Conservation Contracts for Exhaustible Resources

Nils Chr. Framstad and Bård Harstad

University of Oslo

January 2017

Framstad & Harstad (University of Oslo)

Conservation Contracts

▶ < ≣ ▶ ≣ ∽ Q (? January 2017 1 / 29

< ロ > < 同 > < 三 > < 三

- Only in 2000-2012, tropical rainforest in South America was reduced by 4.2%, in Asia by 12.5%, and in Africa by 2.8%.
- Deforestation in the tropics has contributed to 30% of man-made CO₂ emissions, and it contributes to 10-20% of annual greenhouse gas emissions.
- Negative externalities \$2-4.5 trillion a year (the Economist, 2010)
- Deforestation could be halved at a cost of \$21-35 billion per year.

- **Contracts Exists:** The United Nations, the World Bank, and the Norwegian government are offering financial incentives to countries successful in reducing deforestation.
- Contracts are signed with an increasing number of countries: Brazil, Indonesia, Guyana, Ethiopia, Vietnam, Mexico, Tanzania, Congo.
- **Simple contracts**: Rates are harmonized and constant: 5 USD/ton avoided CO2, for every unit of deforestation less than some (negotiated) benchmark
- Limited success so far / Too early to judge

• How should we conserve Nature?

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

- How should we conserve Nature?
 - Tropical forests are disappearing

・ロト ・回ト ・ヨト ・ヨ

- How should we conserve Nature?
 - Tropical forests are disappearing
 - Fossil fuel should be kept in the ground

< ∃ >

- How should we conserve Nature?
 - Tropical forests are disappearing
 - Fossil fuel should be kept in the ground
 - We may have to compensate the owners/users....

- How should we conserve Nature?
 - Tropical forests are disappearing
 - Fossil fuel should be kept in the ground
 - We may have to compensate the owners/users....
 - ...but who/how/when/where?

• How should we conserve Nature?

- Tropical forests are disappearing
- Fossil fuel should be kept in the ground
- We may have to compensate the owners/users....
- ...but who/how/when/where?

We don't know.

- How should we conserve Nature?
 - Tropical forests are disappearing
 - Fossil fuel should be kept in the ground
 - We may have to compensate the owners/users....
 - ...but who/how/when/where?
- We don't know.
- First (?) paper on how to contract on slowing resource depletion. (well...not yet a paper...but in progress)

Literature (preliminary)

• Hotelling '31: Optimal depletion of exhaustible resource

Image: A match a ma

- Hotelling '31: Optimal depletion of exhaustible resource
- Segal '99: Contract theory (with externalities)

- Hotelling '31: Optimal depletion of exhaustible resource
- Segal '99: Contract theory (with externalities)
- Part of my research agenda on conservation

- Hotelling '31: Optimal depletion of exhaustible resource
- Segal '99: Contract theory (with externalities)
- Part of my research agenda on conservation
 - Buy Coal (JPE '12): Optimal climate policy is to pay for conservation

- Hotelling '31: Optimal depletion of exhaustible resource
- Segal '99: Contract theory (with externalities)
- Part of my research agenda on conservation
 - Buy Coal (JPE '12): Optimal climate policy is to pay for conservation
 - Conservation Contracts and Political Regimes (w. Mideksa, ReStud '17): How to contract on conservation in a static (political economy) model?

- Hotelling '31: Optimal depletion of exhaustible resource
- Segal '99: Contract theory (with externalities)
- Part of my research agenda on conservation
 - Buy Coal (JPE '12): Optimal climate policy is to pay for conservation
 - Conservation Contracts and Political Regimes (w. Mideksa, ReStud '17): How to contract on conservation in a static (political economy) model?
 - Market for Conservation and Other Hostages (JET '16): If expected to pay, seller conserves. This makes it tempting to postpone payments

- Hotelling '31: Optimal depletion of exhaustible resource
- Segal '99: Contract theory (with externalities)
- Part of my research agenda on conservation
 - Buy Coal (JPE '12): Optimal climate policy is to pay for conservation
 - Conservation Contracts and Political Regimes (w. Mideksa, ReStud '17): How to contract on conservation in a static (political economy) model?
 - Market for Conservation and Other Hostages (JET '16): If expected to pay, seller conserves. This makes it tempting to postpone payments
 - Today: dynamic model of contracting in the presence of externalities

- A Model of Extraction
- The First Best
- The Equilibrium
- Generalizations
- Policies
- Conclusions

э

Image: A match a ma

• Resource owner (agent) $i \in \{1, ..., n\}$ owns stock y_i^0 and extracts x_i^t

Image: A matrix

- Resource owner (agent) $i \in \{1, ..., n\}$ owns stock y_i^0 and extracts x_i^t
- Each stock is exhaustible: $y_i^{t+1} = y_i^t x_i^t$

(日) (同) (三) (三)

- Resource owner (agent) $i \in \{1, ..., n\}$ owns stock y_i^0 and extracts x_i^t
- Each stock is exhaustible: $y_i^{t+1} = y_i^t x_i^t$
- The market is common:

$$p^t = b - ax^t$$
, where $x^t \equiv \sum_i x_i^t$

(日) (同) (三) (三)

- Resource owner (agent) $i \in \{1, ..., n\}$ owns stock y_i^0 and extracts x_i^t
- Each stock is exhaustible: $y_i^{t+1} = y_i^t x_i^t$
- The market is common:

$$p^{t} = b - ax^{t}$$
, where $x^{t} \equiv \sum_{i} x_{i}^{t}$

• Utilities are transferable:

$$u_i^t = p^t x_i^t + s_i^t$$

(日) (同) (日) (日)

- Resource owner (agent) $i \in \{1, ..., n\}$ owns stock y_i^0 and extracts x_i^t
- Each stock is exhaustible: $y_i^{t+1} = y_i^t x_i^t$
- The market is common:

$$p^{t} = b - ax^{t}$$
, where $x^{t} \equiv \sum_{i} x_{i}^{t}$

• Utilities are transferable:

$$u_i^t = p^t x_i^t + s_i^t$$

• The principal prefers conservation

$$u_0^t = -ex^t + w \frac{a}{2} (x^t)^2 - s^t$$
, where $s^t \equiv \sum_i s_i^t$

Framstad & Harstad (University of Oslo)

- Resource owner (agent) $i \in \{1, ..., n\}$ owns stock y_i^0 and extracts x_i^t
- Each stock is exhaustible: $y_i^{t+1} = y_i^t x_i^t$
- The market is common:

$$p^{t} = b - ax^{t}$$
, where $x^{t} \equiv \sum_{i} x_{i}^{t}$

• Utilities are transferable:

$$u_i^t = p^t x_i^t + s_i^t$$

The principal prefers conservation

$$u_0^t = -ex^t + w \frac{a}{2} (x^t)^2 - s^t$$
, where $s^t \equiv \sum_i s_i^t$

• Common discount factor $\delta \in [0, 1]$

• Timing: In each period, the principal offers contracts, then agents extract.

Image: A math a math

- Timing: In each period, the principal offers contracts, then agents extract.
- Contracts: $\mathbf{s}^{t}(\mathbf{x}^{t})$, $\mathbf{x}^{t} = (x_{1}^{t}, ..x_{n}^{t})$, $\mathbf{s}^{t}(\mathbf{x}^{t}) = (s_{1}^{t}(\mathbf{x}^{t}), ..s_{n}^{t}(\mathbf{x}^{t})) \geq 0$.

- Timing: In each period, the principal offers contracts, then agents extract.
- Contracts: $\mathbf{s}^{t}(\mathbf{x}^{t})$, $\mathbf{x}^{t} = (x_{1}^{t}, ..x_{n}^{t})$, $\mathbf{s}^{t}(\mathbf{x}^{t}) = (s_{1}^{t}(\mathbf{x}^{t}), ..s_{n}^{t}(\mathbf{x}^{t})) \geq 0$.
- Equilibrium refinement: Markov-perfect equilibrium (MPE)

- Timing: In each period, the principal offers contracts, then agents extract.
- Contracts: $\mathbf{s}^{t}(\mathbf{x}^{t})$, $\mathbf{x}^{t} = (x_{1}^{t}, ..x_{n}^{t})$, $\mathbf{s}^{t}(\mathbf{x}^{t}) = (s_{1}^{t}(\mathbf{x}^{t}), ..s_{n}^{t}(\mathbf{x}^{t})) \geq 0$.
- Equilibrium refinement: Markov-perfect equilibrium (MPE)
- Starting assumptions (will be relaxed):

- Timing: In each period, the principal offers contracts, then agents extract.
- Contracts: $\mathbf{s}^{t}(\mathbf{x}^{t})$, $\mathbf{x}^{t} = (x_{1}^{t}, ..x_{n}^{t})$, $\mathbf{s}^{t}(\mathbf{x}^{t}) = (s_{1}^{t}(\mathbf{x}^{t}), ..s_{n}^{t}(\mathbf{x}^{t})) \geq 0$.
- Equilibrium refinement: Markov-perfect equilibrium (MPE)
- Starting assumptions (will be relaxed):
 - Outside option is $x_i^t = y_i^t$

- Timing: In each period, the principal offers contracts, then agents extract.
- Contracts: $\mathbf{s}^{t}(\mathbf{x}^{t})$, $\mathbf{x}^{t} = (x_{1}^{t}, ..x_{n}^{t})$, $\mathbf{s}^{t}(\mathbf{x}^{t}) = (s_{1}^{t}(\mathbf{x}^{t}), ..s_{n}^{t}(\mathbf{x}^{t})) \geq 0$.
- Equilibrium refinement: Markov-perfect equilibrium (MPE)
- Starting assumptions (will be relaxed):
 - Outside option is $x_i^t = y_i^t$
- Reasonable if:

$$y_i^t < \widetilde{y} \equiv (1-\delta) b/2a.$$

・ロト ・四ト ・ヨト ・ヨト

Proposition

• With perfect competition

Proposition

Framstad & Harstad (University of Oslo)

イロト イポト イヨト イヨ

Proposition

- With perfect competition
- **9** Sequence: Extract all stocks at the same time

Proposition

Framstad & Harstad (University of Oslo)

-

Image: A math a math

Proposition

- With perfect competition
- **Sequence:** Extract all stocks at the same time
- Steady state: Extract everything

Proposition

Image: A match a ma

Proposition

- With perfect competition
- **9** Sequence: Extract all stocks at the same time
- Steady state: Extract everything
- **Speed:** Marginal profit increases exponentially

Proposition

Proposition

- With perfect competition
- **Sequence:** Extract all stocks at the same time
- Steady state: Extract everything
- **Speed:** Marginal profit increases exponentially

Proposition

The first best

- ∢ ศ⊒ ▶

- ∢ ∃ ▶
0. Benchmarks

Proposition

- With perfect competition
- **9** Sequence: Extract all stocks at the same time
- Steady state: Extract everything
- **Speed:** Marginal profit increases exponentially

Proposition

- The first best
- **Sequence:** Given x^t , x_i^t is irrelevant

• • • • • • • • • • • •

0. Benchmarks

Proposition

- With perfect competition
- **9** Sequence: Extract all stocks at the same time
- Steady state: Extract everything
- **Speed:** Marginal profit increases exponentially

Proposition

- The first best
- Sequence: Given x^t, x^t_i is irrelevant
 Steady state: y^T ≡ ∑_i y^T_i = 0 if b > e, y^T = y⁰ if b < e.

Framstad & Harstad (University of Oslo)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

0. Benchmarks

Proposition

- With perfect competition
- Sequence: Extract all stocks at the same time
- Steady state: Extract everything
- **Speed:** Marginal profit increases exponentially

Proposition

- The first best
- **Sequence:** Given x^t , x_i^t is irrelevant
- **2** Steady state: $y^T \equiv \sum_i y_i^T = 0$ if b > e, $y^T = y^0$ if b < e.
- Speed: Marginal social revenue increases exponentially

イロト イヨト イヨト

Proposition

• Only one stock is extracted from at each time

- Only one stock is extracted from at each time
- The stock with the smallest size is depleted first

- Only one stock is extracted from at each time
- The stock with the smallest size is depleted first
- Intuition: By increasing x_i^t , every other s_i^t can be reduced by ay_i^t .

- Only one stock is extracted from at each time
- The stock with the smallest size is depleted first
- Intuition: By increasing x_i^t , every other s_i^t can be reduced by ay_i^t .
- This cost-saving is largest when $\sum_{j \neq i} y_j^t$ is largest, i.e., when y_i^t is small.

Proposition

- Only one stock is extracted from at each time
- The stock with the smallest size is depleted first
- Intuition: By increasing x_i^t , every other s_i^t can be reduced by ay_i^t .
- This cost-saving is largest when $\sum_{j \neq i} y_j^t$ is largest, i.e., when y_i^t is small.
- In steady state, $\sum_i s_i^t = \sum_i y_i^t (b ay_i^t)$ is concave. Thus, it is more expensive to compensate a *large* number of wannabe monopolists, than to compensate one big

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

- Only one stock is extracted from at each time
- The stock with the smallest size is depleted first
- Intuition: By increasing x_i^t , every other s_i^t can be reduced by ay_i^t .
- This cost-saving is largest when ∑_{j≠i} y_j^t is largest, i.e., when y_i^t is small.
- In steady state, $\sum_i s_i^t = \sum_i y_i^t (b ay_i^t)$ is concave. Thus, it is more expensive to compensate a *large* number of wannabe monopolists, than to compensate one big
- Can order according to size, $y_1^0 \ge y_2^0 \ge ... \ge y_n^0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

• A unique steady state is reached in finite time T.

Proposition

• A unique steady state is reached in finite time T.

• If
$$b > e$$
, $y^T = 0$, as in the first best

-

- A 🖃

- A unique steady state is reached in finite time T.
- If b > e, $y^T = 0$, as in the first best
- If b < e, the i largest stocks are conserved where i satisfies

$$a\sum_{j=1}^{i-1}y_j^0\leq e-b\leq a\sum_{j=1}^iy_j^0$$

Proposition

- A unique steady state is reached in finite time T.
- If b > e, $y^T = 0$, as in the first best
- If b < e, the i largest stocks are conserved where i satisfies

$$a\sum_{j=1}^{i-1}y_j^0\leq e-b\leq a\sum_{j=1}^iy_j^0$$

With a large number of small stocks (y_j → 0), the steady-state conservation level is

$$y^T = \max\left\{0, \frac{e-b}{a}\right\}.$$

(日) (同) (三) (三)

Figure: The largest stocks are conserved, while the smallest stocks are depleted.

Proposition

• For any two consecutive periods, we have:

$$\left[b - e - a(2 - w)x^{t}\right] + a\sum_{i=1}^{i-1} y_{i}^{0} = \delta\left[b - e - a(2 - w)x^{t+1}\right]$$

/□ ▶ 《 ⋽ ▶ 《 ⋽

Proposition

• For any two consecutive periods, we have:

$$\left[b - e - a(2 - w)x^{t}\right] + a\sum_{i=1}^{i-1} y_{i}^{0} = \delta\left[b - e - a(2 - w)x^{t+1}\right]$$

• The marginal social surplus increases more than exponentially in time.

Proposition

• For any two consecutive periods, we have:

$$\left[b - e - a(2 - w)x^{t}\right] + a\sum_{i=1}^{i-1} y_{i}^{0} = \delta\left[b - e - a(2 - w)x^{t+1}\right]$$

The marginal social surplus increases more than exponentially in time.
 The speed is particularly large when Σⁱ⁻¹_{i=1} y⁰_i is large

Proposition

• For any two consecutive periods, we have:

$$\left[b-e-a(2-w)x^{t}\right]+a\sum_{i=1}^{i-1}y_{i}^{0}=\delta\left[b-e-a(2-w)x^{t+1}
ight]$$

The marginal social surplus increases more than exponentially in time.
 The speed is particularly large when Σⁱ⁻¹_{i=1} y⁰_i is large

• The outcome is first best if
$$n = 1$$

Proposition

• For any two consecutive periods, we have:

$$\left[b-e-a(2-w)x^{t}\right]+a\sum_{i=1}^{i-1}y_{i}^{0}=\delta\left[b-e-a(2-w)x^{t+1}
ight]$$

- The marginal social surplus increases more than exponentially in time.
 The speed is particularly large when Σⁱ⁻¹_{i=1} y⁰_i is large
- The outcome is first best if n = 1
- Otherwise, the speed of extraction is too high.

• Suppose marginal extraction costs are c_i and environmental harm e_i .

• Suppose marginal extraction costs are c_i and environmental harm e_i.

Proposition

Sequence: j should be extracted from first if c_j + e_j < c_i + e_i, but will be, in equilibrium, iff:

$$y_i - y_j > (1 - \delta) \frac{(c_j + e_j) - (c_i + e_j)}{a}$$

• Suppose marginal extraction costs are c_i and environmental harm e_i.

Proposition

Sequence: j should be extracted from first if c_j + e_j < c_i + e_i, but will be, in equilibrium, iff:

$$y_i - y_j > (1 - \delta) \frac{(c_j + e_j) - (c_i + e_i)}{a}$$

Steady state: Nothing (more) should be extracted from i if c_i + e_j > b, but nothing will be, in equilibrium, iff:

$$e_i+c_i>b+a\sum_{j\neq i}y_j^{ au}.$$

• Suppose marginal extraction costs are c_i and environmental harm e_i.

Proposition

Sequence: j should be extracted from first if c_j + e_j < c_i + e_i, but will be, in equilibrium, iff:

$$y_i - y_j > (1 - \delta) \frac{(c_j + e_j) - (c_i + e_i)}{a}$$

Steady state: Nothing (more) should be extracted from i if c_i + e_j > b, but nothing will be, in equilibrium, iff:

$$e_i+c_i>b+a\sum_{j\neq i}y_j^{ au}.$$

The equilibrium speed is given by:

$$b - e_i - c_i - a(2 - w) x^t + a \sum_{\substack{i=1 \\ \text{Visc}}}^{i-1} y_i^t = \delta \left[b - e_i - c_i - a(2 - w) x^{t+1} \right]$$
ramstad & Harstad (University of Oslo) Conservation Contracts January 2017 15 / 29

Extensions

Framstad & Harstad (University of Oslo)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Country\Year	Forest Cover	Deforestation	Illegal logging
	2000 (1000 ha)	2000-2010	in 2013
Brazil	545943	5%	> 50%
Cameroon	22116	10%	65%
Ghana	6094	19%	70%
Indonesia	99409	5%	60%
Laos	16433	6%	80%
Malaysia	21591	5%	35%
Papua New Guinea	30133	5%	70%
Rep. Congo	22556	1%	70%

3

イロト イヨト イヨト イヨト

Enforcement Expenditures

Framstad & Harstad (University of Oslo)

January 2017 18 / 29

- If y_i^t x_i^t is conserved, the profit from illegal logging is p^t at each unit of the forest.
- Expected penalty must be at least as large as the profit
- The cost of monitoring is thus $\alpha p^t (y_i^t x_i^t)$ for some $\alpha \ge 0$. So,

$$u_i^t = \beta p^t x_i^t - \alpha p^t \left(y_i^t - x_i^t \right) - c_i x_i^t + s_i^t,$$

- This is the model of Harstad and Mideksa (ReStud, '17)
- (That paper also studies contracting with a subset of agents, and endogenizes institutions/(de)centralization. But the model is static..)
- All results above continue to hold, qualitatively.

- Above we have assumed that the outside option is $x_i^t = y_i^t$
- Unreasonable unless each period long/ δ is small
- In steady state, each i is a potential monopolist and would like to extract f_i (y^t_i) if ignoring the contract.
- Suppose outside option is indeed some increasing $f(y_i^t) \in [0, y_i^t]$.
- Results above tend to hold, qualitatively.

Proposition

• The smallest is extracted first iff $\alpha < \alpha_1$

- **1** The smallest is extracted first iff $\alpha < \alpha_1$
- **2** Too much is extracted in steady state iff $\alpha < \alpha_2$

- The smallest is extracted first iff $\alpha < \alpha_1$
- **②** Too much is extracted in steady state iff $\alpha < \alpha_2$
- **(**) The extraction speed is too fast iff $\alpha < \alpha_3$

- The smallest is extracted first iff $\alpha < \alpha_1$
- **②** Too much is extracted in steady state iff $\alpha < \alpha_2$
- **(**) The extraction speed is too fast iff $\alpha < \alpha_3$
 - For larger *α*, the results are overturned.

Robustness: The Crucial Assumptions

Extract from *i* first iff:

$$(c_j + e_j) - (c_i + e_i) > \frac{a}{1 - \delta} \begin{bmatrix} \beta \left[H(y_i) - H(y_j) \right] \\ -(\alpha + \beta) \left[H(F(y_i)) - H(F(y_j)) \right] \end{bmatrix},$$

where $H(y_i) = z - \delta F_i(z)$. The r.h.s. is positive if $y_i > y_j$ iff

$$\frac{\alpha}{\beta} < \alpha_1 = \frac{H(y_i) - H(y_j)}{H(F(y_i)) - H(F(y_j))} - 1.$$

Too much is extracted from i iff:

$$\frac{\alpha}{\beta} < \alpha_{2} = \frac{\sum_{j \neq i} y_{j} - F(y_{j})}{\sum_{j \neq i} F(y_{j})} = \frac{\sum_{j \neq i} y_{j}}{\sum_{j \neq i} F(y_{j})} - 1 > 0$$

The speed is too large iff:

$$\frac{\alpha}{\beta} < \alpha_{3} = \frac{1}{(1-\delta)} \left[\frac{\sum_{j \neq i} y_{j}^{t}}{\sum_{j \neq i} F_{j} \left(y_{j}^{t} \right)} - 1 \right]$$

Framstad & Harstad (University of Oslo)

Current Research: Dynamics

• If strong/coal: conserves everything in the largest district

• If weak/forests/illegal: conserves everything in the smallest district

- It might indeed be efficient to offer contracts to the largest tropical forest owners, such as Brazil and Indonesia, according to this theory
- However, the optimal contracts are highly asymmetric
- Harmonized contracts achieve too little conservation at a too large cost.

Policies and Comparative Static

• With *m* similar buyers with demand function $p^t = b - a_m x_m^t$, aggregate demand is $p^t = b - ax^t$ where $1/a = \sum_m 1/a_m$

(a)
Policies and Comparative Static

- With *m* similar buyers with demand function $p^t = b a_m x_m^t$, aggregate demand is $p^t = b - ax^t$ where $1/a = \sum_m 1/a_m$
- If some buyer(s) boycott, a increases

- With *m* similar buyers with demand function $p^t = b a_m x_m^t$, aggregate demand is $p^t = b - ax^t$ where $1/a = \sum_m 1/a_m$
- If some buyer(s) boycott, a increases
- A larger *a* increases the difference to the first best in all results

- With *m* similar buyers with demand function $p^t = b a_m x_m^t$, aggregate demand is $p^t = b - ax^t$ where $1/a = \sum_m 1/a_m$
- If some buyer(s) boycott, a increases
- A larger *a* increases the difference to the first best in all results
- Intuition: Steeper demand curve makes it easy/tempting for the contract-provider to reduce the price.

- With *m* similar buyers with demand function $p^t = b a_m x_m^t$, aggregate demand is $p^t = b - ax^t$ where $1/a = \sum_m 1/a_m$
- If some buyer(s) boycott, a increases
- A larger *a* increases the difference to the first best in all results
- Intuition: Steeper demand curve makes it easy/tempting for the contract-provider to reduce the price.
- Thus, a boycott has the following consequences for small α :

- With *m* similar buyers with demand function $p^t = b a_m x_m^t$, aggregate demand is $p^t = b - ax^t$ where $1/a = \sum_m 1/a_m$
- If some buyer(s) boycott, a increases
- A larger *a* increases the difference to the first best in all results
- Intuition: Steeper demand curve makes it easy/tempting for the contract-provider to reduce the price.
- Thus, a boycott has the following consequences for small α :
 - Extraction may switch from cleanest/less expensive to smallest

- With *m* similar buyers with demand function $p^t = b a_m x_m^t$, aggregate demand is $p^t = b - ax^t$ where $1/a = \sum_m 1/a_m$
- If some buyer(s) boycott, a increases
- A larger *a* increases the difference to the first best in all results
- Intuition: Steeper demand curve makes it easy/tempting for the contract-provider to reduce the price.
- Thus, a boycott has the following consequences for small α :
 - Extraction may switch from cleanest/less expensive to smallest
 - Steady state conservation decreases

(日) (周) (三) (三)

- With *m* similar buyers with demand function $p^t = b a_m x_m^t$, aggregate demand is $p^t = b - ax^t$ where $1/a = \sum_m 1/a_m$
- If some buyer(s) boycott, a increases
- A larger *a* increases the difference to the first best in all results
- Intuition: Steeper demand curve makes it easy/tempting for the contract-provider to reduce the price.
- Thus, a boycott has the following consequences for small α :
 - Extraction may switch from cleanest/less expensive to smallest
 - Steady state conservation decreases
 - Speed of extraction increases

(日) (周) (三) (三)

With commitment, payments can be delayed This relaxes incentive constraints in the meanwhile ...and then, there is no reason to raise x_i^t to lower s_j^t Outcome becomes first-best (after the very first period) If principal can ask for money up front, first-best also in first period. Long-term contracts lead to slower extraction and more conservation.

Framstad & Harstad (University of Oslo)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• The world is likely to have to pay for the conservation of resources

3

Image: A match a ma

- The world is likely to have to pay for the conservation of resources
- This paper studies how to contract on resource depletion

Image: A matrix

- The world is likely to have to pay for the conservation of resources
- This paper studies how to contract on resource depletion
- The first-best is to extract the least expensive/polluting resource first

- The world is likely to have to pay for the conservation of resources
- This paper studies how to contract on resource depletion
- The first-best is to extract the least expensive/polluting resource first
- The equilibrium is to extract from the smallest stocks first

- The world is likely to have to pay for the conservation of resources
- This paper studies how to contract on resource depletion
- The first-best is to extract the least expensive/polluting resource first
- The equilibrium is to extract from the smallest stocks first
- 2 Too little is conserved

- The world is likely to have to pay for the conservation of resources
- This paper studies how to contract on resource depletion
- The first-best is to extract the least expensive/polluting resource first
- The equilibrium is to extract from the smallest stocks first
- 2 Too little is conserved
- Extraction is too fast in equilibrium

- The world is likely to have to pay for the conservation of resources
- This paper studies how to contract on resource depletion
- The first-best is to extract the least expensive/polluting resource first
- The equilibrium is to extract from the smallest stocks first
- 2 Too little is conserved
- Extraction is too fast in equilibrium
 - Results are first derived in a sales-driven model

- The world is likely to have to pay for the conservation of resources
- This paper studies how to contract on resource depletion
- The first-best is to extract the least expensive/polluting resource first
- The equilibrium is to extract from the smallest stocks first
- 2 Too little is conserved
- Extraction is too fast in equilibrium
 - Results are first derived in a sales-driven model
 - May be overturned in a protection-cost driven model

- The world is likely to have to pay for the conservation of resources
- This paper studies how to contract on resource depletion
- The first-best is to extract the least expensive/polluting resource first
- The equilibrium is to extract from the smallest stocks first
- 2 Too little is conserved
- Extraction is too fast in equilibrium
 - Results are first derived in a sales-driven model
 - May be overturned in a protection-cost driven model
 - Conserve the largest coal field!

- The world is likely to have to pay for the conservation of resources
- This paper studies how to contract on resource depletion
- The first-best is to extract the least expensive/polluting resource first
- The equilibrium is to extract from the smallest stocks first
- 2 Too little is conserved
- Extraction is too fast in equilibrium
 - Results are first derived in a sales-driven model
 - May be overturned in a protection-cost driven model
 - Conserve the largest coal field!
 - Conserve the smallest forest?

- The world is likely to have to pay for the conservation of resources
- This paper studies how to contract on resource depletion
- The first-best is to extract the least expensive/polluting resource first
- The equilibrium is to extract from the smallest stocks first
- 2 Too little is conserved
- Extraction is too fast in equilibrium
 - Results are first derived in a sales-driven model
 - May be overturned in a protection-cost driven model
 - Conserve the largest coal field!
 - Conserve the smallest forest?
 - Boycotts makes the equilibrium worse.

Robustness: Non-negative side payments

- Going back in time, x^t increases and p^t decreases
- This reduces the temptation to "extract it all" and waiting becomes more attractive
- It is possible that $s_i^t = 0$ is sufficient
- When $s_j^t = 0$, there is less need to raise x_i^t , since s_j^t cannot be reduced further.
- If s_j^t = 0 for many agents, conservation will take place in any case, and the principal may be better off waiting before entering the game
- This is the opposite of the "Green Paradox"
- Equilibrium may be in mixed strategies (Harstad '16).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >