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1. I N T R O D U C T I O N  

In our work at the Institute of Economics, University of Oslo, on 
advanced methods of national and supra-national economic planning 
we have to an ever increasing extent been confronted with mathematical 
programming problems of a strongly nonlinear character. Without a 
reasonably effective method of handling such problems our progress 
would have come to an end. We have therefore been forced to take up 
the computational problem as a special part of our research work. 

The nonplex method (as distinct from the multiplex and simplex 
methods) is developed in an attempt to attack mathematical programming 
problems which are so strongly non-linear that the admissible region 
may be non-convex and/or the preference function non-concave, and 
where the number of variables is very large. 

The nonplex method in its pure basis form is a method where all the 
equational conditions can be and are solved in such a way that all the 
variables are expressed as single-valued functions of a number of basis 
variables. This form is discussed in considerable detail - including flow 
charts for automatic computation - in the Institute memorandum of 
4 October 1963 (in Norwegian) "Nonplex-metoden i dens rene basisform" 
by Ragnar Frisch in cooperation with K~re Edvardsen and assisted by 
Hfivard Alstadheim. Work is in preparation for the detailed coding of 
the nonplex method in this form on UNIVAC 1107 (the largest electronic 
computer in Scandinavia) recently installed at the Norwegian Computing 
Centre in Oslo. In the 4 October 1963 memorandum we confined our- 
selves to considering the case where the dependant variables as well as 
the preference function are quadratic functions of the basis variables. 
But we made no assumption about the non singularity or the positive- 
or negative definiteness of the quadratic forms involved. This is a fun- 
damental feature of the work, because it means that we are no longer in 
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a position to say that a local optimum is also a global one. This, of course, 
is the real difficulty in the more general types of programming work. 

As explained rather fully in the introductory section of the 4 October 
1963 memorandum there are ~ several reasons for trying to handle the 
problem in its subconditional form, i. e. without having to proceed by 
means of a complete reduction to the basis equations. Some of these 
reasons are: Saving of storing space, the need for handling very general 
types of equations, say algebraic equations, the need for rapid change of 
primary coefficients, the desirability of being able to handle problems 
where it is very laborious or even impossible as a practical proposition 
to solve the equations explicitly in the form of single valued basis func- 
tions etc. 

In the 4 October 1963 memorandum it was announced that the non- 
plex method in its subconditional form would be discussed in a subse- 
quent memorandum. The main points of the theory of this further work 
is hereby presented. 

The presentation in the present article will be made compact and brief, 
making use of many concepts that have been more fully explained in the 
4 October 1963 memorandum and in other earlier memoranda. 

It is hoped that the nonplex method in its subconditional form can be 
coded for UNIVAC 1107 in a not too distant future, provided sufficient 
financial support materializes. 

n. THE VARIABLES AND THE ~OVNDS 

Let x~ (i -= 1, 2 . . .  N, or shorter i ----- all) be a complete list of all the 
variables to be considered. They may for instance be the values in each 
year in the planning period of each concrete entity such as consumption, 
production in each of a number of sectors, investment possibilities in 
each of a number of investment channels etc. This completely dynamic 
aspect of the analysis is one of the circumstances which tends to increase 
the number of variables. 

For each such variable is specified a lower and an upper bound, i. e. 

(2. 1) xi < x,  --< x t  ( i  ---- all) 

where x, and x, are given constants, xi  ~_ xi. 

As special cases we may have for some or all i 

(2. 2) x i = - o o  and/or xi---- + oo 

which means that the variation of the variables xi for which (2. 2) holds, 
is unbounded in one direction or in both directions. 
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HI. EQUATIONAL CONDITIONS 

3a. General i t ies  

We assume that the variables specified in section 2 are subject to 
satisfying m independent equations - the s tandard  equations - which we 
write in the implicit form 
(3a. 1) aa (xl, xz . . . .  xn) = 0 (g = 1, 2 . . .  m) 

In principle we may then choose (usually in many different ways) a set 
of n = N -  m of the variables (n = number of degrees of freedom), say 

(3a. 2) xn (h ---- u, v . . .  w ,  or shorter h = bas) 

in such a way that these n variables are functionally independent in the 
model and further such that all the other m ---- N - n  variables xj 

(3a. 3) x I (j= 1, 2 . . .  (except u, v . . . .  w) . . .  N, or shorterj  = dep) 

can be expressed as functions of the variables (3a. 2). Let  these functions be 

(3a. 4) x j  = bj (xu,  x v  . . . xw)  (j = dep). 

The variables (3a. 2) are called the basis variables  and the xl in (3a. 4) 
the dependent variables. The  functions (3a. 4) are called the basis 
functions. 

Conventionally we may introduce the further n "basis functions" 

(3a. 5) b~ (xu,  x v . . .  xw) = xk (k = bas) 

so that not only the m dependent variables xj (j = dep) but  all the N 
variables xt (i = all) may be looked upon as being expressible in terms 
of the n basis variables (3a. 2), i. e. 

(3a. 6) x~ = b~ (Xu, x v  . . . xw)  (i = all) 

The case where the m basis equations are s ingle-valued is a special  case. 
The set-up (3a. 1)-(3a. 6) was the one used in the 4 October 1963 

memorandum. 

3b. Subequat ions  and  subfunct ions 

We now generalize the set-up in the sense that we do not  require that 
we are to use al l  the m equations (3a. 1) for the construction of basis 
functions. We leave the possibility open that we may t emporar i ly  neglect  

in (3a. 1) a certain number of the equations - to be called the subequa- 
tions - and use only the remaining ones for the construction of basis 
functions. These basis functions we call sub-basis functions or shorter, 
the subfunctions.  In principle the subfunctions may depend on a larger 
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number of basis variables than n, namely as many more basis variables 
as we have seggregated subequations from (3a. 1). 

In principle we put no restriction on the way in which we should be 
permitted to segregate subequations. We may seggregate only a few 
(perhaps none, which would lead to a complete basisform as we used it 
in the 4 October 1963 memorandum) or we may proceed very far and 
at the limit perhaps let all the equations in (3a.1) be subequations. 

In practice we will select for subequations those which are mathematic- 
ally the most difficult to handle, in particular those whose inclusion will 
make it difficult, perhaps next to impossible to arrive at manageable forms 
of the basis equations. The more equations we seggregate as subequa- 
tions, the more machine time we must be prepared to use at subsequent 
stages, but in turn the more mechanized and simple may the individual 
operations in the successive rounds be. 

3c. Absolute value deviations or square deviations? 

The main idea of the subequations is that we aim at assuring the fulfil- 
ment of these equations by adding a suitable penalty term in the search 
function which we are going to maximize, cf. (4. 7), and to consider all 
the variables that occur in this search function as independent variables. 
To insure generality let us formally assume that all the variables xi (i = 
all) may occur in the penalty term. If they do not, this is simply a special 
case. 

The most obvious and straightforwarded way to construct the penalty 
term is simply to take the sum of the absolute values, or the sum of the 
squares, of the neglected functions ag (xl, x ~ . . .  XN) in (3a. 1) and let 
this sum (multiplied by a suitable scalar penalty coefficient) constitute 
the penalty term in the search function. 

Sometimes, however, it may be better to proceed in a little more 
sophisticated way, namely to introduce a number of subsearch condition 
functions 
(3c. 1) Ca (xl, x ~ . . .  xN) (a ---- sub) 

which have the property that their being equal to zero is a necessary and 
sufficient condition for the fulfilment of the subequations. The letter C 
in (3c. 1) may be thought  of as standing for (equational) conditions. The 
penalty term in question will then be an arbitrarily chosen constant 
penalty coefficient multiplied by a sum of the absolute values, or of the 
squares, of the subsearch condition function '(3c. 1), or possibly some 
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other positive definite functions of the subsearch condition functions (3c. 1). 
The  choice between absolute values and squares, or possibly some 

transformation which will still make the sum positive definite and equal 
to zero when and only when all the Cg are zero, is a practical and con- 
ventional question. If  we use squares, the sum will be continuous and 
with continuous derivatives provided the functions Ca themselves have 
these properties. 

Continuous derivatives are unquestionably an advantage but  the 
squaring does consume some machine time since it has to be done over 
and over again in the several rounds of the programming algorithm. 
I have also an intuitive feeling that even in principle the sum of absolute 
values is better than the sum of squares. 

I cannot substantiate this feeling theoretically, but  I can point to some 
empirical evidence. See for instance the numerical example in section 3e. 
At this writing my preference is therefore for the sum of absolute values 
even though this will entail discontinuities in the derivatives. 

The  discontinuities which will occur when we work with absolute 
values is after all not very serious, they can be handled by choosing 
between the forward and the backward derivatives, an operation which 
the machine can do very quickly whether  it concerns a total or a partial 
derivative. 

Fig. (3c. 2) illustrates the four main cases in a function y of the single 
variable x. In the two upper  cases the signs of the two derivatives - the 
forward and backward - are the same, in the two lower cases the signs 
are opposite. 

The forward derivative with respect to a single variable is defined by 

(3c. 3) (dY] + = Lira y(x +/~ x ) -  y(x) 
\dx/ A,,~ +o /kx 

The backward derivative is defined by 

(dy)- = Lim y(x + A x ) -  y'(x) 
(3c. 4) , ,dx  z~x-~-0 A x  

In (3c. 3) Ax  tends towards zero through positive values, while in (3c. 4) 
&x tends towards zero through negative values. 

In the case of a function y of several variables xl, x 2 . . .  etc. where all 

the partial derivatives ~ are continuous, the gradient is simply defined 

in the traditional way as the vector whose components are 

(3c. 5 ) / 0 ~ )  = component  No. i of the gradient vector. 
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Fig. (3c. 2). Four  cases of the forward and the backward derivative(tangent).  
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If we move in the direction (3c. 5) i. e. if we move from the point x~ 
(i ~ I, 2 . . . )  to the neighbouring point x~ + /kxt (i --  1, 2 . . . )  where 

(3c. 6) /kxi = ;t ( 0~ )  2 p o s  

we are in the continuous case sure to increase the value of y, if at least 
one of the gradient components (3c. 5) is different from zero, and the 
positive factor 2 is small enough. Indeed, in this case, we have to the 
first approximation 

(0y) A y  = Y'l ~ /kxi, and hence 

(3c. 7) A y  = 2 ~ ,  (Oy~ 
\Ox~] 

And this expression is effectively positive if at least one of the gradient 
components is effectively different from zero. 

To reach a similar definition in the case where the forward and back- 
ward derivative may be different, we must  for each of the independent 
variables make an appropriate choice between these two derivatives. 

By a simple graphical inspection of fig. (3c. 2) and an inspection of the 
somewhat more elaborate figure which we would get by also taking 
account of different alternative combinations of the steepness of the slopes, 
the following rule will determine the gradient components di which 
will lead to a positive increase - and the most positive one in the absolute 
value - of y (if a positive increase is at all possible, which it will be in 
all the four cases in fig. (3e. 2) except the last one which satisfies the 
first order condition for maximum): 

(3c. 8) Rule for optimal determination of the gradient component di. 

If(OYl+isnonpositiveand(~xi)kOx, ] -non negative - the case illustrated 

in the bot tom right diagram in fig. (3c. 2) - put  & = 0 

In all other cases put  di equal to that one of the two numbers 

0y,+ (0y) O-~x~) and ~xl which has the largest absolute value. If the two 

absolute values are equal, decide the choice by random drawing. 

In the case of strictly continuous partial derivatives the rule (3c. 8) 

yields for di the traditional gradient component  (~xY). 
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Whatever the d~, determined by (3c. 8) the sum 

(3c. 9) A y  = E~ d~/Xx~ 

where 

(3c. 10) /kxt = ~d~ ~ pos 

will always be effectively positive if at least one of the d~ is different from 
zero, the sum (3c. 9) is indeed equal to 

(3c. 11) /ky = 2 Z~ di 2 

Neither in the strictly continuous case (3c. 7) nor in the possibly dis- 
continuous case (3c. 11) will /ky  necessarily be exactly the change in y 
which is produced by the Axi, but  in both cases ~ y  may be taken as an 
approximation. And as such (3c. 11) is just  as plausible as (3c. 7) when 
the di are determined by the optimal rule (3c. 8). 

3d. Step functions and functions with discontinuous partial derivatives 
A step function is a function which is such that the ordinate itself in 

certain points makes a discontinuous jump.  This is an even more serious 
type of discontinuity than that of discontinuous jumps  in derivatives. 
Fig. (3d. 1) illustrates the case where both types of discontinuities occur. 

Fig. (3d. 1) illustrates a case when we are in the point x0 and have 

Y. 

F~ tlm 
" ~ " ~ -  I ~  Backward salturn 

) x 
X o 

Fig. (3d. 1). Example of both types of discontinuities. 
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arrived in this point by a process which in some way or other has defined 
the value Yo which the ordinate is to have in this point (a value which, of 
course, must  lie between the lower and the upper bound for the step 
function in this point x0). 

In this case a forward move means that we first have to add to the 
ordinate the forward saltum and then continue along the forward slope. 
And a backward move means that we first have to subtract the backward 
saltum and then continue along the backward slope. 

In this case the sign of the increment in the function cannot be indicated 
simply by specifying in what direction we are to move (as it could when 
the only kind of discontinuity present was a jump in the derivative). We 
must now also specify how far we are to go. For instance if we move for- 
ward only a small distance, this will obviously be more "profitable" than 
to move backward a small distance. But if we move backward a sufficiently 
long distance the "overhead cost" represented by the backward saltum 
will be more than covered, so that a sufficiently long move backward will 
be more "profitable" than an equally long move forward. 

An analysis of such cases cannot be made simply by considering conti- 
nuous changes in the independent variable, but would require some sort of 
"Quantum theory" of the changes in the independent variable. 

In several variables the analogon of (3d. 1) means that we would have to 
compare various alternative beams of variation that do not start from the 
very point where we find ourselves, but start from some neighbouring point. 

Possibly even such cases might be handled by the nonplex method in 
its subconditional form, but at best this analysis would be extremely 
complex. I shall therefore in the sequel disregard the case of stepfunc- 
tions and confine myself to the study of search functions which are conti- 
nuous but whose partial derivatives may be discontinuous, and disconti- 
nuous in such a way that the situation can be handled simply by disting- 
uishing - for each variable taken separately - between the forward and 
the backward partial derivative. 

3e. An example : Minimizing the sum of the absolute values of 
the deviations from the arithmetic average 

Consider the Nvariables xl, xz . . .  x N and assume that we want to minimize 
N 

(3e. 1) C = X I~J - a I 
/ = t  

w h e r e  

xl + x~+. . .  + XN (3e. 2) a -- 
N 
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The exact solution of this problem is, of course, obvious. It simply 
consists in putting all the variables equal. This common magnitude of 
all the variables may be arbitrary, which means that the optimal solution 
has one degree of freedom. 

We have chosen the example in this simple way in order that we may 
be able to evaIuate precisely the success of the technique based on for- 
ward and backward partial derivatives. 

i shall first give the explicit expressions for the partial derivatives of 
the function C defined by (3e. 1). They  are 

( l - N )  i f x ~ >  a 2 

(ocy 2. 
(3e. 3) ~x~] = - "~ if x~ < a 

2 ( 1 -  g--~-+, 1 ) if x~ --= a 

(3e. 4) (~x~x~t - = 

where 

(3e. 5) 

2-27 if xi > a 
N 

- 2 ( 1 - ~ )  if x, < a 

- 2 ( 1 - 7 ~ + ,  1) i f x ~ = a  

/~ is the number  of variables that are larger than a 
7 is the number  of variables that are smaller than a 
N -  (/, + 7) is the number  of variables that are equal  to a. 

To prove the formulae (3e. 3)-(3e. 4) we note that for any function 
0v 

y ( x l ,  x2 �9 �9 �9 XN) with continuous partial derivatives ~ x  i we have 

s g n y  .~xYt i f y  ~= 0 

_ ~  I (3e. 6) Oly(xl'x~""xn)l- forward + Ox~ 
Oxi if y = 0 

backward - [0-~i [ 

where 
+ l i f y > 0  

(3e. 7) sgny- - - -  - l i f 3 , < 0  
0 i f y  = 0 
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Letting 

(3e. 8) y = x j -  a 

and hence 
Oy 1 

(3e. 9) Oxt -- ej~- ~ 

(3e. 10) 

we see that 

where eti are the unit  numbers  
l i f i = j  

e~l : 0 otherwise 

(3e. 11) 
O l x ~ - a ]  

Ox, 

1 
sgn (x 1 - a) . (eit- IV) if xj ~ a 

forward + [ e l , - l [  
if xj = a 1 

backward - [ e j , -  N I 

and therefore 

(3e. 12) 

(3e. 13) 

( /=al l)  

(OZ~ I xj - a !]+ 1 1 
= X s g n ( x t - a ) . ( e j , - ~ ) +  2: let i -N[ 

OXi } jlxj4=a jlx~=a 

( 0 N ' ! x j - a D - =  2: : g n ( x l - a ) . ( e i t - N ) -  2: [ e , , - l [  
OXi j Ix1 ~ j[x3=a 

Incidentally this shows that  in any point  (xl, x , . . .  xN) where there 
are no variables exactly on the average a the partial derivative with 
respect to any xi is continuous,  i. e. the forward and the backward partial 
derivatives equal. 

Splitting the first sum in (3e. 12) and (3e. I3) into those j for which 
xj > a and those j for which xj < a we get 

. )  . I 
j]xt<a 

lozlIxl_al~- 1. 1. 
(3e. 15) / =- } = 2: (~J~-~)- 2 (ej~-~) 

By considering the three alternative cases where the affix i occurs in the 
first, second or third term in (3e. 14)-(3e. 15) we get (3e. 3)-(3e. 4). 

In the case where the affix i occurs in the third t e rm we note in parti- 
cular that we have 

2: l e / ~ - l l = l - N  + 2: I -  I ( i f x i = a )  (3e. 16) 
Xf~O ilxj=a J j~-i 
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The summation in the right member  of (3e. 16) contains N - ( g + y ) - I  
terms, hence 

(3e. 17) ~ [e t t - l [  = 2 ( 1 - 1  ) # + ~' ( i f x , = a )  
j lm=a N 

Since in the case x~ = a the first two terms in (3e. 14)-(3e. 15) yield 

- ~  + ~ we get the last line in (3e. 3)-(3e. 4). 

The  derivation of the first and second line in (3e. 3)-(3e .4) is straight- 
forward. 

There are several plausibility tests we may apply to (3e. 3)-(3e. 4) 
for instance: 

I. Under  a partial variation of a variable x~ which is above the average, 
C will be increasing with this variable both before and after the 
special point we are considering. Vice versa for a variable x~ which 
is below the average. 

II. Under  a partial variation of a variable xt which is on the average C 
will increase whether we move this variable to the left or to the 
right of the special point we are considering. 

III .  If N = 1, in which case C is constantly equal to zero, the first two 
lines in (3e. 3)-(3e. 4) do not apply, and in the last line we get 0 
since now/~ = y = 0. 

H we apply the opt imum rule (3c. 8) to (3e. 3)-(3e. 4) we get the 
following very simple and very plausible determination of the direction 
numbers  d, for the function (-C),  i .e.  the direction numbers to be 
applied if we want to minimize C: 

For any x~ whichisabovetheaverage, i.e.x~>a, put di = - 2 ( 1  -/~/) 

(3e. 18) any x~ which is below the average, i.e. xi < a ,  put  d~ = + 2 (1 - ~ )  For 

For any xi which is on the average, i. e. x~ = a, put  d~ = 0 

This determines the gradient-direction in which we ought to move if 
we want to minimize C, of. (3c. 10). But how far should we move in this 
direction ? 

Without  attempting to use any complicated procedure we may adopt 
the time honoured N E W T O N  formula for locating approximately a zero 
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of a given function when we start from any point in the vicinity of such 
a zero. This formula in the case of the function C amounts to putting 

(3e. 19) C + AC =- 0 

In order to apply this to the present case we must determine 

OC 
(3e. 20) ZXC = X ZXx, 

Separating here the summation over i according to the three cases in 
(3e. 18) we get 

~C OC OC 
(3e. 21) ~ C =  ~ ~ & x i +  ~ ~ & x l +  ]~ Ax~ 

i[x,> a i l x , <  a ilx, = a ~xi 

In the first term here &x~ is equal to - 2 (1 - N ) ~  according to (3e. 18), 

cf. (3c. 10). Since this is a negative quantity we must use the backward 
formula (3e. 4) so that the first term in (3e. 21) becomes 

i[ a N "  ( - 2 ; t ( 1 - ) = - 4  N I x ' > a  

gives ~u ( 1 -  N). The first term in (3e. 21) The last summation here 

~ ( 1 - ~ V ) ~ .  therefore reduces to - 4 -~- 

Similarly the second term in (3e. 21) reduces to - 4 ~ -  - ~ )  ~. 

The third term in (3e. 21) is zero by the last line in (3e. 18). Collecting 
the terms we get 

(3e. 22) AC = - 4 ~  (Z-k* N + ~)a" 

This expression is zero when and only when all the variables lie exactly 
on the average i. e. when and only when # = ~ = 0. In all other cases it is 
effectively negative. This follows from the fact that we always have 
0<= # ~ N - 1  and O < = y < = N -  1. 

Inserting (3e. 22) into (3e. 19) we get the following determination of 

(3e. 23) ~ = N C 

4~r (2 ~+~ 
- - - - i f - - /  

And inserting this value of ;t into (3c. 10), where now the di are determined 
by (3e. 18) we find the increments A x i  that we ought to attribute to the 
xi, if we find ourselves in any given point (xi ,  x 2 .  �9 �9 x2v). 
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This gives rise to a sequence of rounds that we may hope will con- 
verge towards a point where all the xt are equal, and hence equal to the 
average a. 

A numerical example in three variables xl, x2, x3 is given in the left 
part of tab. (3e. 24), where we start from the arbitrarily given point 
(-3, -2, + 8 )  which gives a = 1. I t  will be seen that the convergence is 
fairly rapid. The average remains constant in this example, but this is 
not a general phenomenon. Examples may be construed where the 
average is not constant. The behaviour of a is not particularly interesting 
since we know that the average represents one degree of freedom in the 
solution and we have only asked for some point (xl, x2. �9 �9 Xlv) where all 
the variables are equal. 

I t  is interesting to note that in this algorithm the number of multiplica- 
tions and/or divisions involved in each round is independent of the number 
of variables N. The only way in which the different variables intervene 
is through the sorting process where they are classified in the three cate- 
gories xi > a, xi < a, xi = a. A sorting process of this kind is very 
quickly done on the machine. 

Tab. (3e. 24) COMPARISON of the C-method and the 1-method 

By the  abso lu te  s u m  m e t h o d  By the  s q u a r e  s u m  m e t h o d  
R o u n d  C = ~ j  Ix1 -  a [ = ra in  I F = ~,~ ( x j -  a) 2 = m i n  ! 

No .  
x l  xa x3 / "  xx / '  

- 3  

1 

1 7  

3~1 
32 

- 2  

2 

4, 

.99 
8 

1 5  

3 3  

[+: 
1 

1 

1 

1 

a C 

1 J 14 

1 1 

1 �89 

1 ; �88 

74 - 3  

! -1  2 

! 0 8 

~- �89 
3 

7 

x 2 X 8 

- 2  8 

a C 

1 14.00 

1 7.00 

1 3.50 

1 1.75 

1 0.88 

1 0.44 

" ~  2 

13 23 

2 9  3 9  

74 

_a! 
Z 

8 

3 2  

128 

37 

Now let us compare this algorithm with the algorithm we would get by 
minimizing the function 

(3e. 25) F = ~ (xj - a) ~ 
J 

This function has continuous partial derivatives. If we handle it 
in accordance with the same principle as we used when handling C, we 
get the sequence of rounds described in the right part of tab. (3e. 24). 
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It is interesting to note that in this case the convergence is very much 

slower. This is apparent whether we judge the spread of the values 
(xx, x2, xa) in the two algorithms by using the C values as a means of 
comparison (compare the C column to the left with that to the right) or 
by using the f '  values as a means of comparison (compare the / '  column 
to the left with that to the right). 

Another weals point in the algorithm obtained by minimizing/ '  is that 
here each round involves a number of multiplications and/or divisions 
which is of the order N.  

From any algorithm used for minimizing a function y we may deduce 
another algorithm by minimizing some function 

(3e. 26) s (y) 

of the originaly, where s is a positive and effectively increasing function 
of y. The nature of this function may be characterized by its flexibility 

dO Y 
(3e. 27) El. s - -  dys 

If s is taken as the function to be minimized instead of y, and we handle 
s by the same N E W T O N I A N  method as we handled y, the changes 
that emerge in the various variables x~ from round to round will be 
different. We get 

1 
(3e. 28) Ax~ = " Ax.t 

g2 E1.s y 

where /k and /k denote the increments that emerge in the s algorithm 
t2 y 

and in the y algorithm respectively. 

If we choose the nature of the function s in a particular way adapted 
to the nature of  the individual functions that ought to be zero - in this case 

functions ( x i - - ~ )  - t h e  convergence may be speeded up. In the the 

right part of tab. (3e. 24) we might for instance try 

(3e. 29) s = l/~ 

That is to say we may put up the minimalization of V Z~ (x j -a )z  in- 
stead of the minimalization of Zj (xj - a)"-. Prima facie one might think 
that this would not make much difference, but (3e. 28) tells us that 
there is a difference, and this difference is all the more important the 
smaller the flexibility of s In the case (3e. 29) we get 

1 
(3e. 30) El. s --  

2 
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This  means that the increments downward in each xi column in the right 
part of tab. (3e. 24) should be just  doubled. Looking at the passage from 
line 0 to line 1 this means for instance that instead of an xl change from 
- 3 to - 1, which is an increase of 2, we will have an increase of 4. In 
other words we will move from - 3  to ~- 1. In the x~ column, instead of 

1 
moving from - 2 to - ~-, we will move from - 2 to -b 1, and in the x8 

9 
column, instead of moving from -b 8 to -[-~- we will move from -b 8 to 

-b 1. In other words already the very first round will give us an exact 
solution. But this extraordinary result is, of course, only due to our 
having chosen a transformation of the function _P ~ Xj ( x j -  a) ~ which 
is particularly adapted to this special example considered, namely the 
squarerooting of F. 

If we want a general rule that is to be applied regardless of the parti- 
cular nature of the individual functions that it is desired to bring down 
to zero, I would at this writing rather be inclined to construct the penalty 
term by taking the absolute values of the functions than by taldng 
squares. 

If we are not only concerned with minimizing C but  also concerned 
with some entirely different purposes, cf. (4. 7) we will have to consider 
a compromise direction of move and comprise length of move in each 
round. 

IV. THE PREFERENCE F U N C T I O N  A N D  
THE SEARCH F U N C T I O N  

In  a general programming problem there will be specified a certain 
preference function whose maximalization is the main problem of the 
analysis. The  various bounds and equations we have discussed so far 
may be looked upon as sideconditions only in the maximalization of the 
preference function. 

T he  preference function defined as a function of all the variables in 
the model, we call the gross form of the preference function. If  in this 
gross form of the preference function we introduce the basis expressions 
for all the variables - whether we have decided to use a complete system 
of basis equations or only a subconditional system of basis equations - 
we get the net form of the preference function. 

The  preference function we shall denote 
(4. 1) F (xl, x ~ . . .  xN) 

This  function will form the first part of our search function, i. e. of the 
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total function which we want to maximize. In (4. 1) those variables xz 
which we have chosen to consider as dependent (not basis) variables will 
now have to be looked upon as functions of the basis variables. 

A second part will be constituted by a penalty term derived by con- 
sidering the misplaced variables, i. e. the variables that are either below 
the lower bound or above the upper bound in (2. 1). We may consider 
the misplacements either in the exact or in the threshold sense. The  latter 
concept is derived by defining for each variable a certain threshold which 
indicates that we are in fact not too particular about the exactness with 
which the bounds are fulfilled. A precise definition of the threshold 
concept is given in previous memoranda. The structure of the penalty 
now considered will be built on the function 

(4. 2) 

where 

(4. 3) 

and 

(4. 4) 

ilmis 

x~* = _x, if xi < _x, 

- l i f x i > ~ ,  

~ * =  + l i f x t < x _ ,  

and 'mis' indicates a summation over all the misplaced variables. If M is 
multiplied by some conveniently chosen scalar penalty coefficient/~ we 
get the second term in the search function. 

Sometimes it may be useful to include a third and special penalty term 
which concerns those variables that are thresholdly bound attained, i. e. 
that lie within threshold nearness of one of their bounds. For these var- 
iables we may consider the sum 

(4. s )  B = E (x ,  - 
i] bat 

where the summation runs over i for all the variables x~ that lie within 
threshold nearness of the bound x~* (bat = bound attained). This func- 
tion B multiplied by some scalar penalty coefficient fl constitutes the 
special penalty term. Its purpose is to give a special treatment to the 
variables that have already come thresholdly in their admissible interval. 
We might for instance want to attribute some importance to their not 
becoming too inadmissible in the further moves. The  term (4. 5) might 
have been included with (4. 2), but then we would not have had a possib- 
ility of distinguishing between the values of the penalty coefficients for 
the two sets of variables. 
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Finally there is the penalty term built up on the functions (3c. 1). 
Tentatively we might - for the reasons explained in section 3c - aggregate 
them in their absolute value forms, i. e. put  

(~.6) C--- E [C,~] 
a [ sub  

where a runs through the subconditional functions. The  minus sign in 
(4. 5) simply stems from our convention that the search function is a 
function to be maximized (not minimized). The  function C defined by 
(4. 6) will have to be multiplied by some convelfiently chosen penalty 
coefficient ~,. 

The  three scalar penalty coefficients #, fl, 7 will have to be entered in 
the machine as parametres specifying the algorithm. 

Collecting the terms we get a complete search function of the form 

(4. 7) s = F + # M  + fiB + 7C 

and it is this which is to be maximized in a sequence of rounds, analogous 
to those in tab. (3e. 24), but  much more complex. 


