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TrE mCKSIAN MODEL
In a nutshell the Hicksian model? can be described as follows, if timeis
denoted by ¢ (say calender year) :

Notation for five variables. C, = private consumption ; I, = net induced
investment ; @, = Government use of goods and services on current account;
H,= net autonomous investment?®; Y, = net nationa! incume?.

Notation for four parameters : «, f, k, A. O .hese 2 and g are in the main

structural parameters not subject to Government '« -, while k and A may be
thought of as being subject to Government decisio st to some extent. The
parameters k and A will define the Government s ith respect to the total

Government expenditure on current account.

Four equations:
Consumer behaviour, C,=a¥,,, - ' .. (1)
Behaviour of induced investors, I, =Y, ,— 2_ 2) . (2)
Government strategy with respect

oy

to current account expenditure, G, =«kY, ;—AY, 1—Y,,) e (3)
Definition of net national income Y,=0C+I1,+G+H, : . 4

Degrees of freedom. As it stands the model has five variables and four equa-
tions, hence one degree of freedom. This degree of freedom may be thought of as
being generated by the variable H,, i.e. autonomous investment. This variable may
be looked upon either as deterministically given (i.e. each value H, is given for reasons
outside of the model) or as stochastically given (i.e. the variables H,, H, ...

1 The Indian economist Mr. Ashok K. Parikh, M.Se. (Econ.) (London School of Economics) stayed
some months in the Oslo University Institute of Economics in the summer of 1962.

2 J. R. Hicks (1950): A Contribution to the Theory of the Trade Cycle, Oxford. Seealso 7.3 in R. G.
D. Allen (1957): Mathematical Ec ics, London.

3 Hicks uses the symbol 4; for autonomous investment. I prefer to use H; because it corresponds
better to the Oslo notation.

s In standard national account terminology the ¥; would have to be called net national product.
The designation “income” is the national account terminology connected with the concept of factor oost.
I have on several occasions strongly criticized the concept as being neither logical nor fruitful. I am
therefore quite happy to use the term “‘income” for ¥3, even though it may have nothing to do with
factor cost. . -
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have a given simultaneous probability distribution; possibly as a special case all the
H,, H,... may be stochastically independent). In any case the values Hy, Hs ...
will have to be considered as data when we -approach the solution of the model.®

This means that the solution should be sought in the form of four time-func-
tions O, I, G, Y, explicitly expressed in terms of the four parameters a,f, K, A,
the initial conditions and the values H;, H, ... .

Method of characteristic roots and method of recurrence. The solution may
either be obtained by the recurrence method or by the method of characteristic roots.

In the recurrence method we start from a given initial gituation of the variables
and use the model (1)~(4) to compute the constellation of the system in next point
of time and so on. ‘ : ‘

In the method of characteristic roots we start first by obtaining the solution
of the associated homogeneous systems, i.e. the system that is identical with (1)-(4)
except for the fact that the term H, is dropped. In other words one puts H, =0
for all . And this homogeneous system is solved in a particular way, namely, by
computing the so-called characteristic roots. And by the help of the solution of the
homogeneous system one finally derives the solution of the complete system (1)-(4).

Tt is very useful to have the solutions available in the both forms (cf. equations
(35), (127), (130) and (133)). :

The recurrence method has an advantage compared to that of the method of
characteristic roots because the recurrence procedure yields immediately the forms
which the functions in question must necessarily have in order that they form a solu-
tion. In the method of characteristic roots, we do not get immediately anything more
than forms which are sufficient in order that the functions in question shall satisfy
the system of difference equation. It follows, however, from classical mathematical
theories (proved in a rather elaborate way) that under certain conditions the function
forms obtained by means of the method of characteristic roots, are actually the forms
which the functions must necessarily have in order that they shall satisfy (1)-(4)-

In the sequel. I will use both these methods and compare the results.

The system (1)-(4) is a simple one because it can be partitioned in such a way
that the whole problem is reduced to a consideration of a simple difference equation
in one variable namely Y, Once the explicit expression for Y, is obtained, the
remaining follows from (1)-(3).

The equation in ¥, is derived by inserting (1)«3) into (4). This gives

' Y, =uY,+vY, o+ H, e (9)

(one equation in two time functions Y and H)
where u=a+t+p+r—2 . (6)
v=2a—p. )

5 There is no particular reason to assume that H; must be non-pegative ; it may in principle be positive,
negative or zero, but of course in practioce it will as a rule be positive.
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A realistically weak point in the model. The equation (5) brings to light a
realistically weak point in the model. The equation shows that whatever the past
course of the economy has been, the net national income Y, can in any given point of
time ¢ be rendered arbitrary great if H, is chosen sufficiently great.

Tt is, of course, true that frequently the constellation of the economy, and its
structure, may be such that an expansion will oceur if hidden resources are released,
either through determinate government action which will stimulate autonomous
investment H,, or through more or less accidental happenings (inventions, wars ete.)
which will also stimulate autonomous investment. But I think that Western economio
thinking on trade cycle regulation and on economic growth is all too one-sidedly con-
centrated on this point. The present model where H, can ad libiium produce an
expansion in Y, is an example. H, is by (5) so to speak an extra addition which we
may, if we like, give to ¥, when the point of time ¢ has been reached.

The analysis of the role of autonomous investment (or more precisely of auto-
nomous investment starting) ought to proceed in a more thoroughgoing way by relating
the possibility of autonomous investment to the existing production capacities and
other bounds in the economy. In order that the additional term H; in (4) and (5)
shall have a meaning it must be looked upon as an erratic element (a “‘shock’) which
itself has taken care of the realistically existing bounds, or as an element given in
some other way satisfying the bounds.

One very simple way in which we can explicitly take account of at least one
important bound on the development of the economy, is by using the Harrod-Domar
way of thinking where the need for real capital is introduced explicitly (and expressed
through the capital-to-output ratio) and where this need for capital is connected with
the investment activity. I do not think that the Harrod-Domar model gives an ade-
quate analysis of the growth process in the economy.® In particular it is entirely
inadequate for a discussion of the decisions connected with the growth problem in an
underdeveloped country.” But the Harrod-Domar model takes at least account of
one aspect of development which is completely neglected in the Hicksian model as
described in (1)-(4). Another bound that may be considered is (148) below. The
introduction of this latter bound will not restrict the number of degrees of freedom,
so even with such a bound introduced, the model does not determine the actual solu-
tion of the system but will depend on what the autonomous investments H, actually
have been, subject to the constraint (148).

In the present paper I will, however, disregard this aspect of the Hicksian
model and consider the nature of the solution as it follows from (1)-(5).

8 See for instanoce my paper in Economeirica, July 1961.

7 Some of my reasons for thinking so are given for instance in section III l.a in my October 1960
paper in the journal L’'Egypé Contemporaine, Cairo, and on pages 62-63 in my papor ‘“Economic planning
and the growth problem in developing countries”, in the journal Stateskonomssk Tidsskrift, Oslo, 1961.
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THE SOLUTION BY RECURRENCE
It is essential to give the explicit solution of (5) for any arbitrarily given func-
tion H,. We shall first approach this problem by the recurrence method.

Let the size of net national income in the points of time 0 and (—1),1i.e.
Y, Y_,, be given as initial conditions. From (5) we then derive successively

Y, = pYotv¥ 1 +Hy

Y, = ﬂ2(1+@)yo+ﬂvy—1+,uH1+Hza

Y, = /1,3(1+2m)Yo+,u2v(1—}-m)Y_l—}-/l,z(l—}—m)Hl—}—/l,Hg-!—Ha,
Y, = p(1+30+0?) Yo—}—,uﬁv(l+2o))Y_1-{—;b3(1+20))H1

+:“2(1+°))H3+II'H3+H4 . (8

(Parikh has continued this recurrence up to t = 15. i.e. up to ¥Yis). :
where o= /;3. R 9)
We can assume that n#*0 (10)

so that the parameter » defined by (9) exists.
It is readily seen that in general the coefficient of Y, in the explicit expression
for Y, will be xf times a polynomial in « of the order Ent /2 where
Ent q denotes the largest integer contained in q. .. (11)

Denoting the coefficients of this polynomial by a; we can write this poly-
nomial
A, = ap+ay0+ape®t... up to the term with wEot42, .. (12)
By carrying out the recurrence procedure (8) for the first terms it is easily
seen that in general the first two coefficients are .
=1 t=12,...,%9) : .. (13)
ay =t—1 (@¢=12, veey OO) .. (14)

The general expression for the coefficients ay; is then easily obtained by notic-
ing that the general expression for ¥, must be linear in Yo, Y_y, Hy, Hy, oo H, and
that the expression must hold good identically in these {+2 magnitudes.

Therefore if we put
Y ,=H =Hy=-=H=0, ... :(16)
but Y, #0 s
and insert into (5) the expression for Y, thus obtained, we get after having divided
by Y, (assumed different from zZero) ‘
PE Gyt = ppf T Ty, NS S g X Y 0%

The last expression in the right member of (16) can be written 75 Y

= W@ s ;o' so that (16) can also be written -

BB O — By, s— g, 5-1)00" = O t=23.,%
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By (10) this gives

S@i—ayy, i —p s ) =0 (=23, ...,0). e (18)

2, i—

Since the polynomial (18) is to be zero for any value of w, its coefficients must
be zero separately. Hence

Ay — gy, ¢ = at—2, i—1 (t == 27 37 sees CX))-. cee (19)

Adding the equations (19) for ¢, ¢—1, ... 3, we get
t
G = Qo+ X @y ;4 (t=3,4,...,0) ... {(20)
T=3 .

t=2

In other words @y = Aoy + 2 A, 5, (t=3,4,..., 0). .. (21)

T=

We will only use this equation for i = 2, 3, ... 0. Since by the remark before (11)

gy = 0 for i > 2 ‘ .. (22)
t—2 -

wo get from (21) =% a i (j3307%°) . (23)
T= =

This together with (13), (14) and the general formula for binomial coefficients

E(N=(PET) (£29) - (29
we get am::g:fa,lgg <TT1)=(t_22) _(t=$,4,.;.,oo). .. (25)

From (8) we see that the last formula also holds good for t = 1, 2.

Hence we have quite generally

(t—2
a= (" ) t=1,2,... ). .. (26)
Further we get by (22), (23) and (25)
= t2r—2\ _ 4—3
=2 a,z_.gl( 5 )_( 5 ) (t=3,4, ... ). e (2D

Since by (8) this formula also holds good for ¢ = 1, 2, we have quite generally

a,3=<t_é3) t=1,2, ..., ). .. (28)

Continuing in this way and taking account of (13) and (14) we get

.

ay = (‘—i’; ) (f;‘:é’ 12’:::’°°). | . (29)
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We can check this formula by inserting into (5) the expression obtained for

Y,, Y1, Y, by using (29) and the assumptions (15). This gives for the left member,
after dividing by Y,

W (t’i’) )«9 e (30)

and for the right member we get
B e S e M

The last expression here is equal to #Z; (t:_l_l_') . The total right member is

consequently
i (1 (2 o

By the classical formula for binomial coefficients
(2)+(3)=) (20 - 9

the bracket in (31) reduces to (t;‘) <o that (31) is seen to bo identical with (30}

From (8) we see heuristically that :
the coefficient of Y _y in Y, is equal to v times the coefficient of Yoin Yo
the coefficient of H, in Y, is equal to the coefficient of Yo in Y.

(33)
and - (34)

The two rules (33)-(34) can easily be verified by continuing the recurrence.

The general explicit expression for Y, will consequently be

ro= [ (17 o [promd e 7

+ 3 [ﬂ“’z,-(t——z—i>o)‘] H (=12 . )

T=1

The brackets in (35) indicate the coefficients of Yo, ¥y, Hi, H,, ...,Hp.

The first line in (35) can also be written

1 jt—i—1\] . . i
‘,l;z',_i_ ( -t 1 }i',u(t—-z)Yo—i—v(t—%)Y_l]m‘

r—

but if it is desired to bring out explicitly the separate offect of each initial conditf
(35) is the proper form to use. -
al expression (35) into (5) we can check that the eq

By inserting the gener
©, Yoo Yy, Hy, Hy, -os H,.

tion holds good whatever values we attribute to x,
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Indeed, inserting (35) into (5) and bringing all the. coefficients of Yo, Y_,,
H,, ..., H, together on one side, we get

{5 o e e | ]
+ {:‘ut—lv{z‘«—’i—l) mi_2i<t_i’—2> wi—3, (t—’l:i——3)mi+l}:} Y,
o ol (o]

+ [ﬂ{ze(l_,,;i>“’i—2i(0_ii )0'}‘? H, ,+[1-1]H,.

-t

In the last summation in first bracket above we replace ¢ by (i—1). By (32) the bracket
is then seen to be zero. And the same applies to the following two brackets. The
last two brackets are obviously zero.

THE SOLUTION THROUGH CHARACTERISTIC ROOTS

Another way to approach the solution of (5) is through characteristic roots.
I repeat that it is essential to obtain the explicit solution of (5) forany arbitrarily given
function H,, not only for special analytical forms of H,.

There are many text-books treating difference equations. But my experience
is that in order to find in the text-books the results one needs, in a given problem, one
has nearly always to wade through an enormous amount of symbolism. And the
meaning of this symbolism can frequently be deciphered only by reading a great
number of chapters different from the one where the results one is looking for is ac-
tually to be found. And even if one succeeds in deciphering the symbols the results
are often not in simple form as one needs.

In view of the great importance for economic analysis of linear difference
equations with constant coefficients and with an arbitrary additional term (such as
H, in (5)) I developed many years ago in my Oslo lecture (in Norwegian) an approach
which is at the same time rigorous and, I believe, very easy to follow.® I shall repro-
duce here the “prescription” for the solution which this approach leads to. And 1
shall do it for the most general type of linear difference equation (with real constant
coefficients), even though this most general case is more than needed in order to handle
the simple equation (5).

The complete and the truncated difference equation. Let the difference equa-
_ tion in the unknown time function Y, be

. @Y+ Yoyt +8n Vi = Hyn .. (36)
Vhere @y, @y, ..., a, are given real coefficients and H,, , an arbitrarily given real function
time. The integer n is called the order of the equation.’

8Appendix 7 in “Notater til skonomisk teori”” (mimeographed) 4. Edition, Oslo, 1947. Also, ‘Ordi-
Linemre differentiallikninger”, October, 1961.

"98everal formulae pertaining to the solution of (38) will turn out in & much more handy form if
% @, denote the coefficient of Y4, instead of the coefficient of ¥i,.

ORISR e e S
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It does not restrict generality if we assume
a" — 1, cee (37)

Indeed if @, = 0 we can simply divide the equation by a, and if a, = 0 the equation is
simply an equation of the same kind but of lower order than n. In the sequel we will
therefore assume (37).

The equation (36) with the additional term H,,, will be called the complete,
or non-homogeneous, equation.

To this complete, or non-homogeneous, equation we associate the correspond-
ing truncated, or homogeneous, equation which is obtained by simply leaving out the
additional term H,,,, i.e. by putting H,,, = 0 for all . This truncated equation is

consequently
ag Y+, Yo+ +a, Y, = 0. (38)

The solution of the truncated difference equation by means of characieristic roots.
We will find first the general solution of the truncated equation (38). The basic
fact in this connection (proved in an elementary way in my Oslo lecture) is the follow-
ing : If we can only find in some way or other n particular solutions that are
linearly independent over t, the problem is solved, because a linear combination of these
n linearly independent particular solutions taken with arbitrary constant coefficients
(constant in the sense of being independent of ¢) will give the general solution of (38).
That is to say any function of ¢ which satisfies (38) can be produced by attributing
appropriate values to the » arbitrary constants.

Writing out in full : If Y,, Y, ..., ¥, are n particular solutions which
are linearly independent over ¢, then

Y, = C1 Yy +0Y g t...+Co Y i, .o (39)
where Cy, C,, ..., C, are n arbitrary constants, will be the general solution of (38)

in the sense that any function of ¢ which is to satisfy (38) must be obtainable by attri-
buting appropriate values to Cj, C,, ..., C, in (39).

The fact that » function Y,, ¥, ..., Y,, are linearly independent over &
means that it is not possible to find an effective set of constants S, S, ..., S, such
that

8, Yu+8, Yo +...+8,Y,, =0, identically in ¢. ... (40)

The magnitudes S;, S, ..., S, being constant means they are independent of £,
and the set S, S,,.... S, being effective means at least one of these constants is
different from zero.

The fact that the linear combination (39) with C,, C,, ..., C, as arbitrary coeffi-
cients will satisfy (38) if all the individual functions Y, Y, ..., Y, satisfy (38), is
obvious. This is immediately seen by inserting (39) into (38). And this conclusion
obviously holds good whether the individual functions are linearly independent or not.
The basic proposition in the theory of linear homogeneous difference equation is the
inverse of this, namely, that any solution of (38) must be of the form (39) provided
the particular solution Y, Y,,, ..., ¥,

i are linearly independent.
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The problem of finding the general solution of (38) is therefore only to find
i m some way or other n linearly independent particular solutions of (38).

The general procedure for finding particular solutions of (38) is to try if an
exponential function

Yf = A (p = “particular’) ... (41)
should be a particular solution, if the constant A is chosen in an appropriate way.

Inserting (41) into (38) we see that if (41) is to be a solution of (38) we must
have
QA L@ A g A = 0. .. (42)

This equation is to hold good for any value of t. Furthermore, since A* is
different from zero if A == 0 and £ finite, we can divide the equation by A*. This shows
that if (41) is to be a solution we must have

ag+a,Al+...+a, A" = 0. ... (43)

In other words if (41) is to be a solution, it is necessary that A be a root of the n-th
degree polynomial written in the middle member of (43).

The equation defined by (43) is called the characteristic equation for (38).
Further, the polynomial f(A) = ao+a;A'+...+a,A* is called the characteristic
polynomial for (38).

The characteristic equation (43) is simply an algebraic equation in A with
given coefficients. This equation does not depend on ¢ at all. 'This is the essence of our
tentative procedure for finding particular time functions that will satisfy (38).

38 !

The above reasoning shows that if (41) is to be a particular solution of (39)
then A must be a root of the characteristic equation (43). But the inverse also holds
good. Obviously any root of the characteristic equation will yield a particular solution
(41) which satisfies (38). Therefore if by any method whatsoever we have found a
root of (43), we have by this fact also found a particular solution of (38).

It is a classical algebraic fact that a polynomial of degree n has exactly n
zeros. This means that the characteristic equation (43) has exactly n roots (when
each root is counted as many times as is indicated by its multiplicity). We may
denote the roots A, A, ..., A,. Hence if the n roots of the characteristic equation
(43) are all different (i.e. all of them of multiplicity 1), we have immediately solved
the problem of finding the general solution of (38). Two exponential functions

Y?=2, and Y!=2, .. (44)
where A, 7 A, are indeed always linearly independent over ¢.

The roots of (43) may be real or complex, but whatever they are, the above
remark about linear independence always applies provided the roots are different.
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If (43) has complex roots it is & classical fact that they must always occur in
conjugate pairs, i.e. if

A=0+i8 i=vV=-1 .. (45)
is a root with 6 and & real and & 0 then also
Acong = 0—16 .. (46)
must be a solution, and if & = 0 these two roots are different.

We are only interested in real solutions of (38). The only two problems that
remain in order to find the general solution of (38) in the most general case where the
coefficienta,, @,_;, ---, 3, of (38) are any given real numbers (with a,=1), are therefore,
first to see if and in what way the two particular solutions that correspond to a complex
root of (43) can be combined so as to give a real component of the general solution (a
component that would absorb two different roots of (35)), and second to discuss the
case of multiple roots of the equation.

The first of those two problems is a simple one, but the second demands
a little closer analysis. It will turn out that in the case of multiple roots also we can
find the necessary number n of linearly independent particular solutions. Therefore
the complete discussion of all the n roots of the algebraic equation (43) (each
oot counted a number of times equal to its multiplicity) will yield the general solution
of (38) in the general case where the coefficients a,, a,, ..., &, are any given real numbers.

The problem of actually finding all the roots of (43) is a simple one for small
values of n, say for n = 2. In this case it can even be done explicitly in terms of
the coefficients. But for high values of n the problem cannot be handled except in
the case where the coefficients are numerically given and effective numerical methods
of computation are used.

If the roots are close together, the numerical task is always a difficult one.
And if the roots are multiple a special numerical procedure must be applied. In the
sequel I shall make a few remarks on the numerical aspect of finding the roots of the
characteristic equation, but a full discussion of this numerical problem is beyond the
scope of this paper.

For numerical reasons, both theoretical and practical, it is most convenient to
concentrate first on the real roots. For each root A, which we succeed in determin-
ing, we can—by dividing the characteristic polynomial by (A—A,)—lower the degree
of the characteristic polynomial and thus reduce the difficulty of the search for
further root.

If the problem is not so simple that the roots can be expressed explicitly in
terms of the coefficients, then the problem must be approached numerically. The
first thing is to draw a graph of f(A) as a function of A. A study of this curve, includ-
ing a study of the behaviour of the curve as A tends towards +00 or —00, will indicate
whether real roots are present, and if so, indicate a.pproxima.tely where they are. In
other words we know already approximate values for the real roots. These values
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can subsequently be improved upon by known numerical methods. As a rule it is
advantageous first to determine the root where the graph indicates that the curve
cuts through the A-axis in the steepest way. Here a numerical approximation method
will work at its best. When this root, say A,, is determined with a high degree of
accuracy, the polynomial f(A) is divided by (A—2,) and the work is continued on
the resulting polynomial.

Already when considering the real roots we must be prepared for the possibility
that any of the roots may be of higher multiplicity than one.

Since the polynomial f(A) is always continuous and with a continuous deri-
vative, a graphical consideration is sufficient to indicate the existence of a root of multi-
plicity 2. The case of two roots coinciding means that the polynomial f(A) does not
cut through the A axis but only touches the A axis in the point considered. This means
that such a point A, must not only be a solution of f(A) = 0, i.e. of (43) but must also
be a solution of f’(A) = 0, where f'(A) = dffdA is the derivative of f(A) with respect
to A. This condition is not only necessary but also sufficient for the point A, to be
of multiplicity 2, or higher. In general the necessary and sufficient condition for. &
point A, to be a root of multiplicity £, is that it satisfies at the same time all the 4,
equations.

f(A)=0
A =0 |
) =0 ... (47)

flu,™1) (A) = 0.

In this case the polynomial f(A) is said to have contact of the order z, with the
A axis on the point considered.

The curve that depicts the shape of f(A) will suggest if and where & multiple
root is located. For instance, if it looks as if the curve has a minimum or a maxi-
mum on the A-axis, this suggests the existence of a double root or more generally the
existence of a root of even multiplicity i.e. u, = 2 or 4 or 6. ete. If the curve has
an inflexional point with the A-axis itself as the inflexion tangent, this suggests
the existence of a root of odd multiplicity x, = 3 or 5 or 7 ete.

The equations (47) offer a grip on the problem of determining numerically and
in an exact way the multiplicity of a root. Wae can analytically derive the successive
polynomials f'(4), f"(A)... etc. and then for each of these polynomials draw a curve
that depicts its course in the vicinity of the point considered. The first of them
that has an ordinate different from zero in the point considered indicates the multi-
plicity of the root in question. P e

If the shapes of the curves are such that the situation in the vicinity of the point
considered is not discernible in a sufficiently convincing way, one may have to draw
successive sets of new curves on larger and larger scales but over a more and more
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restricted A-range. This graphical procedure combined with one of the several avail-
able methods of numerical determination of the roots of non-linear equations will
in practically all cases permit to determine all the real Toots with any desired accuracy,
as well as, the exact multiplicity of each root.

Any such real root, say A,, will yield a particular solution to (38) of the form
(41). And if we have found such a particular solution, it is obvious that the function
obtained by multiplying (41) by an arbitrary constant will also be a solution.

The case where simply a constant (independent of ?) is a solution of (38) is
only a special case of what has been said above. It means that the characteristic
equation has the (simple or multiple) root A= 1. Necessary and sufficient for this
case is obviously that the sum of coefficients a,, a4, ..., &, is zero.

We know that if a certain number of roots A, A, ..., A, are different, then
the corresponding time-functions of the form (41) are not only solutions of (38) but they
are also linearly independent. We have thus advanced at least part of the way
towards a complete set of n linearly independent particular solutions. And if we
actually have found n different roots of (38) the job is completed. It suffices then to
form a linear aggregate with arbitrary constant coefficients of the n functions of the
form (41). But if one or more of the roots are multiple we cannot complete the job
merely by functions of the form (41). Indeed the number of roots of (42), when
each Toot is counted a number of times according to its multiplicity, is exactly =.
Hence we cannot get a sufficient number of linearly independent solutions merely
by considering functions of the form (41). Therefore any multiple root raises a new
problem of how to construct more linearly independent solutions.

To complete our discussion of real roots let A, be a real root of multiplicity
ttp Where u, > 1 (obviously we must have x4, < »). In this case any time-function
of the form

Yops = tAAL .. (48)

(# equal to any of the numbers 0, 1, ..., Ji,—1), must also satisfy the difference
equation (38).

Indeed, by inserting (48) into (38) the left member becomes

S a, (bt = At S ayt-v)eas ] . (49)
D D =0 D‘s

]

b L

In the bracket to the right we develop (¢4v)* by the binomial formula. This brings
(49) into the form

AT E a,(/;)v"tn-t‘/\;. ... (50)
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The power 2* of any number z can be developed in terms of the factorials
zUl by the formula
d=3 ( ’:)Bf‘f’zm .. (51)
j=0\J / ¥77
where the factorial 21/ is defined by

1 if j=0
U = { ... (52)
z—1) ... (z—j+1) if j> L

and B{z? are the Bernoullian numbers. They are pure numerical coefficients.X?

Putting z = v the expression (50) can therefore also be written
A=n S g‘_: “:3 ay( H ) (; )Bgt;f)vﬁlt"-‘/\;. ... (53)

In this expression the limits 0 and n of the first sum are fized numbers. We can there-
fore move this summation sign to the right so that it becomes the last of the three
summation operations to be performed. At the same time we replace A} by A~ A.
This being done the expression (53) becomes

. ; —i . T —-j
NI oS (/:)( %)Bﬁ_;” =it | S a, WX .. (54)
j=0 J Lv=0 i

@

i=

The bracket to the right in this expression is the value in the point A = A, of the j-th
derivative f¥(A) of the characteristic polynomial. Since we have assumed that
is less than the multiplicity x,, and by the first two summation signs in (54) ¢+ <
and j < %, and consequently j < x we must have j less than the multiplicity x#,. Conse-
quently by (47) all the brackets in (54) must vanish. Hence the expression (54) must
vanish for any value of £. Consequently, the left member of (49)— which is the same
as (54) — must vanish identically in . That is to say the function (48) must satisfy
the difference equation (38).

This shows that if A, is a root of multiplicity s, of the characteristic equation
(43), all the g, time-functions

Hp

-1
AL AL, AL, L £ ... (55)

must satisfy (38). All the p, time-functions are linearly independent (and, of course,
also linearly independent of corresponding time-functions corresponding to any other
root A,).

Therefore to each root A, in (38), whether simple or multiple, we have deter-
mined as many linearly independent particular solutions of (38) as is indicated by the
multiplicity of the root A,.

10 See for instance formula (9b) and table 1, p. 12, in my memoire ‘‘Sur les semi-invariants et moments
employes dans l'etude des distributions statistique.” Det Norske Videnskap-Akademi i Oslo, 19286.

8
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In the above argument we reasoned as if A, should be a real root. But the
whole argument is equally valid in the case of a complex root. Therefore whatever
the nature of the characteristic polynomial we have actually determined exactly
n linearly independent solutions of the difference equation (38). Hence we have
obtained the general solution of this equation.

This general solution will be of the form (39), i.e. it will contain n arbitrary
constants.

Furthermore, these constants appear in the formula in such a way that if we
consider the equation :39) for n arbitrarily given points of time where the values
of Y, are prescribed, and if these points of time are such that the n X n matrix of values
Y, in the right member of (39) is non-singular, we can determine—and in a unique
way — the values which it is necessary and sufficient to attribute to the constants in
order that the solution shall assume the prescribed 7 values of ¥,.

Therefore the only thing which now remains is to show how the complex
solutions can be combined into pairs in such a way that we obtain real time-functions
and we retain the same number n of arbitrary constants and these occur in such a manner
that by a suitable choice of them we can make the solution to assume n prescribed

values of Y,

To show how this combination of complex roots can be achieved let us consider
a complex root (45). The fact that (45)—and hence (46)—satisfies the characteristic
equation means that
S a, (0+416) = 0. ... {(36)
y=0

Developing the parenthesis in (56) by the binomial formula we get

% a S <;)0v-“ e .. (57)

v=0 #=0

The summation over # can be split up in the following four sums

0 (’")m-ﬂaﬂ— s <V)0v—uaﬂ

u=045.. VM 4=2,6,10... \ M J

%
il = <" >9v—n po— S <” )w—u o .. (38)
# 3,01, \ M :
where all the summations over y are to be continued to the last not vanishing term.
The first bracket in (58) is the real part and the second bracket the imaginary
part. Since these parts must be zero separately in order that the whole expression

be zero, we get

n -

Sa.| = ( V\gr-x gr— S ( v )ev—ﬂau =0 .. (59)
»=0 u=0,4,8...\ M/ a=2,610...\ #

2ol s (YVgese— = (Veeee =0 .

ve=0 [ 5=1,59.. .(ﬂ ) 4=3,7,11.. .</’f ) (60)
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These two equations contain only real numbers and are therefore amendable
to numerical computation. The values of & and # that satisfy these two simultaneous
equations define a complex root of the form (45).

It is easily seen that if the set of two numbers (8, 0) satisfy (59)-(60), the conju-
gate set (—J, #) must also satisfy. These two roots (§-i3) and its conjugate (6—19)
are precisely the roots we want 10 combine.

The numerical solution of the system consisting of the two simultaneous equa-
tions (59)-(60) in the two real variables 8 and 6 will, of course, as a rule be more labo-
rious than the solution of the single equation (43) in one real variable A. But I shall
not go into details about this. Ishall only show in a subsequent note that the numerical
work can also, if we like, be performed in terms of real trigonometric functions.

In order to show that a complex root of the characteristic equation (43) and
its conjugate root will together vield two linearly independent real time-functions
satisfying (38), we make the transformation!!

A=¢" ... (81)

e = 2.71828... (basis of natural logarithms)
where!? v=g+ia 1= v/—1, B and x real numbers ... (62)

and the complex form of A is given by (43). Then by classical formulae

A = 8-+18 = r(cos a1 sin &) ... (63)

where p= 1\ 2482 A=rcosa; O=rsina .. (64)

All the magnitudes in (64) are real. and r = . Obviously it does not restrict generality
if we assume

0K a<im ... (65)

Raising the left member of (61) to the power ¢ is the same as to raise the last member
of (63) to the power t. By classical formulae this gives

At = rf (cos at--1 sin at). ... (66)

On the other hand by raising directly the right member of (61) to the power { we get
¥t — gB+iak (67)

which by classical formulae reduces to

et — eBt(cos at+isinat) | (68)
Comparing (68) with (66) we see that
r= b, .. (69)
Therefore (67) can also be written
€Yt = rlelat, ... (70)

11 When handling differential equations as distinct from difference equations we are led immediately

to a characteristic cquation in A not to one in y and hence need not consider a subsequent transfor-
mation of the kind (61).
12 The letters « and B in (62) should not be confused with the structural constants « and f in

(1)=(7).
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The conjugate root is obtained by replacing ¢ by (—d), which by the first and
last equation in (64) is the same as to replace & by (—a) but retaining r. In other
words the two time-functions

reiet  and pfeie .. (7))
are both solutions of (38). They are linearly independent when a 5 0, which simply
means that the root in question is actually complex.

To combine the two time-functions in (71) in such a way as to obtain two real
and linearly independent time-functions we multiply the first of them by an arbitrary
complex constant and the second of them by a complex constant that is the conju-
gate of the first.

Let the two conjugate constants be
(4—iB) and (A+iB) i=V—1 o (72)
where A and B are arbitrary real constants. Using the classical formula
¢% — cosztising =\ —1 .. (73)
we get (d—iB)rteiat L (A +iB)re~i® = 247" cos at+2Br! sin at. o (79)
The two time-functions written to the right in (74) are real and linearly independent.
The aggregate satisfies the difference equation for any values we may choose for 4

and B. Choosing first 4 = 1 B=0andnext 4 =0, B =

5 we see that each of

w[ Pt

the two functions
rcosat and 7 sinaf ... (75)
is a solution of (38). They are linearly independent if » == 0 and « 7 0. These two
conditions are obviously fulfilled if we actually have a complex root.
If we like we can combine the two time-functions (75)—each taken with an
arbitrary real coefficient—in such a way that the aggregate appears in the form of

a wave component satisfving (38). The wave will be damped, explosive or non-changing
according to the value of r in the following way

r < 1 damped r > 1explosive, r = 1 non-changing. (76)

We have indeed!3 A7t cos at+Brt sin at = Krfsin (v-+at) . (77)

where K = |yd*LB%; A= Ksinv; B= K cosw. .. (78)
Obviously it does not restrict generality if we assume

0o < L))

K is the scale factor and v the phase of the wave component. Between the two sets of
constants (. B) in the left member of (77) and (K, ») in the right member there is a
one-to-one correspondence. Any given set (4, B) will by (78)(79) lead to a uniquely
determined set (A, v). And inversly any given set (K, v) will by the last two equations
in (78) lead to a uniquely determined set (4, B). Thus, whether we look at the left or
the right expression in (77) we have two arbitrarv constants at disposal.

13 In (77) .1 and B are used in the sense of one half the values 4 and B usedin (73). This, of
course is only a typographical convenience, /

Wt
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For computational reasons it is as a rule simplest to use the left hand expres-
sion in (77). Here the nature of the aggregate as the sum of two linearly independent
time-functions is also brought clear to light. On the other hand if we want to plot
a graph of the aggregate as a time-function and study its nature as a wave component
satisfying (38), the right hand expression in (77) is useful.

The treatment of multiple complex roots of (43) can be handled in a = v which
is quite analogous to the way in which we handled multiple real roots in (47)-(55).

Note on the solution of the characteristic equation by means of trigonometric

Junctions. Inserting (61)-(63) into the left member of the characteristic equation

(43) we get by (73)

a,A = a,r"(cos av-+i sin av) (80)

o

L14s
[~

separating here the real and imaginary parts we see that the single equation (43)
in the complex variable A is equivalent with the following two equations in the real
magnitudes r and «

n
Zarrsinav=0 and X a@,"cos av =0 ... (81)
r=0 r=0

where it does not restrict generality if we impose (65).

If we want to handle the two simultaneous characteristic equations numeri-
cally in the trigonometric form (31) the following formula may be found useful.
Putting for brevity

s=sina ¢=cosa .. (82)
we have sin 20 = 2¢s cos 22 = 1—2s2

sin 3a = s(3—4s?)  cos 3x = ¢(1—4s?)

sin 4 = cs(4—8s2)  cos 41 = 1 —8s21 8sd. ... (83)

These formulae can easily be extended to subsequent values of v by the recurrence
tormula

sin (v1)a = ¢ .sin va—s.cos va and cog(v+1)x = c.cos va—s.sin va ... (84)

The general solution of the complete (non-truncated equation). Let Y. P and Y2
be any two particular solutions of the complete (non-homogeneous) difference equation
{36). I have used capital letters for superscripts to indicate that the two time-func-
tions are solutions of the complete equation.

If YT and Y¢ are any solution of the complete equation, then their difference
(Y7 —Y?) must be a solution of the corresponding truncated (homogeneous) equation.
This is immediately seen by inserting first Y'f and next Y@ in the complete equation
and taking the ditference between the two equations thus obtained.

This being so. let }'? stand for any particular solution (of the complete equation)

which we Lnow in its whole course over ¢, and let I'? stand for a particular solution
{of the complete equation) which is so far not known in its whole course over ¢ but is
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only fixed through its specialized initial conditions. Then there must, by the argu-
ment in the beginning of this section, exist some specific solution y? of the truncated
equation which represents the difference (¥7—Y®). In other words, for any ¢ we
must have

YP =yf+71? .. (85)
where y? is a particular solution of the truncated equation, its particularization
depending on what particular solutions Y¥ and Y we are considering.

Inversely if in the right member of (85) we insert any particular solution
y? (of the truncated equation) which we may happen to think of, we will through
(85) have generated some particular solution Y7 of the complete equation. Further-
more, if we let ¥ vary in all possible ways, we will by (85) generate a whole lot of
different time-functions »?, all of which are solutions of the complete equation. In
fact we will generate all possible solutions of the complete equation. This follows
from the fact that “all possible” solutions yf in the right member of (85) means a
function with n arbitrary constants (they occur as we know linearly). And n arbi-
trary constants in the right member of (85) means that the function ¥{ defined by
(85) will contain n arbitrary constants (appearing linearly).

This shows that if we insert in (85) for y? the general solution Y§tr of the
truncated equation (this general solution will contain n arbitrary constants) we will
have generated the gemeral solution of the complete (non-homogeneous) equation.
In other words

Y%en.comp — Y%en.tnm +Y? (86)

where Ygfencomp denotes the general solution of the complete (non-homogeneous) dif-
ference equation, and Y@ denotes any particular solution of the complete equation
which we have been able to obtain in some way or the other.

The formula (86) may give rise to many different forms for presenting the
general solution of the complete equation. If we have found one particular solution
Y9 of the complete equation we can add to it any particular solution Y7 of the
truncated equation. The result Y2 = Y24 Y7 will also be a particular solution of
the complete equation and can be used as the second term in the right member of (86).

The problem of finding the general solution of the complete equation is by
(86) reduced to that of first finding the general solution of the truncated equation—a
problem which was entirely solved in previous sections—and second finding any
particular solution of the complete equation.

Sometimes we may be able to find a particular solution of the complete equa-
tion by a happy guess. But in general we cannot, of course, rely on this. We must
therefore have a systematic way of finding one such particular solution.

The determination of a particular solution of the complete equation. The fol-
lowing is an elementary but rigorous procedure for obtaining a particular solution
of the complete equation. The procedure is built on the knowledge of the general
solution of the truncated equation.
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Let the general solution of the truncated equation be known and let 7, be the
particular solution of the truncated equation which is obtained by specifying the fol-
lowing initial conditions

Apllo = 1
Ay, g7l =0

ANy 11+ Apzlg = 0 . (87)

Cullna1TCn1lng .- +7 = 0.
The arguments 0, 1, 2, ... etc. on 7 in (87) are not obtained by a conventional choice
of origin for ¢ in #,, but have the absolute meaning of 0, 1, 2, ... etc. They represent
number of intervals of the same sort as occur in the difference equation itself.

More briefly (87) can be written

Apllp = 1
n

E a‘zr”v—f = O, fOI‘ T — 1, 2, . (n—l). vee (88)

v=1
This particular solution of the truncated equation will be called the cumulator.

Since by (37) a, = 0, the first equation above determines 7,, similarly 7,
is determined by the second equation (if @,_; should happen to be zero we get 7, = 0).
Similarly 7, is determined by the third equation etec., and finally #,_, by the n-th
equation. These initial conditions 3, 7y, ..., §,_; determine the particular solution
in a unique way. The particular solution #, obtained in this way will by definition
satisfy the difference equation

) Ny, = 0 for any value of . ... (89)

y=0

Consider the time-function

3

Y9 =

nHy . (t=s,5+1, ..., 0) . (90)

L4

where s is the earliest point of time such that Hy is known for 7' = s, s-1, ..., o0.
This means that ¢ = s is the earliest point of time for which the expression (90) is
applicable. For precision of thinking it is essential to specify the point of time s,
Since we may, of course, if we like disregard our knowledge of H, over certain time
ranges, the parameter s in (90) may be interpreted as any point of time which is such
that in this point of time and in all subsequent points of time H, is known. In this
sense the upper limit of summation in (90) contains an arbitrary element.

The time-function (90) will satisfy the difference equation (36) for any point
of time ¢t = s, s--1, s-+2 ... ad. infin,

Indeed, if we insert (90) into the left member of (36) we get

n n t+y—s 2‘ i—s
2a, Y9, =3 a I npHyy .=Z5 T g He, (E=s8841,..,00) ... (91)
y=0 r=0 T=0 P=Q Toa—p
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In the expression to the right in (91) we interchange the order of the two summation

operations. Since

n o i—s t—3 n -n n
s =2+ = = .. (92)
=l T=—p T=0 v=0 r==1 p=—7

the expression to the right in (91) becomes

i—s - n = —n - n
T He, % oans + E Hel T @i e (93)
7=0 Loy=0 - T=—1 Ly=—1 J
The bracket in the first term of (93) is by (89) zero for any value of r. There-
fore the first term of (93) vanishes.

If we introduce (—7) instead of 7 as a summation affix in the last term of
(93), this last term becomes

% Hy.| % Glyer |- .. (94)

=1 -

n

For 7 — n the bracket in (94) becomes = a7,_, = @,%, Which by the first equation
r=n

in (88) is equal to 1. For 7 = n (94) will therefore give H,,. For7=1,2,..(n—1)

the bracket in (94) will vanish by the last equation in (88).

All that is left of (93)—which is the same as the expression in the left member
of (91)—is consequently H,.,. In other words the time-function Y$, satisfies the
complete difference equation (36).

The general solution Y§em ®P of the complete difference equation is therefore
by (68) and (90)

{—8
yyencomp— ygentrny S g H, , (t=s8+1,...,0) ... (95)

7=20

Ygen- trun jp (95) denoting the general solution of the truncated (homogenous) difference
equation (38),—a solution that contains n arbitrary constants, which may, if we like,
be chosen as real constants—, and i, in (95) denoting the particular solution of the
truncated (homogeneous) difference equation (38) which satisfies the initial
conditions (87).

Since the general solution of the truncated (homogeneous) difference equation
(38) is given by the reasoning in (41)-(47), the right hand member of (95) gives the
explicit expression for the general solution of the complete (non-homogeneous) differ-
ence equation (36). This general solution is applicable for ¢ =s, s+1...,0 in the
sense that (36) for ¢ = s, s-+1 ..., o0 will be satisfied if we insert (95). This limitation
on the applicability of (95) will, of course, not prevent us from assuming that the
difference equation (36) itself is valid even for earlier points of time, but then the dif-
ference equation can only be used by recurrence for these earlier points.
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Application to the Hicksian difference equation. In order to apply (95) to the
equation (5) we replace in (5) ¢ by (--2) and write the equation in the following form
which is immediately comparable with (5)

—vY,—uY, + Y, = H,.,. ... (96)

That is we have Ay = —v, == —i, @y=1. e (97)
The special case v=20 means a first order equation. *... (98)

The special case =20 .. (99)

can be reduced to a first order equation by doubling of the interval considered.

These first order cases will be discussed later. e begin by assuming

Both conditions v = 0 and p = 0 fulfilled so that

) (96) is a true second order difference equation. ... (100)
s
In the case (100) we must distinghish between the three subcases,
I two real and different roots of ]
the characteristic equation; :
II. two real and equal roots; r ... (101)
I11. two complex (and then necessarily
conjugate) roots: the wave-case; |
We will discuss these cases one by one.
The roots of the characteristic equation corresponding to the truncated Hicksian
difference equation. The characteristic equation is
A—ud = v ... (102)
the roots of which are Ay = r‘%(l—v/l-fwim) .. (103)
‘; {2 TN
- A= L (1~ v/ 1+ 1a). e (104)

By convention we interpret the square root sign in (103)-(104) as the positive branch,
ie.
( absolute value of \' I +4ew if 1440 >0

\/1;};16 = < o o ... (105)
[ 4/—1 times absolute value of /(1+4w) if 1440 < 0.

The three cases (101) will be characterized by

L if 1440 >0 (Two real and different roots)
II. if 1+40 =20 (Two real and equal roots) ... (106)
I11. if 1440 <0 (Two complex roots).

In the case I: Two real and different roots we have by the convention (105)

absolute value of A; > absolute value of A,. ... (107)

P s
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In terms of the original parameters «, B, k, A of the model (1)-(4)!* the nature
of the characteristic equation may be characterised by the set of two parameters
(t, ») where p is defined by (6) and » by

. A=# 108
© T @EAF—N o 109
Or it may be characterised by the set of two coefficients (v, 7) where v is defined by
(7) and 7 by
T = K-+

Between the two sets (4, w) and (v, 77) there is a one-to-one correspondence,
because we have

b= T—V. <o (110)
v
W= T w. (111)
and v = wp? e (112)
7= p(l+op). .. (113)

From the viewpoint of the government strategy in matters of current account
expenditure it might be most convenient to consider the set (v, ) since by (7) v differs
from the strategy parameter A only by the addition of a structurally defined constant,
namely (— /), and by (109) 7 differs from the strategy parameter k only by the addition
of a structurally defined constant, namely « : But from the viewpoint of the explicit
expression (33), obtained by recurrence, and from the viewpoint of the expression
(103)-(104) for the characteristic roots the set (u,w®) is unquestionably the most
convenient.

The condition for the non-wave cases I and IT which should be aimed at when
determining government strategy —is simply
140 > 0. e (114)

This can be looked upon as a (%, ») formulation of the non-wave condition. The corres-
ponding (v, 7) formulation (in the cases of a true second order difference equation) is

(r—v)i+4v > 0. .. (115)
In the special case where the difference equation degenerates to a first order

difference equation — for instance because government strategy has the features A = g
— the question of a wave formed evolution over time will, of course, not arise.

14The parameter A occurring in the model must, of course, not be confounded with the unknown
A ocecurring in the characteristic equation (102). In the sequel no confusion is possible since we use
the notation A; and A, for the two roots of the characteristic equation. We might perhaps have used
a different letter for the paramster A occuring in (5). The structural constants « and 8 in (1)-(7)
should not be confused with the letters « and 8 in (62).
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In the study of the true second order case of (96) the following formulae, which
easily follow from (103)-(104) may be useful

22 = p¥(1-1-20) ... (116)
A= p e (117)
Ay = —v . (118)
N—A, = /1 .. (119)
AZ—22
e (120
= (120)
3_23
’/‘11 j‘\z — AN S = ity = a1 4o). .. (121
17 ‘2

In the sequel we will simply disregard the wave-case, i.e., case III in (101)
and (106) because this case can be prevented so easily, simply by imposing on the govern-
ment strategy parameters k, A the condition (114), which is equivalent to (115). But
then, of course, this condition must not be forgotten in any possible programming
formulation.

Case I : The explicit expression for the general solution of the complete Hicksian
difference equation in terms of the characteristic roots when the roots are real and different.

The cumulator 7,—cfr. (87), (88) and (89)—is in the present case
P = 0 A1 +coAb .. (122)

where the constant ¢, and ¢, ought to be determined so that the cumulator satisfies
the intial conditions

Alo = 1
Aoy +ayi)p = 0 e (123)
where now a=1 a, = —p e (124)
which gives =1 n7=p ... (125)
This gives, in the case A; = A,
P Lot TP e .. (126)

A=A, TN —A,

Inserting this into (122) we get after some reductions
A1 A&
N = /\1_ /\o

<

(t = any point of time). .. (127)

The general solution of the complete difference equation (96) will therefore, (cf. (95))
be of the form

t—s8
Vo= CM+0X+ I .l (t=s5,5+1...00) .. (128)

s being a point of time such that H, is known for ¢ = s and for all subsequent points
of the time, and C; and C, being two arbitrary constants.
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If we take—as we did in (35) — Y, and ¥ _; as expressions for theinitial condi-
tions, and assume that H, is known for ¢ = s, s+1 ..., ®© the procedure for expressing
the coefficients C; and C, in terms of ¥, and ¥Y_, will be, first to compute Y; and ¥,
by recurrence in terms of ¥, and Y_;. H; and H, (the result is given by the first two
expressions in (3)) and then to put down the two equations which state that these
expressions for ¥ and 1, ought to be the same as the right member of (128).

Doing this, we get after some reduction, using (117)-(119) the following ex-
pression for the general solution of the complete equation (96)

. . . t—8
Y, =1 07'"77:-1Y—1‘T' Eo 7, Hyr e (129)

(t=s,8+1..,0); (=1 2, ..., 90)

By following the above argument literally we would have to put s = 1 in (129),
but it is easily seen that (129) applies'® for any | < ¢ < t. The parameter s is pre-
cisely the arbitrary element in the summation limit which we considered in connection
with (90). By inserting (129) into the difference equation we see in fact that
all values of H, will disappear for T' > ¢ where ¢ is the earliest point of time that oc-
curs for Hy when (129) is inserted in the difference equation. In other words if we
only think of the use of (129) in the difference equation, we may attribute to Hp for
T < t any values we like (but it must be the same values of Hp for all the ¢ in (129)
that are used in the difference equation). On the other hand if we want to take (129)
as an independent definition of a function Y, regardless of the use we may want to make
of this function, we must assume that Hp is known for T > s.

The formula (129) shows the basic role played by the cumulator 7, defined
as the particular solution of the truncated equation which satisfies the initial condi-
tion (123), or in general (87). The whole problem is really solved as soon as the cumulator
is obtained and the Hy are known for all the T' we need.

In (35) we assume that H; was the earliest known value of Hy. The same
assumption may also be made in (129), i.e. we may put
s = 1. ... (130)

This will reduce (129) to (33) identically in ¢ and identically in the parameters
i and .

To permit an easier comparison with (353) we can transform the expression
for the cumulator as follows, (cf. (119))

t=1__t+1 ;
N = A ,,/\5',, :l <‘”’

LA Ver1p(] g ) — (1 —g )+ .. (131
T LAt At (131)

where we have put for brevity

£ = »\/1—*—40).

15 Since (129) only applies for ¢=s the value of y must be computed by recurrence from
t=—1 tot=s—1.
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Developing (1+¢) and (1—¢) by the binomial formula the bracket in (131) becomes

t+lt+1 ; il__H'lt—i—]. 1TV
(e —(—efy= 2 (] Jea—(=1)
which reduces to N, = %)’ hy (té'l )(1—:—4w)“‘”/2. .o (133)
vz i=1,3:5 ¢+ 4

This expression is identically equal to the coefficient of ¥, in (35). Fort¢= 3 we get

for instance by (133)
374 4 1
(%) (( ) )L( 5 )(1—]—4(0) | = p3(1+2w) .. (134)
L 4
which checks with the coefficient of Y, on the third line in (8). Similarly the coeffi-
cient of Y_, in (35) is what is obtained by replacing ¢ by (t—1) in (133) and multiplying
by v. (cf. the second term in the right member of (130)).

on of the complete Hicksian

A warning note in connection with the general solutt
the reasoning

difference equation. One sometimes encounters analytical work where
runs as if the characteristic roots were sufficient to describe the time shape of the solu-
tion of a complete, i.e. non-homogeneous, difference equation. This is not so. The
characteristic roots described the time shape of the cumulator, not that of the time-
function Y, which is a solution of the complete. i.e. non-truncated, difference equation.
The solution Y, is indeed not yet determined if only the roots are known. The time
shape of ¥, may be anything depending on the time shape of the additional term
H, in the difference equation (5). This is only another aspect of the fact that (5)
is one equation in two variables ¥ and H, hence one degree of freedom.

Case II. A real double root of the characteristic equation corresponding to the

In this case the argument in (131) does not

truncated Hicksian difference equation.
can be used also in this

hold good because (A;—As) vanishes. But the expression (133)
case because the denominator (A;—A,) which is equal to s4/1+4w, has been removed

when we pass from (131) to (133). Compare also (149).

The case A, = A, is obtained from (133) simply by putting l1+4e = 0,
(ef. (103)-(104)). Only one term will then be left in (133) namely the term
corresponding to ¢ = 1. This gives

o\t
= (H—l)( _;> (when A, = Ay). (135)
will give the general solution of the complete

This expression inserted into (129)
the roots are necessarily real when

difference equation in the case of two equal roots (
they are equal).

The same expression (135)
rule (56). This leads to

for the cumulator is obtained by following the ceneral

7,,=cl(g_)‘+c2t<ﬁ,>‘. .. (136)

Determining here the constants ¢, and ¢, in such a way that (136) satisfies the initial

conditions (125), we get back to (133).
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Degeneration to a first order difference equation. The general solution in the
case where the difference equation degenerates into a first order equation because of
v=0 .. (137)
follows immediately from (35) by putting @ = 0. This leaves in the first and third

brackets of (35) only one term, namely, the one for ¢ = 0, while the second bracket
vanishes. This gives

t
Y, = wYy+ S ut"H, .. (138)
=1
which can also be written
) =1
Y, =Y, ZuH,__ (t=1,2,..., 0, when v=0). ... (139)

The latter expression corresponds to (129) for v =0, s = 1 and 7, = g’

The above simple remarks which immediately lead to (135) and (139) show
the usefulness of having different expressions for the solution. The whole situation
is under more complete control when we approach the problem both by recurrence
and by means of characteristic roots.

THE PROGRAMMING APPROACH

Smoothness and rapidity. The programming approach within a given time
horizon ¢t = 1, 2, ..., T may be formulated in different ways.

A common feature of all these formulations is that we want to produce a deve-
lopment of national income Y, which is in some sense ‘‘smooth’ and at the same time
“rapid”. In practice other desiderata may also be implied but for the time being let
us assume that the “smoothness’” and ‘rapidity” of the development Y, are our
desiderata.

The ‘“‘smoothness” of ¥, will depend on two things : the nature of the cumu-
Jator 7, as defined by (131) and (125) and on the possible vicissitudes of H, over time.
The way in which “smoothness’” depends on the nature of the cumulator can be dis-
posed of simply by saying that the cumulator 7, should not be wave shaped'®. This
is obtained simply by imposing (114), which is equivalent to (115). This is only a
single bound on the government strategy parameters. In some of the programming
formulations the effect of vicissitudes in H, may be taken account of in special ways
exemplified in the sequel.

The “rapidity”’ of the development of a time-function offers no definitional
difficulty in the case where the function is simply an exponential in ¢, because in
this case its relative rate of growth is constant. But in our problem the relative rate
will as a rule not be constant, (cf. (127) and 129)). We therefore face the question
whether we want to attribute most importance to a rapid growth in the near future
or most importance to the final achievements in the long run. This is a matter to

16Cf. the remarks after (148) as well as (155).
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be decided by the policy maker (whether it is a democratic parliament or some dicta-
tor). It does not restrict generality if we let ¢ = 0 denote the decision time point
(the plan making point of time if a true planning procedure is envisaged, otherwise it
would simply be a point of time when discussion takes place).

The policy maker’s decision on the relative preference between the present
and the future may be expressed by a preference function of the form

F = X P,Y, = max. ... (140)
t=1

where the P, are the policy maker’s preference coefficients, and 7' a time horizon
adopted for the repercussions to be taken account of. 7 is the repercussion period,
To put 7' = oo is sheer abstractism based on the assumption of constant structural
coefficients and strategy coefficients over an indefinite future. In practice a much
shorter repercussion period will have to be considered.

A particularly simple form of (140) would be to put all P, equal to zero except
Pr. In this case the preference function is simply

F = PrpYy. .. (141)
Another particularly simple form of (140) is
P, =d e (142)

where d (generally positive and less than unity) is a discount factor. This discount
factor would (in an economy which is not completely ruled by the time honoured
unenlightened financialism) have nothing to do with any ‘“market rate of interest’
but would simply be an expression for the policy maker’s desires.

More complicated forms of the preference function than the linear form (140)
may be considered for special purposes.

So much for the desiderata to be achieved. Differences in the choice of the
means to be used (and to be analyzed in terms of the model) will result in: different pro-
gramming formulations.

Formulation 1 : Let the initial conditions Y,, ¥Y_; as well as the parameters
4 and @ be given (the latter being given through known constant values of the struc-
tural parameter a, £ and through such decided upon values of the strategy coefficients
K, A as will satisfy (114)).

In such a situation at time 0 how can the autonomous investments H,, H,
...» Hp be chosen :- s to obtain a “smooth’” and at the same time “‘rapid” develop-
ment of Y, within the horizon 7 ?

In this formulation the application of (35) or, if we like (129) must be forward
looking, i.e. the point of time 0 must be today and ¢t = 1, 2, ... must be points of time
in the future.

This formulation of the programming problem has an obvious interest in the
case where government is at least to some degree able to influence the course of H
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in the future. And even in the case where government has left autonomous invest-
ment largely in the hands of private business, it might be interesting for government
to know what the nationally desirable evolution of autonomous investment is, and
t0 measure how far the statistically observed action of private business is from achiev-
ing the nationally desirable optimum. So in any case the present formulation of the
programming problem might be interesting.

If the preference function is of the linear form (140) we see, by inserting from

(129), that F will also be linear in the T variables H,, H, ... Hp. Hence so far as the
preference function is concerned the programming problem is linear.

So far as the bounds are concerned we would in a realistic analysis have to

impose the 7' conditions.

C,<C (t=12..T) .. (148)
where C, (t = 1,2 ..., T) are lower bounds for consumption.

These lower consumption bounds may be taken as decisionally given, i.e. as
magnitudes not to be determined through the programming analysis. If so, the
policy maker would have to decide on how stringent these bounds should be (perhaps
near to the physical minimum of existence in the beginning of the repercussion period).
If the bounds C, are given, and if we insert from (114) and make use of the known initial
condition Y,, the bounds (143) will also emerge as linear in the decisional variables
H,H,.., Hy.

If the lower bounds C, are not taken as given in an absolute sense but deter-
mined as certain given fractions of Y, the bounds (143) would again become linear
in terms of the decisional variables H,, H, ..., Hr. The same is even true if each
C, is determined as a linear function of all the H,, H, ..., Hp with given constants.

In all these cases the bounds (143) will be linear.

But (143) are not the only bounds that must realistically be taken account
of. One must at least consider the bounds springing from the need to consider pro-
duction capacities, (cf. my introductory remarks on the realism of the model).

One simple way in which to take account of this tvpe of bounds would be to
use the Harrod-Domar idea in the following way.

Let T, be the production capacity as determined by the size of real capital
in the point of time ¢. This means that we must have

Y, < T, (t=1,2...,00). o (144)
By Harrod-Domar reasoning Y; would be of the form
?t—:O'Kt (t: 1,2.‘., GJ) cee (145)

where K, is real capital at time ¢, and o is the output-to-capital ratio, supposed struc-
turally given and constant over time (which means that we refrain from considering
the specific technological effects of new investments on o).
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Since by definition

[

K, =Ky S, +H) (t=12..,0) e (146)
r=1

where K|, is the initial size of real capital, we get from (144)—(145)

- ¢ T
Y, <o Ky+ X (I,+H,) . . (147)
L T=1 J

This again is, by (2) and (129) a bound which is linear in the decisional parameters
H,H,.., Hyp

The introduction of the two new variables ¥, and K, does not change the
number of degrees of freedom since we also have two new equations, namely (145)
and (146).

If we want to introduce labour requirement we may do it in the form of the
bound

Y, <¢N, (t=1,2...,00) .. (148)

where ¢ is a structurally given labour coefficient and N, a given forecast of the working
population (so far without taking account of the problem of specialized skilled labour,
which is so conspicuously important, not least in developing countries). In this case
too the bound (148) is linear. And the inclusion of unemployment (¥,— Y,/¢) as part
of the preference function would not change the linear character of this function.

So, in all we get a programming model which is completely linear both
with regard to preference function and bounds. It may therefore be solved by one
of the known methods.!”

If we want to consider a smooth course of the H, as an additional desideratum
besides the main desideratum expressed in (140) we may add for instance

- T 1
. —P, X (H—H,? to (140), where P, is a positive preference coefficient and
= t=1

T
H, —-71,— S H, the average of H, over the repercussion period. The preference
t=1

function F thus obtained is concave (since the matrix of its second order derivatives
will be negative definite). The bounds remain linear. The ensuing programming
problem is therefore not a particularly difficult one.’® Any other additional term
which retains the concave character of the preference function could be considered.-

17Since we will in this case have a moderate number of degrees of freedom, namely T, the number
of decisional variables Hy, Hs ..., Hp, but & much larger number of dependent variables, the problem is
one where my multiplex method will work to great advantage. It is coded by Mr. Ole-Johan Dahl for use
on the electronic computer of the Norwegian Defence organization, and has been very successfully used
here for rather large size problems.

1sFor problems with linear (upper and/or lower) bounds and a concave preference function the multi-
plex method works very well, as I reported on at the 1960 Tokyo meeting of the International Statistical
Institute. The paper is printed in the report of the meeting. .

10
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Formulation 2 : This is similar to Formulation 1 but H, H, ..., Hp are now
not deterministically defined but defined through the simultaneous probability distri-
bution of H,, H, ..., Hp. The technical aspect of this programming solution in this
case will in principle be somewhat similar to that under Formulation 1, except for the
fact that the decisional parameters will now be the parameters that determine the
simultaneous distribution of H,, H,..., Hp. It goes, however, without saying
that this stochastic twist of the problem will in practice increase the computational
difficulties very much.

Formulation 3 : This formulation is similar to the Formulation 1, in so far
as the magnitudes Hy, H, ..., Hy are also now considered as deterministic parameters
to be determined by the programming procedure but in addition the government
strategy parameters K and A are also considered as decisional, i.e. as variables to be
decided upon through the programming analysis, subject however to the condition (114).

Since the parameters k and A—through g and w—enter in an extremely non-
linear manner in (35) and (129), and hence by (1) in the corresponding expression for
consumption C;, C; ..., Cp, real capital K,, K,..., Ky etc.. the computational
difficulties will now be great, but possibly not insurmountable for a moderately
large horizon 7'. (cf. the remarks on iteration at the end of this paper).

Formulation +: Same as Formulation 3 except for the fact that Hy, Hy ..., Hp
are now considered not as deterministically defined but as stochastically defined
through the simultaneous distribution of Hy, H, ..., Hp.

This problem will be computationally very hard to handle. It is very doubtful
whether an attempt in this direction is worth the trouble, particularly in view of the
fact that it will probably not lead to any essentially new and practically more useful
results than those that could be obtained through a solution of the Formulation 3.:

Formulation 5 :  Solution when autonomous investment 8 not under government
control. If autonomous investment is not under government control, the only thing
government can do, within the framework of the model (1)-(4), is to handle the strategy
parameters (K, A) in some way which is as “optimal” as it can be made without know-
ing the autonomous investment.

A plausible thing to do under these circumstances is to consider a (k, A) strategy
which is optimal on the assumption that there will be no autonomous investments in
the future i.e. for ¢ = 1,2 ... 00 (¢ = 0 being “today’” i.e. the day when the decision
about (k,A) is made). Any actually occurring autonomous investment will then
simply come as an addition to the national income which is theoretically produced
under the strategy considered!®.

We denote the solution of the difference equation (5) under this assumption
by the letter y,. By (131) we have

y=mYotwpa¥, =12 o) wo (149)
where Y, and Y _, are the actually realized magnitudes of the national income in years 0
and (—1) respectively regardless how those magnitudes have been achieved.

19As an alternative we may assume that the Hp are given through some sort of estimate made snde-
pendently of the model. This would make the computations more complicated but would not cause
insurmountable difficulties.

L A el e v s A i ikt
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As before, we assume provisionally the non-wave case for the cumulator.
This is equivalent to imposing the condition (114) which is the same as (115). It
will turn out that this is not a restrictive assumption since the non-wave case is actually

the optimal solution.

If the two characteristic roots (provisionally real by assumption) are different,
the expression for the cumulator is (127). This expression can be transformed in
such a way that it becomes applicable even in the case A; = A,. We simply divide by
{A;—A,) which gives

= I A =§0 ALoAg A, = Agor Ay £ Ag). ... (150)

The two expressions in (150) for 7, are equivalent.

Since by (118) the expression (149) can be written

o= mYo—A A Y, (t=1,2...,00) ... (151)
we can by (150) write the expression for y, in either of the two following forms
t—1
go= Yo NN —Y_ S AT (4, = Agordy #£Ay) ... (152)
9=0 v=0
¢ =1
Y= Yo T ATPAI—Y_, T ATASH (A, = A 0t Ay £ Ay) ... (163)
=0 v=0

We may, if we like, consider the programming formulation as one in (4,, A,). Indeed,
to any set (A;, A,) corresponds by (117)-(118) one and only one set (x, v), and inversely
to any set (z, v) corresponds a set (A;, A,) which is uniquely determined, apart frc:. an
interchange of the numbering of the two roots A, and A, (we may, if we like, con-
ventionally choose the numbering so that A; > A,).

Considering the programming problem as a problem in (A,, A,) we take the
partial derivatives of y, with respect to A; and A, respectively. When determining
the former of these two derivatives it is most convenient to use (152) and when deter-
mining the latter derivative it is most convenient to use (153).

After some transformations we get

_oﬂ & ye—1y-e -
oA, l.v:1 vATTIA } (Yo=AsT ) o (154)

-t
9% _ | Z gt (T Yy, .. (155)

0A, vl

This shows that we can determine values of A; and A, that are independent

of t and such that they annihilate both derivatives simultaneously. These values
are simply obtained by putting the last parenthesis in (154) and (155) equal to zero.

[SSS— )

This gives

(156)
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Without going into a detailed algebraic proof we see from numerical examples,
(cf. tables (180) and (181)), that (156) actually yields a maximum.

The single parameter strategy. We are thus led to the case of two equal roots.
Since the two roots cannot be equal unless they are real and since the above argument
is valid regardless of whether A, and A, are looked upon as real or complex, we have
actually proved that the programming in A, and A, leads to the case of two equal and
real roots. That is to say we must have the Case II in (106).

The programming problem is thus reduced to a single-parameter problem.

Let 7= Llf— (the general case of two equal roots) ... (157)
be the common value of the two roots. The parameter r in (157) has the same mean-
ing as in (64) and (69). The problem is to determine the parameter r in such a way
that y, becomes as large as possible when Y, and Y_; are given. The value of r
which achieves this, follows directly from (156). We denote this value by the subs-
script 1. That is, we have

- Yo

n=y (the optimal value of the two equal roots). ... (158)
-1

The symbol r; can be looked upon as designating both the optimum value of the strategy
parameter r and the initially observed actual growth factor?.

The cumulator in the case of two equal roots is easily derived from (135)
and (157). We get

7, = (t4+1)r* (¢=1,2,...,00) (rarbitrary, not necessarily equal tory). ... (159)
This expression can also be-obtained by the general method of (56), (89)-(91).
From (117)~(118) and (157) we now get

po=2r ... (160)
v = —r3 ... (161)
So that by (6)-(7) K =—a-+2r—r? (for any r) ... (162)
A= pf—r? (for any r) ... (163)

The expression (162) shows how much larger the strategy parameter « must be
chosen than the structural constant « in the Case II in (108) when (f—A) has been chosen.

Inserting (158) into (162)-(163) we get the optimal strategy values
Ko = —a-+2r,—1r7 (optimal) .. (164)
Ay = f—r% (optimal) ... (165)

where r, is given by (158).

20When I speak here of the ““growth factor” (which is unity plus the growth rate) I take the word
factor simply in the sense of “‘a number by which to multiply”’, not in the sense of ‘‘something which
can explain”. In the latter sense the word factor is used for instance in biology when one speaks of &
“growth factor” or “‘factor for growth.”
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In any realistic case in economics T, determined by (158) will be positive, so
that we do not get the zig-zag case (the case where 7, changes from plus to minus in
every other point of time).

Government current account expenditure is given by (3) which we can
also write
@, = (k=Y +AY,, (t=1,2, .., 0) ... (166)
Inserting (162)-(163) in (166) we get
G, = [2r— @+ Yy T[T s ... (167)
(for any r in the case of two equal roots)

If we insert the optimal strategy value (158) for r in (167) we get the optimal
government current account expenditure in vear ¢, when Y,_; and Y, are the actual
national incomes in year (—1) and ({—2) regardless of the way in which these magni-
tudes happen to have emerged through previous autonomous investments. This

is the meaning of our determining (by a decision at time ¢ = 0) the optimal strategy
parameters Ko and A, as if all the H,, H, ... H, are going to be zero.

In the general case of a double root—i.e. with an arbitrary value of » we have

2
Tes—te = FlrltE2)—(+ 1] = | o 1] .. (168)

(for any r in the case of two equal roots)

and by (129) Y, —Y, = Hyyy— iﬂ[r(t“{“‘z)—(t‘*’l)] Y,—rtr(t+1)—t] Y—lﬁ%

3 ) —(r 1) H,_, .. (169)
=0 L B

(t=s8,8+1,...,0); (=12, .., 00).

The middle term in (169), i.e. the big bracket represents the after-effect of the
initial conditions, the last term. i.e. the summation over 7 represents the after-effect
of the autonomous investments up to ¢ inclusive and the first term in (169) represents
the effect of the new autonomous investments at time ¢-1.

As ¢ tends toward infinity we get from (168)

”ﬁiﬂfi = (r—1) (as t— oo for any value of 7). ... (170)
i

By the passage to {— © and using the formulae (129), (168), (170) and (159)
become

t;‘. H
rxrd, .,
ztﬂ:& = (r—1)+ L_Ig_l-}- ’_ﬂ_—t—— (as t— oo for any value of 7) ... (171)
Y, ¥, Y,

(170) and (171) show that asymptotically the rate of growth of the cumulator will be
(r—1)—as it would be for any ¢ if the cumulator were a simple exponential—, and
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asymptotically the rate of growth of national income itself will be (r—1) plus two cor-
rectional terms. The first is due to H,,;, which we can in principle choose arbitrarily
inside the model (1)-(4). And the second correctional term represents the after-effect
of previous autonomous investments. All we can say about the latter of the correc-
tional terms is that they will be positive if the autonomous investment are on the
average” positive. Even if H,,; = 0 it will therefore be safe to assume that asympto-
tically the growth rate of ¥, will be at least (r—1).

More important than to study the passage t— oo is to see what happens in the
first few years after the point of time 0. I will illustrate this below by some numerical -
examples. They will also show the effect of changing . These examples will verify
the above theoretical results. We consider the case where all the autonomous invest-

ment are zero.

For any value of r (i.e. assuming two equal roots) we have by (160)-(161)
Yo = 21ty 1—1%,_ e (172)

(the recurrent formula in the case of two equal roots),
Y= (1P Y —trit1Y_, . (173)

(the ab-initio formula in the case of two equal roots).

By (167) the government expenditure on current account will, on the assump-
tion of no autonomous investments, be

-

9 = [2r—(a+Pa+[f—Tyy (¢t=1,2,...,00foranyr). .. (174)

For ¢ = 1 we will in (174) have to put y, and y_, equal to respectively Y, and ¥_,
where Y, and Y_, are the magnitudes actually realized in these two points of time.

From (173) we get

% = L)Y —rY_)) ... (175)

and using this in (174) we get

—d(ég__‘ = _ [2r—(a+-2)Jr(t— 1+ [B—r2)(t—2)(t— 1) 2r2 .g Y Ye—rY_y). ... (176)

Comparing (175) and (176) we see that during the variation of r, g, and y, must have
extremum for the same value of r namely the value r, defined by (158).

By inserting the ab-initio formulae (173) for y,_; and #,_, we can derive the
corresponding ab-initio formula for g,, but this is unnecessary for our purpose.

Numerical examples. In our numerical examples we use

a=0.8 B = 2. .. (TT)

And we consider two sets of initial conditions, namely
Ezample A: Y_; =100 and Y,= 103 ... (178)
Ezxample B: Y_, = 100 and Y, = 107. .. (179)

The result for different values of r are given in (180) and (181) respectively.




Example A: Y_,

100 and Y, = 103
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t=1 t=2
agsgna Yt at 19_0gt gt 100ge Yt 1009
r st Yt ¥ .
1.00 106.00 17.60 16.60 109. 18.20 16.70 112.00 16.79
1.01 106.05 17.65 16.64 109.1: 18.21 16.68 .30 16.72
1.02 106.08 17.68 16.66 109. 18.22  16.67 19 16.69
1.03 106.09 7.69 16.67 109. 18.22  16.67 33 16.67
1.04 106.08 7.68 16.66 109.24 18.21 16.67 49 16.69
1.05 106.05 17.65 16.64 109. 18.21 16.68 .29 16.72
1.06 106.00 17.60 16.60 108, 18.19 16.68 96 16.78
1.07 105.93 17.53 16.55 108. 18.16 16.69 .48 16.86
1.08 105.84 17.44 16.48 108. 18.12  16.70 .83 16.96
1.09 105.73 17.33 16.39 108.1: 18.07 16.71 .08 17.09
1.10 105.60 17.20 16.29 107. 18.01  16.72 14 17.23
1.20 103.20 14.80 14.3%+ 99.: 16.40 16.51 .86 20.09
1.30 98.80 10.40 10.33 82 12.18 14.71 .33 29.10
1.40  92.40 .00 33 36. 4.12 7.25 .95 -16.84
1.50  84.00 —4.40 -5.24 20.25 -8.95 —14.20 .25 13.22
Example B: Y_; = 100 and ¥y =

1.00 114.00 14.40 12.63 121. 15.80 13.06 .00 13.44
1.01 114.13 14.533 12,73 121. 15.83 13.04 .79 13.32
1.02 114.24 14.64 12.82 121, 15.85 13.02 .47 13.22
1.03 114.33 14.7 12,88 123, 15.88 13.02 .03 13.14
1.04 114.40 14.80 12,94 122, 15.90 13.01 .48 13.08
1.05 1i4.45 14.85 12.98 122, 15.92 13.01 .81 13.04
1.06 114.48 14.88 13.00 122, 15.93 13.01 .01 13.01
1.07 114.49 14.89 13.01 122, 15.93 13.01 .08 13.01
1.08 114.48 14.88 13.00 122, 15.93 13.01 .01 13.01
1.09 114.45 14.85 12.98 122.3 15.91 13.00 .80 13.04
L.10 114.40  14.80 12.94 123.: 15.89 13.00 44 13.07
1.20 112.80 13.20 11.70 116. 14.80 12.69 .50 14.05
1.30 109.20 9.60 8.79 103. 11.33  10.99 .49 15.85
1.40 103.60 +4.00 3.86  80.: 4.28 5.33 .93 18.88
1.50 96.00 -3.60 -3.753 47 ~7.53 -15.98 .25 19.60

These tables show clearly that r, = Y—" = 1.03 is the optimum strategy in
-1

The optimum relative government expenditure on current account.
of the optimal strategy we get

the first example, and r; =

>

Q0

-1

= 1.07 the optimum strategy in the second example.

-

— gt
Yo =11 Y,

Jeo = 1572 yo["%_(a‘!‘/’))rl‘;—ﬁ]

where the subscript 0 on y,, and g, indicates the result of the optimum choice (158).

In the case

.o

P
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From (182)-(183) we get immediately

Goo _ 2t B .. (184)
Yio " T%
d( Jeo )
yt_u — a+ﬂ _ Qﬂ 18'
and hence T 3 <7‘1 a—{—ﬁ’)' .. (1853)

The formula (184) shows that the optimum relative government expenditure—
under the conditions we have assumed for the optimum—is independent of t. But
it will change with the initial conditions (which determine r,), and the way this change
takes place is given in (185).

Tt is an interesting fact that the above optimalization process is independent
of t. This means that in any point of time (¢— 1) we can determine the optimum value
of the two strategy parameters (k—A) and A, as if it were only a question of achieving
the best result in the next year t, assuming that no autonomous investment is to take
place in the next year. Whatever autonomous investment that is actually going
to be achieved in the next year ¢ will only produce so much additional increase in the
national income ¥,. The development will therefore gain momentum from year to year
by any autonomous investments which the nation’s real resources will permit and the
private investors choose to make. The actual growth process will therefore be more
rapid than that illustrated in (180) and (181). Each year will so to speak represent
a change of initial conditions, and hence a new optimal value for the parameter r.

GOVERNMENT CURRENT ACCOUNT BUDGET STRATEGY UNDER
NON-CONTROLLED INVESTMENTS
The above consideration leads to the following rule for a moving optimalization.
Moving optimalization. Each year ¢ the actually realized national income in
year t—1 and ¢—2 will be known. From these data ¥, ; and Y,_, one should compute
the optimum factor r,, determined by

Ij!:l

-2

r, = (The optimum factor computed at #) (¢ = 1,2, ..., 00). ... (186)

This value of 7, is inserted for # in (167). This gives the optimum govern-
ment current acount expenditure in year .

That is, in year ¢ the government current account expenditure ought to be
put equal to the optimum value

Gpo = [2r,—(x+8)] Yt—l’I"[ﬂ_r?] Y, o= Yz-1[7't+g‘”(“+ﬂ)] ... (187)

where 7, is given by (186).

This figure will, of course, in practice only indicate a guiding signal for govern-
ment expenditures. It has been computed only by considerations on- the general
growth rate of the economy. Other considerations (social justice, defence etc.) may
motivate an action whereby one sacrifices part of the overall national growth rate.
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But this being said, I believe that in the absence of a real control over the

autonomous investments in the nation, and of a complete programming solution
involving also the magnitudes H,, H, ..., the above expenditure rule is as good a rule
as can reasonably be deviced. But the rule only leads to protection against decline,

not to real progress as will be seen from the subsequent argument.

By the right hand expression in (187) the optimal expenditure ratio G/ Y1
depends only on the recent growth rate r, (and on the two structural coefficients & and 5).
Furthermore, the way in which the optimal expenditure ratio depends on 7, transpires

immediately from (187) and from the expression for the derivative

G
o[ G )
__%;‘—1— = 1—{% — negative in realistic cases. ... (188)
t t

Since we may assume X and B positive—and in realistic case o smaller than
unity and B larger than unity—the optimal expenditure ratio is by (187) very
Jarge for very small positive values of r,, With increasing 7, it decreases, passing
the value (1—a) for r, = 1. continuing to decrease and reaches its minimum
value (1—a)—(y/f—1)* for r, = v/p. From this point on it increases without inter-

ruptions as r; continues to increase.

The most realistic range for , is between 1 and 4/f and in this range we can
draw the following conclusion : The lower the growth rate for national income has
been in recent years the larger should the optimum government expenditure on current
account be in relation to national income. This conclusion is rather at variance with
the favourite conservative argument about the advantage of low government expendi-
ture. This need to increase government expenditure (in order to obtain optimality)
is all the smaller the larger f, i.e. (188) more negative when 2 is large.

Protection against decline, not @ driving force for progress. If no autonomous
investments accrue, the growth rate of national income (under optimal government
current account expenditure at all times) is constant and determined by some distant
initial conditions (cf. 182). In the model (1)-(4) the optimalization of government
current account expenditure is therefore only a protection against decline. 1t protects
what we had, namely r, (or 7, in moving optimalization), but is no driving force for
progress. Only through autonomous investments can the growth rate be increased.
And when it is increased, the optimal expenditure ratio should (in order to protect
the new growth rate) be adapted in the way we have just discussed in connection with
(187) and (188). If the model should have been able to display a driving force for
progress, it would have been necessary to add a relation that indicates an effect of
government current expenditure on autonomous investment.

Attempts at reaching higher growth rates by influencing autonomous investment.
If account is taken of bounds such as (143), (144) and (148), the more complete program-
ming Formulations 1-+ may be realistic enough to make it possible to reach much
higher growth rates. But then autonomous investments must be controlled.

i1
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One may simplify the computation by an iterative procedure which consists
in first determining the optimal strategy parameter r, by (186) and then proceeding
to the solution of the Formulation 1 problem, which is simply a linear programming
problem. Having solved this problem one may reshape Formulation 5 so as to take
account of the autonomous investments now determined. Thus we reach an improved
value for r,. This improved value may again be taken as the basis for a programming
problem of type 1. And so on. This might lead to an approximate solution to the
Formulation 3 problem and would give coordination of current account and investment
policies.

The need for a more complete planning model. But this whole approach is as
yet too simple to be taken as a complete planning model, because it does not treat
explicitly such important aspects as import-export effects (balance of payments),
sectorial breakdown, substitution possibilities among sector inputs (i.e. not all the input
coefficients being constants), the infra effect of investments in changing the coefficients
of a model, the problem of education and skilled labour (which formally can be handled
very much in the same way as the problem of capital formation and with bound-effects
similar to that produced by material capital). All these problems are basically im-
portant for planning in an underdeveloped country. Nor can they be neglected in a
more advanced country which will introduce a certain amount of planning in its eco-
nomy.

In this connection I shall not discuss the various attempts I have made of
developing a complete planning model.2!

SUMDIARY

An explicit general solution of the Hicksian Model, holding true for any
period of time ¢ and with any arbitrarily given right member (the term which makes
the difference equation non-homogeneous) is given. The solution has one degree of
freedom (one arbitrary function of time) when the parameters of the model are given.

Programming techniques are indicated either to determine desirable values
of the parameters in the Hicksian Model or to choese one of the variables as a deci-
sional function of time. In both cases, we may haze a linear or a more general
preference function having the aim of minimising fluctuations in incomes from their
long run growth path and/or assuring rapid growth in the long run.

There are five formulations, making different assumptions about the time
shape of autonomous investment. One formulation applies to the case where the
autonomous investment is not under government control.

The recurrence method as well as the method of characteristic roots for
solving a linear difference equation of any order with constant co-efficients ard an
arbitrary right member (the non-homogeneous case) are stated in a precise and easily
understandable form with special application to the Hicksian Model.

?1 See for instance, “An implementation system for optimal national economic planning without
detailed quantity fixation from a central authority”. Memorandum, 3 January 1963 from the Oslo
University Institute of Economics. Soon to appear in print,




