concave preference function but in this paper only the
mixed linear and quadratic case is considered.

Section 1 of the paper is essential because it contains definitions and symbols.
This also applies to (2.15) where the nature of the preference function and the dis-
tinction between lineo and quadrato variables are discussed. A lineo variable is one
that only enters linearly, while a quadrato variable is one that also enters in the
non-singular quadratic form.

Most of sections 2-8 contains work on clearing the ground before a discussion
of the method itself can start. These sections are partly concerned with a statement
of some classical algebraic facts and partly with a discussion of some practical com-
putational techniques. I shall not dwell on these parts of the paper except perhaps for
drawing attention to section 4 which contains a practical worksheet for building up
the inverse of a symmetric matrix for which the inverse of one of its principal mi-
nors is known. Also I would like to draw attention to the practical technique of
determining the rank of any rectangular matrix, which is given in section 8.

The sssential part of the programming discussion starts in sections 9 and 10.
Section 10 gives a cemplete formulation of a sufficient criterion for optimum. The
criterion is built on the four conditions (10.1)—(10.4). In section 11 mention is made
of the particular sense in which these conditions are also necessary.

Section 12 gives a discussion of what will happen if we start in any admissible
point and move along a beam from this point. Compare (12.1). The positive direc-
tion along the beam is defined by (12.2), which gives the direction in which the pre-
ference function is increasing (or at least not decreasing). Along such a beam the
movement should continue until we either break out of the admissible region, or
reach a maximum point along the beam. Only one such maximum can exist. The
case of a maximum along the beam may occur in the quadratic case but not in the
linear. An exact criterion for where to stop is given by (12.7)—(12.11). The increase
of the preference function, measured per unit of the move. is denoted dy and given
by (10.11).

In section 13 I discuss how we can define a beam variation that satisfies certain
linearly independent equational constraints. This sort of variation is adopted to the
case where a certain number of linearly independent bounds are reached and we
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want to proceed in such a way that these bounds continue to be reached. Amongst all
the directions that lie in this manifold of the boundary, that particular one is chosen
along which the increase in the preference function is the steepest. This leads to the
direction numbers (13.7) where the regression coefficients B; are given by (10.17).
The set of linearly dependent variables which are thus kept constant, is called the
operation set. Compare the text after (13.4).

As stated in (10.4) a regression coefficient B} is called sign correct if it is non-
negative when the variable X; is at its lower bound, but non-positive if X; is at its
upper bound.

In section 14 is discussed the admissibility of the beam itself. The admissibility

of the direction number d; is defined by (14.1). The admissibility discussion is made
‘n order to eliminate beam directions along which no movement would be possible
accoading to the rules of section 12. The admissibility criterion is a particularly useful
device for handling the case of linear dependencies. Since the direction numbers
depend on the regression coefficients, and these coefficients in turn depend on the
operation set, the concept of admissibility refers to a given operation set. This is a
help in choosing the operation set.

* * *

On the basis of the above discussion it is possible to indicate an algorithm which
is simple enough to be applicable to desk machine computation as well as to automatic
computation, and which will lead to an optimum point in a finite number of steps.
Since time did not permit to include a description of the algorithm in this paper a
brief summary will be given here.

Start in any point in the admissible region, not necessarily a vertex of the bound-
ary. Different metheds are available for finding such a point. Frequently an admis-
sible point is known a priori. Move from point to point by computing in each point
the preference gradient f% as given by (9.3) and decide on the next step according
to the following rule, that gives a mutually exclusive and collectively exhaustive clas-
sification of all cases.

Case I. Not all B! sign corréct: Drop from the operation set all variables with
sign incorrect Bji.

Case II. All B! sign correct, d, > 0 and not all d; admissible: Add to the opera-
tion set the variable with the most inadmissible direction number according to (15.2).
Case III. All B® sign correct, dy, > 0 and all d; admissible: Make a preference
move, i. e. proceed along the beam and stop at the point defined in section 13.

Case IV. All B? sign correct and d=0: An optimum is reached. Stop and give
output.

If the above rules lead to a situation where a succession of rounds (perhaps two
or three) indicate a preference move without change in the operation set, and if this
stationary operation set contains a subset that is lineo-independent, i. e. linearly in-
dependent over the field of the lineo variables: Replace the determination of the
direction numbers by means of the regression coefficients by a direction determination
that leads directly towards the maximum point under the constraints defined by the
operation set that has emerged as stationary. One and only one such point will now
exist. The relevant formulae are given by the non-lineo part Sk, of (6.18), Xdes heing
given by (3.2). The maximum point considered can also be determined by another
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and more direct formula. We could have continued according to the cases [—IV
without shifting to this new procedure for determing the direction of the move, but
this would have slower up convergency (and may indeed have lead to an infinite
number of steps). Along the beam now chosen we move according to the rules of
section 12. If a new bound is encountered in the course of this move, we continue
according to the cases I—IV.

A final remark on machine capacity may be added. The equations (10.17) need
only be considered explicitely for those variables in the operation set that are depen-
dent variables. For the basis variables that belong to the operatian set, the regression
coefficients can be written down at sight. If the maximum number of effective equa-
tions (10.17) which the machine can handle, is reached, a basis clearing can be made.
This means that a number of the basis variables that are at this stage nor included
in the operation set, are removed from the set of basis variables and instead the same
number of the dependent variables from the operation set introduced as new basis
variables. This only involves an inversion of the order of the number of variables
shifted. This being done the work can continue as before. 1f all the variables in
the effective equation (10.17) where removed from the basis set, there will be no such
equation in the next round and we are prepared for possible new inclusions of in-
dependent avriables into the operation until the machine capacity may be reached
anew. .

In this way we may continue and handle a virtually unlimited number of degrees
of freedom and of dependent variables.

The small numerical example appended to the paper was constructed by random
drawing of the coefficients It contains 12 variables and 5 degrees of freedom, of
which 2 are represented by lineo variables and 3 by quadrato variables. An optimum
point was reached after 5 rounds. The successive values of the preference function
are indicated in the first cell in the bottom row of each round. The solution was
worked out on a desk machine by a semitrained computor in about 7 hours.

The round designated No. 105 is only an illustration of what would have hap-
pened if we had not stopped before the breaking out point on the beam that leads
from point 4. The round designated No. 6 was only made to improve on the round-
Ing errors so as to get a more perfect fulfilment of the optimum criteria. It will
be seen that from round 5 to round 6 the preference function does not change in
the digits recorded, but the optimum criteria become fulfilled with greater accuracy.
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Tab. (26.1). Data for numerical example for quadratic programming by the multi-
plex method.

C‘i::‘t p=1 2 3 4 5 Check  Lower Upper Initial
sum bound bound point
term
i=6 —0.6641 0.7840 0.4764—0.6203  —0.4011 0.7274 0.2933 -1 1 —0.6641
7 0.9524 —0.2835 0.1808 0.1634 0.3996 0.2404 1.6531 -1 1 0.9524
8  —0.7483—0.1579 —0.6473 0.9296 0.7152 0.8516 0.9429 ~1 1 —0.7483
9 0.5246 —0.3513 ~0.4113  0.3760  —0.8985  —0.0221  —0.7826 -1 1 0.5246
10 ~0.9143—0.6891 —0.4124 0.9694  —0.2783  —0.1825  —0.6824 -1 1 —0.9143
11 ~0.2859 —0.5111 —0.3709 0.9210  —0.4931  —0.2545  —0.9945 -1 1 —0.2859
12 0.2466 —0.2207 —0.7125 —0.3571  —0.3513 0.4676  —0.9274 -1 1 0.2466
Check sum  —0.8890 —1.4296 —1.0724 2.3730  —1.3075 1.8279  —0.4976
Lower bound -1 -1 -1 -1 —1 -1
Upper bound 1 1 1 1 1 1
pr= 0 —0.2223—0.7723 0.9598  —0.4519  —0.6993
D
g5
g jK=3 2.09577403 0.93063312 1.46436083 4.49076798
'*Qm -
£ Pry< 4 0.65236979 0.63824197  2.22124488
l 5 1.65461973  3.75722253
Initial point, 0 0 0 0 0 10. 46923539

(admissible)
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Round chart for numerical example

Variable Round 0
No. Initial point At bound Direction numbers Ranking parameter
i= ) - A
1 0 —0. 22230000 4. 49842555
2 0 —0. 77230000 1.29483361
3 0 0 o
4 0 0 o
5 0 0 )
6 —0.6641 —0. 54220692 0. 61950519
7 0.9524 —0. 07660979 25. 48499349
8 —0.7483 0. 53501096 3.26778352
9 0.5246 0. 39574098 1. 20129080
10 —0.9143 —0. 16530959 0.51842122
11 —0.2859 0. 40006360 3. 21423894
12 0. 2466 0. 59932536 1. 25708013
Check o, 8890 0. 15141460
0 0 0. 64586458 o
Variable (2=0.51842122) Round 1

No.

New point At bound Direction numbers Ranking parameter
j= ) 4 &
1 —0.11524504 —0. 39893062 2.21781662
2 —0.40037671 —0. 66659333 0. 89953389
3 6 0 oo
4 0 0 o
5 0 0 o
6 —0.94519157 —0. 63032667 0. 08695242
7 0.91268386 —0.00742326 257. 66090100
8 —0.47093897 0. 49447701 2.97473682
9 0. 72976052 0.41431416 0. 65225741
10 — 1. 060000000 \ 0
11 —0.07849854 0.45113291 2. 39064479
12 0. 55730298 0.56299174 0. 78632951
Check ¢ 81050346 | 0.21964194 N
0 0. 33482991 0.60349231 oo
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(1=0. 08695242)

Variable Round 2
No. New point At bound Direction numbers Ranking parameter
Jj= xj d; 4
1 —0. 14993302 5.59728436 0. 20544481
2 —0.45833861 —6.33954343 0.08544171
3 0 4.51156351 0. 22165265
4 0 —6. 51057587 0. 15359624
5 0 1. 56774472 0. 63785895
6 — 1..00000000 v 0
7 0.91203839 —4.97434204 0. 38438016
8 —0.42794300 1. 42226943 1. 00398910
9 0.76578614 8.22187567 0. 02848667
10 — 1. 00000000 V 0
11 —0.03927644 7. 25507061 0. 14324760
12 0. 60625647 3.22461258 0. 12210569
Check 0. 79140507 10. 84047010
0 0. 38730502 12. 02040485 1. 00000003

Variable (1=0.02848667) Round 3
No. New point At bound Direction numbers Ranking parameter
J= xy dj £
1 0. 00951497 3.18661241 0. 31082695
2 —0. 63893109 —0. 16047886 2. 24994688
3 0. 12851942 1. 88038934 0. 46345752
4 —0. 18546463 —0. 33908113 2. 40218431
5 —0. 04465983 —1. 88964590 0. 50556571
6 — 1. 060000000 V 0
7 0. 77033595 —1.21493129 1. 45714903
8 —0. 38742728 —0. 50301148 1. 21781062
9 1. 00000000 A 0
10 — 1. 60000000 V 0
11 0. 16740136 0. 81079838 1. 02688740
12 0.69811494 —2.02491043 0. 83861237
Check ™ 0. 48250619 0. 25425896
0 0. 72484909 2. 61823977 1. 60000010
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Variable (1=0. 31082695)

Round 4

No. New point At bound Direction numbers Ranking parameter
j= i a 7
1 4+ 1. 00000000 A 0
2 —0. 68881224 0. 00218219 773. 907056
3 0. 71299510 —0. 00229419 746. 666623
4 —0. 29086018 —0. 00184993 383. 333326
5 —0. 63201270 —0. 00443407 82. 990863
6 — 1. 00000000 v 0
7 0. 39270256 —0. 00178553 779. 993928
' 8 —0. 54377680 — 0. 00864435 52. 777039
) 9 1. 00000000 A 0
10 — 1. 60000000 v 0
11 0. 41941935 —0. 00088167 1609. 921342
12 0. 06871821 —0. 00215905 494. 994655
Check ¢ 56162670 —0.01986660
0 1. 41219008 0. 00003312 0. 35247343
Variable (7=0.35247343) Round 5
No. New point At bound Direction numbers
J= x5 d;
1 1. 00000000 A 0
’ 2 —0. 68804309 —0. 00000059
3 0. 71218646 0. 00000064
4 —0.29151223 0. 00000051
5 —0. 63357559 0. 00000118
6 —0. 00000000 \ —0. 00000004
7 0. 39207321 0. 00000049
8 —0. 54682370 0. 00000235
9 1. 00000000 A 0
10 —1. 00000000 \V 0. 00000002
11 0. 41910858 0. 00000026
12 0. 06795720 0. 00000056
Check ¢ 56862015 0. 00000364
0 1.41219592 0. 00000002
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Variable (1=0. 35237781) Round 6
No. New point At bound Direction numbers Ranking parameter
Jj= x5 _ d; A5
1 +1. 00000000 A 0
2 —0.68804328 0. 00000009
3 0. 71218668 —0. 00000004
4 —0. 29151205 —0. 00000006
5 —0.63357517 0. 00000010
6 —1. 00000000 V
7 0. 39207338
' 8 —0. 54682288
9 1. 00000000 A
10 — 1. 00000000 \V
11 0. 41910867
12 0. 06795741
Check ™ _o. 56862724
0 0. 56862724

Variable (1=52.777039) Round 105
No. New point At bound
i= ¥

. 1 1. 00000000

2 —0. 57364271

3 0.59191454

4 —0. 38849401

5 —0. 86602979

6 — 1. 060000000

7 0. 29846757

8 — 1. 00000000

9 1. 00000000

10 — 1. 60000000

11 0. 37288742

12 —0. 04523006

Check ) 61012704
0

1. 28308265




