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1. A V E R B A L  D E F I N I T I O N  

Investment  starting in any given year is the total outlay which it is 
estimated that the projects started that year will have entailed when they 
are finally completed - perhaps at some future date. Investment  sinking 
in any given year is the value of goods and services that were actually 
used (that were "sunk")  that  particular year in order to carry towards 
completion projects which were started that year or some previous year. 

The  distinction between investment starting and investment sinking 
is essential in an investment analysis that is to be realistically dynamic. 

2. T H E  PROJECT D E S C R I P T I O N  

The  project description is a collection of all the descriptive details re- 
garding a project, that  can be given by the specialists (technical engi- 
neers, etc) who have detailed knowledge about this project, but  do not 
have a systematic knowledge of all the broader  social, economic and poli- 
tical considerations at the national level that one must  take account of 
before one can reach a well founded decision as to whether  this project 
is to be accepted or not. 

A rational and coherent  t reatment  of investment criteria can in my 
view only be given by considering all the investment projects - defined 
through the project descriptions - as intergrated parts of a complete macro- 
economic decision model with all its structural and (politically) preferential 
aspects. T h e  project descriptions are building stones in the complete 
decision model. 

T h e  great variety of so called "investment  criteria" that are frequently 

1 Paper prepared as background material for invited lectures to be given April 1968 in the 
Department of Economies and Jurisprudence of the Hungarian Academy of Sciences, 
Budapest. 
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discussed as criteria that should be applicable to any given projectper se 
just as the project is defined through its project description, can there- 
fore, in my opinion never lead to a really satisfactory solution of the in- 
vestment decision problem. The per se approach to investment criteria 
is only escapism. It may be tempting because of its simplicity, but it has 
no decisional foundation. 

Having adopted this point of view we must stress the fundamental dis- 
tinction between information that is available before the optimization 
of the decision model and information that only emerges after this opti- 
mization. 

This distinction is the crux of the matter in planning at the national 
level in any country. In this optimization all the geographical, material, 
cultural and political peculiarities of the country come into the picture. 
This broad perspective can, of course, not be compressed into the format 
of a project description. 

Therefore, the project descriptions belong definitely to the kind of in- 
formation that is available before optimization. Such information is a 
necessary basis, but very far from being a sufficient basis for reaching 
well founded investment decisions. 

3. THE SINKING YEAR A N D  THE S T A R T I N G  YEAR 

Consider a single investment project No. g. 

(3.1) t=  the interflow year (the calendar year) is the year (or quarter 
or month) to which the complete macroeconomic interflow 
table with all its balancing and accounting relations apply. 
In particular, if we are discussing the difference between 
investment starting and investment sinking, t will be the 
sinking year. 

(3.2) a = the starting year is the year when actual work on the execu- 
tion of the project was begun. The decision year i.e., the 
year when it was decided whether to accept or reject the 
project No. g, is the year when the whole plan was adopted. 
This may be an earlier year than a. As a rule the decision year 
(the planning year) will be denoted as the year 0. Research 
work in connection with the plan and in particular research 
work in connection with the project No. g may have taken 
place even earlier. 
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(3.3) s=  t - -a  is the sinking delay. Roughly formulated the sinking delay 
is "the number of years that have elapsed since starting." 
More precisely formulated: s = 0 refers to the sinking that 
will take place in the same year as the starting (if the pro- 
ject is accepted for starting in a given year), s = 1 refers to 
the sinking that will take place in the year that follows im- 
mediately after the year when the starting took place. And 
so on for the higher values of s. 

4. S I N K I N G  F L O W S  

Table (4.1). Sinking Flows for the Project No.g 
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J=Gross i n v e s t m e n t  (as d i s t inc t  f r o m I = n e t  i n v e s t m e n t  after depreciat ion) .  H = ' H a r d w a r e ' .  

Here (g) denotes the number of different years in which sinking inputs 
for the project No. g will occur (roughly expressed: the construction 
period for project No. g.) 

The symbols given in table (4.1) are general symbols for the sinking 



222 RAGNAR FRISCH 

flows and their totals with respect to project No. g. These magnitudes 
may, for instance, refer to flows that are determined already in the pro- 
ject description, and if so they are denoted Jk~ (k =h, i, B). This happens 
for all k and s only in the case where no sinking substitution possibilities 
exists. The flows that emerge after the decision model optimization are 
denotedJ~g (k=h, i, B). These latter flows always exist and are well de- 
fined (possibly with some degrees of freedom if there remain degrees of 
freedom in the optimum). In a more general context the symbols J~g 
(k =h,  i, B) in table (4.1) may be used simply as indicating variables that 
enter into the decision model before optimization. 

H TM denotes the sum total of all the sinking flows in table (4.1). 

5. S INKING COEFFICIENTS IN THE 
N O N - S U B S T I T U T I O N  CASE FOR SINKING  I N P U T S  

In the special case where no possibility of sinking substitution is as- 
sumed to exist, all the flows in table (4.1) are fixed and well defined already 
in the project description. Cf. the comments to table (4.1). 

In this case we may compute the corresponding system of sinking co- 
efficients. They are defined by 

[ denotes the total sinking, now ] 
(5.1) J'k~- IH gt~ to be determined ah'eady] (k=h,i,B) 

Hgt~ L in the project description 

When the coefficients (5.1) are computed, any of the sinking flows in 
the project description can be expressed as 

(5.2) j~** =Jkg'* Hg*t~ (k = h, i, B) 

where the coefficients J'k~ can be read off from the project description. 
Inserting (5.2) for each element in table (4.1) and performing a sum- 

�9 , i s marion over all the cells of the table we see that the coefhclents Jkg must 
satisfy the equation 

[ For any g for which no 1 
2 ~t'' ~2' l"  ] sinking substitution ] (5.3) 2 .Jhg ~- ~ aig + ~'J'~g= 1 

h=sec /--prim L possibilities exist ] 

(sec = sectors, prim = primary input factors, s = sinking delays. The sym- 
bol ~2' denotes a summation over all sinking delays.) 
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6. S INKING COEFFICIENTS AND EQUIVALENCE COEFFICIENTS IN 
T H E  CASE OF SUBSTITUTION POSSIBILITIES FOR SINKING INPUTS 

If we have the case where sinking substitution possibilities exist, the 
total outlay H~ ~ - the sum of all items in table (4.1) - does not exist 
as a magnitude that is defined in the project description. The sum of all 
items will then have a definite meaning only after optimization. 

In this case the size of the project in its full dress must in the project 
description be characterized by some other feature, for instance, by a 
capacity addition that may be associated with the project (if it is accepted 
in its full dress) or by some other conventional measure for the size of 
the project in its full dress. Let  this conventional measure of the full 
dress size of the project be *con Hg , the asterisk * indicating that this is a 
magnitude that can be read off from the project description and con in- 
dicating that the magnitude is a conventional measure of the full dress 
size of the project. 

Such a conventional measure may, of course, be introduced regardless 
of whether substitution possibilities exist or not, but in the substitution 
possibility case it is necessary to rely on such a conventional measure. 

Even in the substitution possibility case there may be some, and per- 
haps many, but  not all, of the interflows in table (4.1) that exist as well 
determined magnitudes already in the project description. And for these 
particular flows we can introduce a project description determined co- 
efficient-concept by expressing each such flow as a fraction of H g  . . . .  , 

namely 

(6.1) 
's Jk*~ (For the sinking flows No. k - either h or i or B - that 

J k a -  H~con are determined already in the project description) 

The  dimension of (the denomination of) each such coefficient (6.1) 
will depend on the nature of the input flow in question, and on the con- 

~ c o n  . ventional measure that is chosen for Hg . 
For the cells of table (4.1) for which the flow is not determined al- 

ready in the project description, we assume that we have instead infor- 
mation about equivalence coefficients. 

For instance, if the input elements in the three cells formed by the 
intersection of the three rows a, fl, 7, and the column s of table (4.1) 
form a sinking input substitution ring, the three flows J'~g, j~g, j~g are not 
determined in the project description, but we have instead information 
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about three equivalence coefficients j,.~},,, a~.,er*~q", -,v.,gl%q'* such that the three 
flows j ; g ,  j ; g ,  j ; g  must satisfy the equation 

(6.2) r%q.~ r, , r%q.~ r, ~_ r*~q., rs r4 . . . .  (r=a substitution ring dcc.rg Je tg  T J ~ . r g  d ~ g  ~ d T . r g  d T g  : ~ g 

( e q = " e q u i v a l e n c e "  s=sinking delay) r : (af ly)  for sinking input 
into the the woject  g) 

Note.  For convenience we may divide through by H g  .... .  m" (6.2) so as ] 
to obtain the eqivalence coefficients (they are project description de- l termined) given as fractions of ..... Hg . Cf. also the comments to (6.4). 

Here H a  c~ is the conventional measure of the full dress size of the 
~nd T*ee .' r*ec.s T*er are equivalence coefficients for each project No. g, ~__.,~.~g, a~.~g, av.~g, 

of the three sinking input elements a, fl, y that together from the sub- 
stitution ring r = (afly) for sinking inputs into the project g in the sinking 
delay year s. 

For instance: Digging work connected with the project g in the sin- 
king delay year s might be performed alternatively in any of the following 
three ways: 

(6.3) 

ct=manual labour unaided by digging machines ("chinese communes")] 
fi=use of small and simple digging machines | 
y=use  of big and technically advanced digging machines J 

The meaning of (6.2) is that the amounts to be used of the three kinds 
(6.3), namely J~,e, J~g, and J~g are not determined by the project description 
but may be chosen freely, subject to the condition that the left member 
of (6.2) always be equal to the conventional full dress measure of the 

*con In other words, before optimization of the deci- projects, namely H g . 

sion model we leave open the possibility that the necessary sinking input 
from the ring r to the project g in the sinking delay year s may be achieved 
either through the input element a, or thorugh fl, or through 7 or through 
any desired combination of these three elements, which is such as to make 

*con the linear form in the left member of (6.2) equal to H e . In section 7 
we shall consider a type of restrictions which it may be realistic to im- 
pose in addition to the equivalence equation, but for the moment we will 
only discuss the equivalence equation as such. 

The concrete meaning of the coefficients in (6.2) may be visualized as 
follows. Take for instance the coefficient J~*.~q This is a coefficient such 
that if we choose to use only the input element a, and nothing at all of 
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fi or Y in the sinking delay year s for the project g, the actual flow J~g 
will have to be equal to 

1 
(6.4) Jig = T.,q.$" Hg c~ (if only a is used) 

. / 0 ~ g  

Comparing (6.4) with (5.2) we see that the reciprocal value of l *~q'$ 
. J  ~ , r g  

has the same meaning as the sinking . �9 ,s coefficient Jag that would prevail if 
only a is used. It other words, the reciprocal values of the three equi- 
valence coefficients in (6.2) represent in a sense partial sinking coeffi- 
cients inside the ring r = (aft7). Another interpretation is obtained by dif- 
ferentiating (6.2) with respect to, say, J~y keeping J~g constant. This 

1 1 
shows that differentially T.~--- ~ units of a may be substituted for r*~----q- 

.J cc.rg _l f3.rg 

units of ft. 
In the sinking substitution case the individual sinking flows such as 

.[~g, J~g, Jig are not determined by the project description. They are only 
variables to be introduced in the complete decision model before opti- 
mization. Therefore, in the sinking substitution case the complete deci- 
sion model will have more degrees of freedom before optimization, than a 
similar model where no sinking substitution is permitted. 

For instance, if the model contains a single equivalence ring r=(afl7 ) as 
�9 s $ s exhibited in (6.2), the model will contain the three variables J~g, j~g, Jv~ 

which are connected by the equation (6.2). That is, the ring contributes 
two degrees of freedom to the model. On the other hand, if there had been 
no substitution possibilities among the three elements a, /5', 7, we would 
have had 

(6.5) J~," =J~g'$ H g*~~ (~' =a, fl, r) 

. �9 i $  

where the sinking coefflcmnts J,og are determined by the project descrip- 
tion. Hence, in this non-substitution case the set of three sinking input 
elements a, fl, 7 in the sinking delay year s for project g, would have 
contributed no degree of freedom to the model. 

While the existence of input equivalence rings increases the number 
of degrees of freedom in the decision model, it does not introduce any 
non-linearity. Indeed, the equation (6.2) is a linear equation. 
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7. T H E  C O M P L E M E N T A R I T Y  R E S T R I C T I O N S  T H A T  MAY BE 
ASSOCIATED W I T H  AN E Q U I V A L E N C E  R I N G  

Consider again the example (6.3). In concrete reality even the most 
automatically advanced digging machine can, of course, not be let loose 
to perform the work alone without the aid of any manual labour. This 
fact may be taken account of in a number of more or less elaborate ways 
when we construct the complete decision model. But the simplest way to 
do it might be still to use the concept of equivalence equations as ex- 
plained in section 6, but  now to complete this point of view by adding 
a certain type of restrictions which we may term complementary restric- 
tions. 

The meaning of the complementary restrictions can best be explained 
by changing slightly the definition of the input element a in the example 
(6.3), letting now a simply stand for "manual labour", i.e. dropping the 
specification "unaided by digging machines". 

Having changed our example in this way, we may add a restriction 
expressing the fact that a part of the variable Jig has to be used as a 
complement to the variable j~g and another part of the variable Jig has to 

$ be used as a complement to the variable Jvg. If we want to avoid the 
complication which it would be to split the variableJ~,g into several vari- 
ables, we can express the essence of the complementarity situation con- 
sidered simply by introducing a restriction of the form 

(7.1) J~,g ~ some coefficient timesJ~g plus some cofficient timesJ~g 

We can formalize this idea by imposing a restriction of the form 

(7.2) , . . . . . . .  *com.s  s *com.s  s = J~.~ J~+J~.~,~ J~+J~.o~ J~ > o 
where 

(7.3) . . . . . .  J .org, J c c . o r g  , •com.s * com. s  

are three coefficients that are determined in the project description. (~ = 
"restriction", or more explicitely: ~ : a restriction associated with rg. The 
superscript corn indicates "complementarity").  

There may be several restrictions (~ =1,  2, 3 etc.) of the form (7.2) 
expressing, for instance, the fact that if we choose to use some big digging 
machines -- input elements 7 - we may need also some small and simple 
digging machines - input elements fl - as a complement to 7. 

The  fact that the coefficients J* in (7.2) are determined by the project 
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8 description, does, of course, not mean the actual flows J•g, j ;g  and Jvg 
are also determined by the project description. Th ey  are in fact still 
variables. But i f  we choose to put  one of the actual flows equal to a 
given magnitude, any complementari ty restriction of the form (7.2) will 
reduce the admissibility range for the other actual flows. 

T h e  formal set up (7.2) which introduces a set of restrictions ~ asso- 
ciated with rg is a very general one. I t  opens the possibility of expressing 
a great variety of complementary restrictions which we may find it neces- 
sary to introduce in order to make the complete decision model realistic 
enough to cover an actual situation. The equivalence equations express 
the fact that substitution possibilities exist, while the complementary re- 
strictions express the limitations that exist to these substitution pos- 
sibilities. 

In each complementari ty restriction of the form (7.2), - i.e. for any 
- we may, since the restriction is homogenous in the actual variables 
J~g, j ~ ,  jvg, normalize the coefficients . . . . . .  s s j=.~rg , *com.s Jv.~rg in any way J~.prg , *com.s 

which we find convenient, for instance by putt ing one of the three co- 
efficients equal to unity. 

Since restrictions of the form (7.2) do not introduce any new variable, 
and since all such restrictions are of the inequality form, the introduction 
of the complementari ty restrictions will neither change the number  of 
degrees of f reedom in the model, nor  introduced non-linearities. T h e  
only exception occurs if we find it realistic a priori to replace in any of 
the complementari ty  restrictions the symbol > b y = .  In this special case 
we will, of course reduce the number  of degrees of freedom in the com- 
plete decision model by as many units as the number  of restrictions o 
for which the symbol > is a priori replaced by = .  Even in this case no 
non-linearities are introduced. 

8. THE HYPOTHETICAL S T A R T I N G  VARIABLES 
A N D  THEIR ROLE IN THE DECISION M O D E L  

If we want to have a programming approach from which we require 
a solution which, for each investment project, will indicate exactly either 
rejection of the project or acceptance of the project for starting in its 
full dress in a specific year a in the plan period, we would in principle 
have to use integer programming. While methods for integer program- 
ming are known, it would in practice be a next to impossible task to 
proceed in this way when a great number - perhaps several hundred - 
of possible investment projects and several possible starting years for 
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each project are considered together with the many other features of a 
complete decision model. 

We will circumvent this practical difficulty in the following way. 
Let  us introduce the hypothetical starting variables H~, where a is any 

year in the plan period and g is any of the projects. The number of such 
variables is equal to the number of investment projects (or channels) 
times the number of possible starting years in the plan period. The  
phasing of the investment startings is thus introduced explicitely in the 
optimality analysis. This is important. 

Each of the variables Hg is assumed to be a continous variable between 
0 and *co,, Hg , i.e. 

= ~ < H*C~ (for any a and any g) (8.1) 0 < H g  = __g 

where H %~ is the conventional measure of the individual project No.g 
in its full dress (or the stockpile of projects in the channel g, see below). 

We also impose the bounds 

(8.2) 2 ~ H g <= H~ ~~ (for any g) 

w h e r e ~  ~ denotes a summation over all the starting years in the plan 
period. I t  is not necessary to put on the lower bound zero in (8.2) be- 
cause this is already assured by (8.1). 

The bounds (8.1) and (8.2) will prevent the optimal solution from 
coming out with negative starting variables Hg or with a repetition of 
startings, the sum of which go beyond the total Hg c~ for the plan period. 

The bounds (8.1) and (8.2) apply equally to the case of individual pro- 
jects g and to the case of investment startings in channels of similar in- 
vestment projects, any such channel being denoted by g. In the latter 
case Hg c~ must be interpreted as the total stockpile of projects in the 
channel g. For a number of minor projects way may use the channel 
concept, and for some of the big and important projects we may con- 
sider individual projects. 

The r61e to be played by the starting variables Hg in the complete 
decision model, is brought out by the following rule. 

If the optimal solution of the model comes out with the value H i = 0, 
we interpret this as expressing that the project is not to be started in the 
year a, and if the optimal solution comes out with ~ -o He = Hg we interpret 
this as expressing that the project is to be started in the year a in its full 
dress. 

In many cases - particularly in a model that is completely linear - it 
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will be found that most of the variables H i will in the opt imum have hit 
*con either the lower bound 0 or the upper bound Hg . If for any project g 

or channel g one of these two alternatives emerges, the situation is clear. 
For an individual project that is marginal, i.e. for a project for which 

the optimal solution comes out with a value of H~ in the interio~ of the 
interval (8.1), we interpret the result cure grano salis. If the optimal value 
is close to the lower bound 0, we interpret it as rejection, and if it is 
close to the upper bound H~ c~ we interpret it as acceptance. 

For a few extremely important marginal projects for which it is found 
that this rule is not sufficiently accurate, we may after the general and 
approximate solution has been obtained, perform a special and partial 
analysis, now by means of integer programming and assuming as data 
the great variety of other starting variables that emerged from the first 
solution where all H e were considered as continuous variables. 1 

Now for the question of how the hypothetical starting variables are to 
be imbedded in the model. 

They  are imbedded by expressing the sinking flows that would follow 
in any given sinking year t (_>_ a), cf. (3.1), i f  the starting starting variables 
H i assumed such and such magnitudes in the various starting years a, 
cf. (3.2). These expressions being formalized, a summation over a for 
any constant t will express the hypothetical structure of the interflow 
table for the calendar year t in the plan period as a function of all the 
H i .  These hypothetical interflow tables for each calendar year t in the 
plan period form the backbone of the dynamic decision model. 

I shall indicate some of the crucial formulae that intervene in this con- 
nection. 

The sinking flows Jig (k = h, i, B) that occur in the sinking year t and 
t3 are entailed by Hg, are determined on the same principles as those we 

discussed in sections 4--6, with the only difference that now we have 
added the extra superscript a indicating the possible starting year or years 
a ( ~  t). In  other words, we now use to full extent the two dimensional 
system of time indications which was defined in Section 3. 

Consider first the proportionally determined sinking goods. They  are 

1 T h e  dec is ion  regard ing  the  choice be tween  a l t e rna t i ve  sizes of a cer ta in  b ig  and  im-  
p o r t a n t  pro jec t  g, m a y  be  hand l ed  w i t hou t  in teger  p r o g r a m m i n g  by  en te r ing  the  
a l ternat ives  as so m a n y  di f ferent  projects  g ' ,  g " , . . ,  etc. I n  addi t ion  to (8.1) and  (8.2) 
for each alernat ive we wou ld  t h e n  impose  the  a l t e r n a t i v i t y  bound  

(8.2b) o ~ a . H *con 
H g ' - l - ~ 6  H g  ''-1- "" ~ gmax 

where the  r igh t  m e m b e r  is the  convent iona l  size of  the  biggest al ternat ive.  
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the sinking goods of category k (k = h, i, B) for which the sinking coeffi- 
�9 i s ctentSJkg can be read off from the project description. (Cf. 5.1). 
These sinking flows are determined by 

(8.3) J ~  =j;~-= H~ (proportionality determined sinking flows) 

The flow (8.3) is a flow of goods of categories k (k=h,  i, B) that are 
sunk in the calendar year t and are entailed by (are "due" to) the hypo- 
thetical starting in year a in the project g and with the hypothetical 
starting size H~ (from the decision model point of view possibly less 
than the full dress size He t~ of the project). Similar interpretation ifg is 
a channel. 

�9 �9 i $  We assume for simplicity that the sinking coefflcmnts Jke that can be 
read off from the project description, cf. (6.1), are stationary in the sense 
that they do not depend on the particular year a in which the project 
might be started. This is why the affix a on the sinking coeffcient in 
the right member of (8.3) only appears through the difference t - a  (i.e. 
through the sinking delay, cf. (3.3)), and not on t and a taken separately as 
two independent time indications. A similar remark applies to the equival- 
ence coefficients in (8.4) below and to the complementarity coefficients in 
(8.5)�9 On the other hand, for the actual flows Jtk~ (which are variables in 
the model) the separation of the two affixes t and a as two independent 
time indications in the superscript, is absolutely essential. 

Next considered the sinking input of the k goods (k =h,  i, B) that are 
not proportionally determined. For these we have equivalence equations 
of the form 
(8.4) ~*eq.t-~ ~t~ ~ r*e~. t -~  r to  • ~*~q.t-~ r t~  r4~ 

Jc~.rg . l e g  ~ . l  ~.rg . l ~ g  ~ - l T . r g  - ITg  ~ ~ g 

(For the sinking input elements a, fl, 7 that are substitutionally con- 
nected in the ring r in the sinking year t and are due to starting in the 
year a in the project - or channel - g . )  

To summarize: In the H~ formulation the magnitudes which the actual 
sinking flows J~e, j~g and Jvg will assume are not determined as functions 
of the single variable Hg (as in the case (8.3)), but when H~ is given, the 
three sinking flows considered will have to satisfy the equivalence equa- 
tion (8.4). 

Several such sinking input rings as examplified in (8.4) may exist for 
an individual project g or a channel g. 

The existence of complementarity restrictions in a model built on hypo- 
thetical starting variables H~ is easily formalized. 
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Just as the left member of (8.4) was derived from the left member of 
(6.2) simply by replacing the superscript s by t - a  on the coefficients, and 
by replacing the superscript s by the two independent time indications t 
and a on the aetualflows; we now get in analogy with (7.2). 

(8.5) J *com.t-o Tto j_ I*com, t -o  Tto .a_ T *com.t-o T to ~ 0 
~.grg J ~ g  ~J[3.prg d ~ g  J J y . g r g  J y g  - -  

Several such complementarity restrictions as examplified in (8.5) may 
exist for each r and g where the coefficients j*c ..... (s = t - a )  are read off 
from the project description. 


