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Abstract

The discounted utilitarian criterion for infinite horizon social choice has

been criticized for treating generations unequally. We propose an ex-

tended rank-discounted utilitarian (ERDU) criterion instead. The cri-

terion amounts to discounted utilitarianism on non-decreasing streams,

but it treats all generations impartially: discounting becomes the mere

expression of intergenerational inequality aversion. We show that more

inequality averse ERDU societies have higher social discount rates when

future generations are better off. We apply the ERDU approach in two

benchmark economic growth models and prove that it promotes sustain-

able policies that maximize discounted utilitarian welfare.
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1 Introduction

The most popular objective function used to determine optimal policies in infi-

nite horizon models is the discounted utilitarian criterion,

∑
t∈N
βt−1u(xt) , (1)

where 0 < β < 1 is the utility discount factor and xt is the consumption of

generation t. This criterion has been heavily criticized on the ground that it

treats successive generations differently. Many economists in the utilitarian tra-

dition have denounced this deviation from the ideal of equal treatment of all

individuals. For instance, Frank Ramsey famously described discounting as a

“practice which is ethically indefensible and arises merely from the weakness of

the imagination” [38, p. 543]. Among others, Pigou [36] and Harrod [30] have

also stigmatized utility discounting.

Drawing on these criticisms, a prolific literature has studied whether it would

be possible to combine the principle of procedural equity (equal treatment of all

generations) with the Pareto principle in the context of infinite consumption

streams. Although some positive results have been obtained, most of this liter-

ature stemming from Diamond [21] has reached negative conclusions [8, 52, 32].

At the same time, several authors have pointed out the distributional con-

sequences of not discounting future generations’ utility. Mirrlees [33] computed

optimal intertemporal consumption patterns in plausible economic models us-

ing the undiscounted utilitarian criterion (the so-called Ramsey criterion). He

observed that present generations should save up to 50 % of their net income for

the sake of future generations. The finding was best summarized by philosopher

John Rawls who declared that “the utilitarian doctrine may direct us to demand

heavy sacrifices of the poorer generations for the sake of greater advantages for

the later ones that are far better off” [39, p. 253]. He went on to say that “these

consequences can be to some degree corrected by discounting the welfare of those

living in the future” [39, p. 262].

Although Rawls did not endorse discounted utilitarianism (for the very rea-
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son that its failure to comply with procedural equity “has no intrinsic ethical

appeal” [39, p. 262]), most of the economic literature has adopted it as the lesser

of two evils. Yet the conflict between procedural equity and distributional equity

in a utilitarian context has remained unsolved.

The above distributional justification for discounted utilitarianism critically

relies on the assumption that future generations are better off in the implemented

intergenerational allocation. However, as demonstrated by Dasgupta and Heal

[19, Chapter 10], in certain technological contexts like the Dasgupta-Heal-Solow

model of capital accumulation and resource depletion, discounted utilitarianism

implies that generations in the distant future will be worse off than the present

[see also 3, Section V]. Undiscounted utilitarianism may then yield more satis-

factory recommendations than discounted utilitarianism. The key point is that,

for utility discounting to prevent high sacrifices for the sake of others that are

better off, it is critical that generations’ position in time corresponds to their

rank in well-being.

If we retain the interpretation of the utility discount factor as preventing high

sacrifices from the poor, it looks closely related to the social weights used in rank-

dependent measures of social welfare. An example of a rank-dependent criterion

is the Gini social welfare function. Generalizations thereof have been proposed

by Weymark [50] and Ebert [24]. The main feature of rank-dependent social

welfare functions is that they put more weight on the utility of the worse off.

Rank-dependent weights simply represent the society’s aversion to inequality.

In this paper, we propose to apply rank-dependent methods to intergener-

ational justice.1 More precisely, we put forward the proposal that the social

observer use an element from the class of rank-discounted utilitarian social wel-

fare functions: ∑
r∈N

βr−1u(x[r]) .

Here, the consumption stream (x[1], x[2], . . . , x[r], . . . ) is a reordering of the con-

sumption stream (x1, x2, . . . , xt, . . . ) such that x[1] ≤ x[2] ≤ · · · ≤ x[r] ≤ · · · .
1Alternatively, the analysis could have been motivated as an extension of known results on

finite rank-dependent social evaluation to the infinite case. For a comparison of our analysis
with relevant contributions in this alternative setting, see subsection 3.2.
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The scalar β is a rank utility discount factor rather than a time utility discount

factor and therefore does not entail partiality in favor of current generations.

However, an obstacle to applying rank-discounted utilitarianism in the con-

text of infinite consumption streams is that some consumption streams cannot

be reordered into a non-decreasing stream. The stream

(1, 0, 0, 0, . . . , 0, . . . )

is one example, where the first location with consumption 1 will end up at some

finite location in any reordered stream. We resolve this problem by showing how

the rank-discounted utilitarian approach can be extended in a natural manner to

the full domain by including also consumption streams that cannot be reordered

into non-decreasing streams.

This extended rank-discounted utilitarian approach coincides with discounted

utilitarianism on the set of non-decreasing consumption streams. Utility dis-

counting is then justified as an expression of inequality aversion when future

generations are better off. However, and contrary to the discounted utilitar-

ian approach, extended rank-discounted utilitarianism also satisfies procedural

equity: two intergenerational consumption streams that are identical up to a per-

mutation are deemed equally good. Furthermore, it satisfies the Strong Pareto

principle on the the domain of streams that can be reordered into non-decreasing

streams. Hence, the extended rank-discounted utilitarian approach overcomes

the impossibility results in the tradition of Diamond [21] on this domain.

In Section 3, we offer a complete characterization of extended rank-discounted

utilitarian preferences. This characterization is clearly related to Koopmans’

[31] characterization of discounted utilitarian preferences. The difference is that

his separability and stationarity axioms are imposed on non-decreasing streams

only. Separability axioms on ordered streams are common in the theory of deci-

sion under risk [37, 51], in the theory of decision under uncertainty [26, 42, 47]

and in the theory of inequality measurement [50, 24]. With the exception of

Rébillé [40], they have never been used in the theory of intertemporal decision

making yet. They permit utilities to be weighted according to their rank in a
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distribution, which is exactly what rank-discounted utilitarian criteria do.

In Section 4, we provide conditions for a social observer using an extended

rank-discounted utilitarian criterion to be inequality averse, in the sense that she

always prefers a consumption stream obtained from another through a Pigou-

Dalton redistributive transfer. We also provide conditions for comparing two

social observers in terms of inequality aversion. When the social observer has

homothetic preferences, these conditions are very simple: she needs to discount

ranks more and to use a more concave utility function.

Distributional equity in the spirit of Atkinson [7] has been addressed in

many papers in the literature on intergenerational equity [see, e.g., 10, 13, 29].

However, this literature did not emphasize the effects of inequality aversion

on society’s choice. We claim that inequality aversion is a central notion for

evaluating intergenerational problems.

In Section 5, we explore the implications of rank-discounted utilitarian social

welfare functions for the social discount rate. The highly publicized debates on

the social discount rate in the context of climate change have highlighted its

importance for policy evaluation. An ‘ethical’ view has suggested low values

for the social discount rate, on the ground that time utility discounting violates

procedural equity. Rank-discounted utilitarianism suggests an alternative ‘ethi-

cal’ view where rank utility discounting is an expression of society’s aversion to

inequality.

Indeed, we prove that a more inequality averse social observer always dis-

count the future more, provided that future generations are better off. This

has important policy implications. If future generations are expected to be

better off in spite of climate change, then a more inequality averse extended

rank-discounted utilitarian social observer will agree with the recommendation

of Nordhaus [35] to have gradual emission control policies rather than that of

Stern [44] who calls for immediate action. However, since rank-discounting de-

pends on a generation’s rank in the intergenerational distribution rather than its

position in time, if future generations are expected to be less well-off because of

climate change, then the social discount rate should on the contrary be negative,

and strong action should be undertaken to mitigate climate change.
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In Section 6, we show that the extended rank-discounted utilitarian approach

can be applied to find the optimal growth policy in two benchmark models: the

Ramsey growth model and the Dasgupta-Heal-Solow model of capital accumu-

lation and resource depletion. Also in these applications, inequality aversion

plays a crucial role. Indeed, in a more inequality averse society, growth is pre-

vented for a greater set of initial conditions: if the initial stock of capital is

high enough, the society prefers to maintain consumption forever. Then more

inequality aversion yields greater equality and lower long-run consumption.

To reach these conclusions, we start in Section 2 by introducing the frame-

work of our analysis.

2 The framework

Let N denote as usual the set of natural numbers {1, 2, 3, . . . }. Let R denote

the set of real numbers, R+ the set of nonnegative real numbers, and R++ the

set of positive real numbers.

Denote by x = (x1, x2, . . . , xt, . . . ) an infinite stream (or allocation), where

xt ∈ R+ is a one-dimensional indicator of the well-being of generation t. We

refer to this indicator as the consumption of generation t, restrict attention to

allocations consisting of bounded consumption streams, and denote by

X =
{
x = (x1, . . . , xt, . . . ) ∈ RN

+ : suptxt < +∞
}

the set of possible allocations.

For x, y ∈ X, write x ≥ y whenever xt ≥ yt for all t ∈ N; write x > y

if x ≥ y and x 6= y; and write x � y whenever xt > yt for all t ∈ N. For

any T ∈ N and x, y ∈ X, denote by xTy the consumption stream z such that

zt = xt for all t ≤ T and zt = yt for all t > T . For any x ∈ R+ and y ∈ X,

denote by (x,y) the stream (x, y1, y2, . . . ).

Three subsets of X will be of particular interest. First, we introduce the set

of stationary consumption streams, Xc = {xc, x ∈ R+}, where for any x ∈ R+,

xc ∈ X denotes the allocation such that xct = x for all t ∈ N.
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A second subset of X is the set of non-decreasing streams in X. This set is

denoted X+ = {x ∈ X : xt ≤ xt+1,∀t ∈ N}.
The third subset of X, playing a key role in the remainder of the paper, is the

set of allocations, X, whose elements can be permuted to obtain non-decreasing

streams. To introduce X formally, let Π be the set of all permutations on N.

For any π ∈ Π and x ∈ X, let xπ = (xπ(1), xπ(2), . . . , xπ(t), . . . ). The set X is

defined as follows: X = {x ∈ X : ∃π ∈ Π, xπ ∈ X+}.
The following inclusions hold: Xc ⊂ X+ ⊂ X ⊂ X. In a finite setting, X

would be the same as X. In the introduction we have already used the stream

(1, 0, 0, 0, . . . , 0, . . . ) to illustrate why the inclusion is strict in an infinite setting.

To characterize the set X, let `(x) denote lim inft→+∞ xt for any x ∈ X.

Because streams in X are bounded, `(x) is well-defined for all x ∈ X. Write

L(x) = {t ∈ N : xt < `(x)} and denote by |L(x)| the cardinality of L(x).

Proposition 1.

(a) If an allocation x ∈ X satisfies |L(x)| < +∞, then x belongs to X if and

only if xt ≤ `(x) for all t ∈ N.

(b) If an allocation x ∈ X satisfies |L(x)| = +∞, then x belongs to X if and

only if xt < `(x) for all t ∈ N.

Proposition 1 is clearly equivalent to the following lemma.

Lemma 1. An allocation x ∈ X belongs to X if and only if the cardinality of

Λτ (x) = {t ∈ N, t > τ : xt < xτ} is finite for all τ ∈ N.

Proof. If |Λτ (x)| = +∞ for some τ ∈ N, then, for any π ∈ Π, π(τ) < +∞ and

it is impossible that π(t) < π(τ) for all t ∈ Λτ (x). Hence, x /∈ X.

Conversely, assume |Λτ (x)| < +∞ for all τ ∈ N. The set Λ1(x) is finite and

can be re-ordered in non-decreasing order. These coordinate will form the n1

first elements of the ordered stream, with n1 = |Λ1(x)|. And π(1) = n1+1. Then

let τ2 be the first period such that xτ2 ≥ x1. The set Λτ2(x) \Λ1(x) is finite and

can be ordered in non-decreasing order. These will form the n2 next elements

in the ordered stream, with n2 = |Λτ2(x)| − |Λ1(x)|. And π(t2) = n1 + n2 + 2.

Pursuing this procedure leads to an ordered stream. Hence, x ∈ X.
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For x ∈ X, denote by x[ ] = (x[1], x[2], . . . , x[r], . . . ) the non-decreasing alloca-

tion which is a permutation of x; i.e., for some π ∈ Π such that xπ ∈ X+, it holds

that x[r] = xπ(r) for all r ∈ N. Note that the permutation π need not be unique

(if, for instance, xt = xt′ for some t 6= t′), but the resulting non-decreasing

allocation x[ ] is unique. Likewise, for x ∈ X, denote by (x[1], . . . , x[|L(x)|]) the

non-decreasing allocation which is a permutation of the elements of x satisfying

t ∈ L(x). The following notation is useful: rτ (x) = |{t ∈ N : xt < xτ}| + 1 and

r̄τ (x) = |{t ∈ N : xt ≤ xτ}|. Whenever rτ (x) = r̄τ (x) < +∞, rτ (x) is the unique

rank of generation τ in the distribution x. Note that whenever rτ (x) < +∞
(r̄τ (x) < +∞), we have that x[rτ (x)] = xτ (and also x[r̄τ (x)] = xτ ).

A social welfare relation (SWR) on a set X is a binary relation %, where for

any x,y ∈ X, x % y implies that the consumption stream x is deemed socially

at least as good as y. Let ∼ and � denote the symmetric and asymmetric parts

of %. A social welfare function (SWF) representing % is a mapping W : X→ R
with the property that for any x, y ∈ X, W (x) ≥ W (y) if and only if x % y.

3 Axiomatic foundation

The difficulty of combining equal treatment of an infinite number of generations

with sensitivity to the interest of each of these generations has been the topic of

a prolific literature since the seminal contribution by Diamond [21]. Although

complete social preferences over infinite streams that combine equal treatment

with Paretian sensitivity exist [45], they cannot be represented [8] nor explicitly

described [52, 32].

In this section we show how the set of ordered streams serves to overcome this

impossibility. In subsection 3.1, we first impose axioms sufficient to ensure nu-

merical representability. Then we impose Paretian, separability and stationarity

axioms, as used to characterize discounted utilitarianism [31], but restricted to

the set of non-decreasing streams. In subsection 3.2, we show how this allows

us to invoke a strong axiom of equal treatment, requiring social indifference not

only for finite permutations (as considered in the literature in the wake of [21]),

but also for infinite permutations. In the concluding subsection 3.3, we show
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that we are still able (i) to retain sensitivity to the interest of any one generation

as long as there is only a finite number of other generations with lower consump-

tion levels, and (ii) to satisfy other ethical axioms proposed in the literature to

protect the interests of future generations.

3.1 Axioms

We first consider axioms sufficient to ensure numerical representability.

Order The relation % is complete, reflexive and transitive on X.

An SWR satisfying Order is called a social welfare order (SWO).

Continuity For any x, y ∈ X, if a sequence x1,x2, . . . ,xk, . . . of allocations in

X is such that limk→∞ supt∈N |xkt − xt| = 0 and, for all k ∈ N, xk % y (resp.

xk - y), then x % y (resp. x - y).

Monotonicity For any x, y ∈ X, if x > y, then x % y.

Monotonicity is implied by the Strong Pareto principle.

We then consider an axiom ensuring some sensitivity to the interests of the

present generation.

Restricted Dominance For any x, y ∈ R+, if x > y, then (x,xc) � (y,xc).

Restricted Dominance is implied by the Strong Pareto principle restricted to the

set of streams that can be reordered into non-decreasing streams:

Restricted Strong Pareto For any x, y ∈ X, if x > y, then x � y.

We now turn to restricted versions of the separability and stationarity axioms

usually invoked to characterize discounted utilitarianism.

Restricted Separable Present For any x, y, x′, y′ ∈ X+ such that (i) xt = x′t

and yt = y′t for all t ∈ {1, 2} and (ii) xt = yt and x′t = y′t for all t ∈ N \ {1, 2},
x % y if and only if x′ % y′.

Restricted Separable Present is Postulate 3′a in Koopmans’ [31] characteriza-

tion of discounted utilitarianism restricted to the set of non-decreasing streams.

We suggest that such a restriction might be supported by ethical intuition. In
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particular, one might accept that the stream (1, 4, 5, 5, 5, . . . ) is socially better

than (2, 2, 5, 5, 5, . . . ), while not accepting that (1, 4, 2, 2, 2, . . . ) is socially bet-

ter than (2, 2, 2, 2, 2, . . . ). It is not obvious that we should treat the conflict

between the worst-off and the second worst-off generation presented by the first

comparison in the same manner as we treat the conflict between the worst-off

and the best-off generation put forward by the second comparison.

Restricted Separable Present follows from the following axiom by setting

T = {1, 2}.

Restricted Separability For any x, y, x′, y′ ∈ X+ and any T ⊂ N such that

(i) xt = x′t and yt = y′t for all t ∈ T and (ii) xt = yt and x′t = y′t for all t ∈ N \T ,

x % y if and only if x′ % y′.

Restricted Separability is closely related to the comonotonic sure-thing principle

that has been introduced in the theory of decision-making under uncertainty [see

26, 42, 47].

Restricted Separable Future For any x, y, x′, y′ ∈ X+ such that (i) xt = x′t

and yt = y′t for all t ∈ N \ {1} and (ii) x1 = y1 and x′1 = y′1, x % y if and only if

x′ % y′.

Restricted Separable Future is Postulate 3b in Koopmans’ [31] characterization

of discounted utilitarianism restricted to the set of non-decreasing streams. It

follows from Restricted Separability by setting T = {2, 3, . . . }.

Restricted Stationarity For any x, y,∈ X+, there exists z ∈ R+ with z ≤
min(x1, y1) such that (z,x) % (z,y) if and only if x % y.

Restricted Stationarity is Koopmans’ [31] stationarity postulate (Postulate 4) re-

stricted to the set of non-decreasing streams. The conjunction of Restricted Sep-

arable Future and Restricted Stationarity is the restriction of Independent Fu-

ture, as used by Asheim, Mitra and Tungodden [6], to the set of non-decreasing

streams.

Finally, we state the strong axiom of procedural equity, requiring social in-

difference with respect to all permutations π ∈ Π.
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Strong Anonymity For any π ∈ Π and x ∈ X, x ∼ xπ.

3.2 Characterization

In this subsection we characterize the class of SWOs satisfying Order, Continuity,

Monotonicity, Restricted Dominance, Restricted Separable Present, Restricted

Separable Future, Restricted Stationarity and Strong Anonymity. As a first step,

we do so within the restricted domain X of allocations that can be reordered

into non-decreasing streams.

Definition 1. An SWR on X is a Rank-Discounted Utilitarian SWO (RDU

SWO) if it is represented by an SWF W : X→ R defined by:

W (x) = (1− β)
∑

r∈N
βr−1u(x[r]), (2)

where 0 < β < 1 is a real number and the function u is continuous and increasing.

Although the RDU criterion can be seen as an infinite extension of families

of single-series Ginis, as axiomatized by Bossert [12], with the Gini weight of

rank r set equal to βr−1, our axiomatization differs from Bossert’s. The recursive

methods that we use are similar to his recursivity property. However, we do not

need the linear homogeneity and translatability properties which are essential

for his result. We rely instead on Restricted Separable Future and Restricted

Stationarity which are taken from intertemporal choice theory.2

Proposition 2. If an SWR % on X satisfies Order, Continuity, Monotonic-

ity, Restricted Dominance, Restricted Separable Present, Restricted Separable

Future, Restricted Stationarity and Strong Anonymity, then it is an RDU SWO.

Proof. See Appendix A for a simplified version of Koopmans’ [31] proof, similar

to the one in Bleichrodt, Rhode and Wakker [11]. The proof is applied to non-

decreasing streams, requiring the use of techniques developed by Wakker [47] for

2Another class of single-series Ginis is the class of single-parameter Ginis axiomatized by
Donaldson and Weymark [22], whose generalization in a continuous framework is presented in
Donaldson and Weymark [23]. The finite population counterparts of the RDU criterion does
not satisfy the principle of population which characterizes single-parameter Ginis.
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additive representation of preferences on rank-ordered sets. Continuity allows

us to extend from a finite number of period to an infinite number of periods

the representation on non-decreasing streams. Strong Anonymity allows us to

extend the representation to the whole set X.

We then turn to the demonstration of the result that this class can be char-

acterized in terms of extended RDU SWOs on the unrestricted domain X.

Definition 2. An SWR on X is an Extended Rank-Discounted Utilitarian SWO

(ERDU SWO) if it is represented by an SWF W : X→ R defined by:

W (x) = u(`(x)) + (1− β)
∑|L(x)|

r=1
βr−1

(
u(x[r])− u(`(x))

)
, (3)

where 0 < β < 1 is a real number and the function u is continuous and increasing.

To investigate how the ERDU SWF W extends the RDU SWF W , define,

for any x ∈ X, x as follows:{
xt = min{xt, `(x)} for all t ∈ N if |L(x)| < +∞,
x is the subsequence of x consisting of all xt with t ∈ L(x) if |L(x)| = +∞.

Proposition 1 implies that, by construction, x belongs to X; therefore, x[ ] is

well-defined. It follows from (2) and (3) that for all x ∈ X,

W (x) = W (x) . (4)

The ERDU SWF W is consistent with the idea of constant rank-dependent

discounting: any generation t with xt > `(x) if |L(x)| < +∞ or xt ≥ `(x)

if |L(x)| = +∞ is infinitely ranked when consumption levels are ordered in a

non-decreasing sequence, in the sense that there are infinitely many generations

t′ with xt′ < xt. Hence, no weight is placed on their marginal consumption.

By Order, Continuity, Monotonicity and Restricted Dominance, for all x ∈ X

there exists a unique scalar xe such that xc
e ∼ x. The scalar xe is an equally

distributed equivalent and it is a representation of %. Hence, under these axioms,
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the SWF W̃ : X→ R given by

W̃ (x) = u(xe) ,

with the function u being continuous and increasing, is well-defined.

Lemma 2. Assume that an SWR % satisfies Order, Continuity, Monotonicity

and Restricted Dominance, and is represented on X by an RDU SWF. Then the

SWR % is represented on X by the SWF W̃ which coincides with W on X.

Proof. An RDU SWF (1 − β)
∑

r∈N β
r−1u(x[r]) where 0 < β < 1 and u is in-

creasing is a representation of the SWO % on X. Since u is increasing, W̃ is a

representation of % on X and, by the definition of the equally distributed equiv-

alent on X, it is such that W̃ (x) = (1− β)
∑

r∈N β
r−1u(x[r]) for all x ∈ X.

Lemma 3. Assume that an SWR % satisfies Monotonicity and Strong Anonymity,

and is represented on X by W and on X by W̃ . Then, for all x ∈ X with

|L(x)| ≥ T ≥ 0,

W̃ (x) ≤ W (xπ(1), xπ(2), . . . , xπ(T ), `(x), `(x), . . . ) ,

where, ∀t ∈ {1, . . . , T}, xπ(t) < `(x).

Proof. Such insensitivity for xt > `(x) is shown in Appendix A.

Lemma 4. Assume that an SWR % satisfies Monotonicity and Strong Anonymity,

and is represented on X by W and on X by W̃ . Then, for all x ∈ X, W̃ (x) =

W (x̄) = W (x).

Proof. This follows from Lemma 3; see Appendix A.

Proposition 3. Assume that an SWR % satisfies Order, Continuity, Mono-

tonicity, Restricted Dominance and Strong Anonymity, and is represented on X

by an RDU SWF. Then the SWR % is represented on X by an ERDU SWF.

Proof. This result follows from Lemmata 2 and 4.
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Theorem 1. Consider an SWR % on X. The following two statements are

equivalent.

(1) % satisfies Order, Continuity, Monotonicity, Restricted Dominance, Re-

stricted Separable Present, Restricted Separable Future, Restricted Station-

arity and Strong Anonymity.

(2) % is an ERDU SWO.

Proof. (1) implies (2). This follows from Propositions 2 and 3. (2) implies (1).

This is easy to establish, and its proof is left to the reader.

3.3 Properties

By combining Order, Continuity, Monotonicity and Restricted Dominance with

the unrestricted versions of separability of the present and the future and sta-

tionarity — Separable Present, Separable Future and Stationarity — one obtains

a characterization of discounted utilitarianism (DU), whereby all streams x in X

are ranked according to the SWF (1) [cf. 6, Proposition 9]. DU does not satisfy

Strong Anonymity as an axiom of procedural equity, since the permutation of

consumption may change the DU social welfare. Moreover, as pointed out by

Asheim, Mitra and Tungodden [6], the DU SWF does not satisfy the following

distributional equity axiom, giving priority to the future in conflicts where the

present is better off than the future.

Hammond Equity for the Future For all x, y, w, z ∈ R+, if x > y > w > z,

then (y,wc) % (x, zc).

Finally, as pointed out by Chichilnisky [16], DU is a dictatorship of the

present, which on the domain X can be formalized as follows:

Dictatorship of the Present For all x, y ∈ X such that x � y, there exist

z ∈ R+ with xt, yt ≤ z for all t ∈ N and T ′ ∈ N such that, for any x′, y′ ∈ [0, z]N,

(xT, T+1x
′) � (yT, T+1y

′) for all T ≥ T ′.

Hence, a setting where Order, Continuity, Monotonicity and Restricted Domi-

nance are invoked, at least one of Separable Present, Separable Future or Sta-
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tionarity must be weakened to prevent such a dictatorship.

Non-Dictatorship of the Present Dictatorship of the Present does not hold.

Chichilnisky [16] allows for Non-Dictatorship of the Present by dropping

Stationarity in the class of sustainable preferences characterized by her Theorem

2. However, SWOs in this class do not satisfy the two other ethical axioms:

Hammond Equity for the Future and Strong Anonymity.

Building on Asheim, Mitra and Tungodden’s [6] axiomatic analysis of sus-

tainable recursive SWFs, Asheim and Mitra [5] allow for Hammond Equity for

the Future by restricting Separable Present to the set of non-decreasing streams

(i.e., imposing Restricted Separable Present) in their analysis of sustainable dis-

counted utilitarian (SDU) SWOs, while retaining the remaining axioms of the

above axiomatization of DU. Moreover, SDU SWOs satisfy Non-Dictatorship of

the Present, but fail to satisfy Strong Anonymity.

With this background, it is of interest to note the following proposition.

Proposition 4. An ERDU SWO satisfies Hammond Equity for the Future and

Non-Dictatorship of the Present.

Proof. An ERDU SWO satisfies Hammond Equity for the Future. Let x >

y > w > z ≥ 0. Then W (y,wc) = u(w) > u(z) = W (x, zc) . An ERDU

SWO satisfies Non-Dictatorship of the Present. Let x � y. Choose any z ≥
0 satisfying xt, yt ≤ z for all t ∈ N. Let x′ = y′ = 0c ∈ [0, z]N. Then

W (xT, T+1x
′) = W (yT, T+1y

′) for all T ≥ 0.

Hence, when moving from SDU to ERDU, Strong Anonymity is added and

Separable Future and Stationarity are weakened to Restricted Separable Future

and Restricted Stationarity. The weakening of Stationarity to Restricted Sta-

tionarity means that we lose time-consistency when social preferences are time-

invariant. Even though time-inconsistency turns out not to be an issue when

ERDU SWFs are applied to the Ramsey and Dasgupta-Heal-Solow growth mod-

els, as we do in Section 6, it might be a problem in other environments. It also

excludes the use of recursive methods, e.g., when faced with uncertainty.
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Still, it is remarkable that anonymity (even in its strongest form, Strong

Anonymity, allowing infinite permutations) can be combined with numerical

representability and some sensitivity to the interests of the present generation,

as such attempts have not previously lead to SWOs with attractive properties.3

Strong Anonymity is a basic form of procedural equity, corresponding to equal

treatment of generations. In this sense it seems more fundamental than the

distributional axiom Hammond Equity for the Future.

As pointed out by Van Liedekerke and Lauwers [46], Strong Anonymity is in

conflict with the Strong Pareto principle. Moreover, Basu and Mitra [8] showed

that even Finite Anonymity (i.e., anonymity in its weaker form, involving only

finite permutations) rules out the Strong Pareto principle when combined with

numerical representability. Finally, Zame [52] and Lauwers [32] demonstrated

that SWOs satisfying both Finite Anonymity and Strong Pareto cannot be ex-

plicitly described.

Strong Anonymity is even in conflict with the Weak Pareto principle whereby

one stream is preferred to another stream if the former has higher consumption

than the latter at all times. This is demonstrated by the following adaptation of

Fleurbaey and Michel’s [25] proof of their Theorem 1 to a setting where streams

are bounded. For this purpose, consider

x =
(

1
3
, 2

3
, 1

4
, 3

4
, . . . , 1

k+2
, k+1
k+2

, . . .
)

y =
(

1
4
, 1

3
, 1

5
, 2

3
, . . . , 1

k+3
, k
k+1

, . . .
)
.

Then, by Strong Anonymity, x is indifferent to y since x is a permutation of y

(move location 2 to location 1, all other even locations two periods backwards,

and all odd locations two periods forwards). Still, xt > yt for all t ∈ N.

Because ERDU SWOs satisfy Strong Anonymity, it follows that they must

be in conflict with the Weak Pareto principle on the full domain X, which indeed

is what Lemma 3 entails. However, an important feature of ERDU SWOs is that

3Sakai’s [41] nice characterization of a class of welfare functions depending only on lim-
sup and liminf is a recent contribution combining Strong Anonymity and representability.
However, it is insensitive to the consumption of any finite subset of generations.
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they satisfy the Strong Pareto principle on the restricted set X of streams that

can be permuted into non-decreasing streams. This means that ERDU SWOs

retain sensitivity to the interest of any one generation as long as there is only

a finite number of other generations with lower consumption levels. Moreover,

they fulfill the separability axiom on the set X+ of non-decreasing streams.

These are straightforward consequences of Eq. (3), so that no proof is provided.

Proposition 5. An ERDU SWO satisfies Restricted Strong Pareto and Re-

stricted Separability.

4 Inequality aversion

Up to now, we have addressed the issue of procedural equity and its compatibility

with the sensitivity to the interests of each generation.

In this section, we introduce concerns for distributional equity. We will show

that inequality aversion can be properly measured and compared within the

ERDU class of preferences. The next two sections will then show that inequality

aversion has significant policy implications.

4.1 The Pigou-Dalton Transfer principle and inequality aversion

Following the practice of expressing distributional equity ideals by means of

transfer axioms, we consider a weak form of the Pigou-Dalton Transfer principle:

Pigou-Dalton Transfer For any x,y ∈ X, if there exist ε ∈ R++ and τ , τ ′ ∈ N
such that ε ≤ yτ + ε = xτ ≤ xτ ′ = yτ ′ − ε and yt = xt for all t 6= τ , τ ′, then

x % y.

In this section, we study the restrictions imposed by Pigou-Dalton Transfer on

ERDU criteria. These restrictions hold on the rank utility discount factor β and

on the utility function u in Eq. (3). Write %β,u for the ERDU SWO characterized

by β and u.

Introduce the following index of non-concavity of the function u (which,
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recall, is continuous and increasing):

Cu = sup
0<ε≤x≤x′

u
(
x′ + ε

)
− u
(
x′
)

u
(
x
)
− u
(
x− ε

)
As shown by Chateauneuf, Cohen and Meilijson [15], this index has two inter-

esting properties: (1) Cu ≥ 1, with Cu = 1 corresponding to u being concave;

and (2) when u is differentiable, Cu = supy≤x
(
u′(x)/u′(y)

)
.

The non-concavity index Cu and the rank utility discount factor β jointly

characterize ERDU SWFs satisfying the Pigou-Dalton Transfer principle.

Proposition 6. An ERDU SWO %β,u on X satisfies Pigou-Dalton Transfer if

and only if
β × Cu ≤ 1.

Proof. See Appendix A.

The condition β × Cu ≤ 1 implies that the utility function u must not be ‘too

non-concave’. The concavity of u, though sufficient, is not necessary for an

ERDU SWO to satisfy Pigou-Dalton Transfer.

In applications, it is convenient to consider the more specific class of homo-

thetic ERDU SWOs, which yield clear-cuts results for comparisons of inequality

aversion and for the expression of the discount rate.

Definition 3. An SWO % on X is a Homothetic Extended Rank-Discounted

Utilitarian SWO (HERDU SWO) if it can be represented by an SWF W : X→
R defined by:

W (x) =

 (`(x))1−η

1−η + (1− β)
∑

r∈N β
r−1
(
x1−η
[r]

1−η −
(`(x))1−η

1−η

)
if η 6= 1 ,

ln `(x) + (1− β)
∑

r∈N β
r−1
(

lnx[r] − ln `(x)
)

if η = 1 ,
(5)

where 0 < β < 1 is a real number.

Denote by %β,η a HERDU SWO represented by an SWR W with rank utility

discount factor β and utility function u(x) = x1−η/(1 − η) (or u(x) = lnx if

η = 1). In contrast to the general case, the (weak) concavity of u is necessary
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and sufficient for a HERDU SWOs to be inequality averse. For a HERDU SWO,

it is indeed the case that Cu = 1 whenever η ≥ 0 and Cu = +∞ whenever η < 0.

This is summarized in the following corollary:

Corollary 1. A HERDU SWO on X %β,η satisfies Pigou-Dalton Transfer if

and only if η ≥ 0.

4.2 Comparative inequality aversion

Ranking different criteria according to the strength of their concerns for equality

is an important prerequisite to study the policy implications of inequality aver-

sion. The common way to do so is to define and compare the degree of inequality

aversion of the underlying SWOs. The aim of this section is to perform such

comparisons in the case of ERDU SWOs.

We follow the procedure proposed in the literature on risk/uncertainty aver-

sion to make such comparisons (see Grant and Quiggin [28]). It consists in: (i)

defining an inequality relation �I ; (ii) declaring an SWO % at least as inequality

averse as an SWO %̂ if, for any allocation y, whenever a less unequal allocation

x (according to �I) is preferred to y according to %̂, then x is also preferred to

y according to %.

We use a simple definition of the relation ‘more unequal than’ based on the

notion of a ‘local increase’ in inequality, namely an inequality change affecting

only two generations and leaving generations’ ranks unchanged.

Definition 4. For any x,y ∈ X, allocation y represents an elementary increase

in inequality with respect to allocation x, denoted y �I x, if there exist ε,

ε′ ∈ R++ and τ , τ ′ ∈ N such that yτ + ε = xτ ≤ xτ ′ = yτ ′ − ε′, rτ (y) = rτ (x),

r̄τ ′(y) = r̄τ ′(x), and yt = xt for all t 6= τ , τ ′.

The inequality relation �I is used to define comparative inequality aversion:

Definition 5. An SWO % is at least as inequality averse as an SWO %̂ if, for

any x and any y �I x: (i) x %̂ y =⇒ x % y; and (ii) x �̂ y =⇒ x � y.
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Consider two ERDU SWOs, %β,u and %β̂,û. To assess their relative inequality

aversion, the rank discount factors β and β̂ and the relative concavity of the

utility functions u and û must be compared. The following two indices do so:

Dβ,β̂ = inf
t<t′

βt/β̂t

βt′/β̂t′
=

{
β̂/β if β ≤ β̂

0 if β > β̂
,

Cu,û = sup
0≤x1<x2≤x3<x4

[
u(x4)− u(x3)

]
/
[
û(x4)− û(x3)

][
u(x2)− u(x1)

]
/
[
û(x2)− û(x1)

] .
The index Dβ,β̂ is an index of the relative decreasing speed of the social weights.

The faster the social weights decrease, the less the society cares for better off

generations. The index Cu,û is an index of relative concavity of the utility func-

tions u and û. Furthermore, by [28], Cu,û ≥ 1, with Cu,û = 1 corresponding to

the case where u is an increasing concave transformation of û. In addition, if u

and û are differentiable, Cu,û = supy≤x
(
u′(x) û′(y)

)
/
(
u′(y) û′(x)

)
.

The comparative inequality aversion of two ERDU SWOs can be character-

ized as follows:

Proposition 7. Consider two ERDU SWOs, %β,u and %β̂,û, on X. Then %β,u

is at least as inequality averse as %β̂,û if and only if

Dβ,β̂ ≥ Cu,û .

Proof. See Appendix A.

By Proposition 7, β ≤ β̂ is a necessary condition for %β,u to be at least as

inequality averse as %β̂,û. A more inequality averse ERDU social observer has a

lower rank utility discount factor and thus discounts more the utility of better

off generations. Moreover, if β = β̂, then u must be a concave transformation

of û.

Even clearer results can be obtained in the case of HERDU SWOs. Indeed, it

is straightforward that, whenever u(x) = x1−η/(1− η) and û(x) = x1−η̂/(1− η̂),

Cu,û = 1 if η ≥ η̂, and Cu,û = +∞ if η < η̂. We hence obtain the following simple

conditions for comparative inequality aversion of HERDU SWOs:
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Corollary 2. Consider two HERDU SWOs, %β,η and %β̂,η̂, on X. Then %β,η

is at least as inequality averse as %β̂,η̂ if and only if β ≤ β̂ and η ≥ η̂.

As in the static case, inequality aversion is a key policy parameter in in-

tertemporal problems, playing an important role in designing optimal policies.

In Section 5, we describe how it affects social discounting, while in Section 6, we

study optimal ERDU policies and highlight the impact of inequality aversion.

5 Rank-discounted utilitarianism and social discounting

Triggered by the Stern [44] review on the economics of climate change, the social

discount rate has attracted much attention in recent years [34, 49, 17]. The

controversy has not turned on the social welfare function used to assess different

streams, as all the authors have endorsed the DU approach. The controversy

has turned on the value of the parameters in the DU SWF (1). In particular,

the time utility discount factor β and the elasticity of marginal utility, ηu(x) =

−d lnu′(x)/d lnx, have a critical role in the determination of the social discount

rate. However, there has been no consensus on the interpretation and the value

of these key parameters.

In this section, we derive the social discount rate arising from ERDU SWOs.

In doing so, we prove that the key parameters of the social discount rate have

interpretations in terms of inequality aversion.

Assume that an ERDU SWO %β,u, has the property the function u in Eq. (3)

is twice continuously differentiable. In that case, %β,u is said to be a smooth

ERDU SWO. Also, consider consumption streams x in X where

(i) |L(x)| < +∞ and xt 6= `(x) for all t ∈ N, or |L(x)| = +∞,

(ii) no pair in L(x) has the same consumption level (i.e., xt 6= xτ if t, τ ∈ L(x)).

The set of such streams is denoted X 6=. Any stream in X 6= has the property

that rt(x) = r̄t(x) < +∞ if t ∈ L(x), while rt(x) = r̄t(x) = +∞ otherwise. An

SWR W representing a smooth ERDU SWO is differentiable on X 6= only, with

∂W (x)/∂xt = βrt(x)−1u′(xt) > 0 if t ∈ L(x) and ∂W (x)/∂xt = 0 otherwise.

21



The social discount rate evaluates how much an increase in marginal con-

sumption in period t is ‘worth’ in terms of first period consumption. It is given

by the following formal expression:4

Definition 6. Let W be the SWF used to evaluate policies. Then the social

discount rate at period t for a stream x is:

ρt(x) =
ln(∂W/∂x1)− ln(∂W/∂xt)

t− 1
.

Consider a smooth ERDU SWO %β,u and denote by δ = − ln β the rank

utility discount rate. Also denote by gt(x) the average per period growth rate

between 1 and t: gt(x) = (ln xt− lnx1)/(t− 1). The social discount rate arising

from a smooth ERDU SWO can now be approximated:

Proposition 8. Let %β,u be a smooth ERDU SWO and consider a stream x ∈
X 6= with 1 ∈ L(x). Then the social discount rate, ρt(x), at period t ∈ L(x)\{1}
is approximated by the RHS of the following expression:

ρt(x) ≈ rt(x)− r1(x)

t− 1
δ + ηu(x1)gt(x) . (6)

Proof. From the ERDU SWO it follows that

ρt(x) =

(
(r1(x)− 1) ln β + ln(u′(x1))

)
−
(
(rt(x)− 1) ln β + ln(u′(xt))

)
t− 1

=
rt(x)− r1(x)

t− 1
δ +

lnu′(x1)− lnu′(xt)

t− 1

≈ rt(x)− r1(x)

t− 1
δ − d lnu′(x1)

d lnx1

· lnxt − lnx1

t− 1

=
rt(x)− r1(x)

t− 1
δ + ηu(x1)gt(x) ,

4To understand the expression, imagine that today the society makes a marginal investment
ε whose rate of return is ρ, so that the generation born in period t can consume eρ(t−1)ε more
units of aggregate good. The change in social welfare through this investment is:

dW (x) =
∂W

∂xt
eρ(t−1)ε− ∂W

∂x1
ε

The social discount rate is the rate of return that makes the change in social welfare nil.
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using a log-linear approximation for u′(x).

Approximation (6) shows that the social discount rate is rank-dependent: it

depends crucially on the distance between the welfare rank of generation t and

the one of the first generation. The further generation t is in the intergenera-

tional distribution, the larger the social discount rate, and vice versa.

This remark leads to a second insight. If generation t is worse off than the first

generation, the social discount rate will be negative, provided that ηu(x1) ≥ 0,

which is always the case when u is concave. It has been pointed out in the

literature using a DU approach that the social discount rate may be negative

when future generations are sufficiently worse off [see, for instance, 17, p. 150].

With ERDU, this should always be the case as soon as future generations are

worse off and the function u is concave.

On the set of increasing consumption streams, the familiar expression ρt(x) ≈
δ + ηu(x1)gt(x) is obtained. For smooth HERDU SWOs, the log-linear approxi-

mation of marginal utility is exact and the expression becomes ρt(x) = δ+ηgt(x).

This expression emphasizes the crucial role played by the ethical parameters to

determine the social discount rate. Indeed, δ and η jointly characterize the at-

titude towards inequality: a more inequality averse social observer should have

a higher δ (lower β) and/or a higher η. Therefore, a more inequality averse

society should discount the future more whenever future generations are better

off. This insight actually generalizes to all ERDU SWOs.

Proposition 9. Consider two smooth ERDU SWOs, %β,u and %β̂,û, and a stream

x ∈ X 6= with 1 ∈ L(x). Let ρt(x) and ρ̂t(x) be the associated discount rates at

period t ∈ L(x)\{1}. If %β,u is at least as inequality averse as %β̂,û, then:

(1) ρt(x) ≥ ρ̂t(x) if xt > x1.

(2) ρt(x) ≤ ρ̂t(x) if xt < x1.

Proof. For any x ∈ X 6= and any t ∈ L(x)\{1}, ρt(x) ≥ ρ̂t(x) if and only if

∆ =
∂W/∂x1

∂W/∂xt
− ∂Ŵ/∂x1

∂Ŵ/∂xt
=
βr1(x)−1u′(x1)

βrt(x)−1u′(xt)
− β̂r1(x)−1û′(x1)

β̂rt(x)−1û′(xt)
≥ 0 ,

23



where W (Ŵ ) represents %β,u (%β̂,û). There are two ways to rearrange ∆:

∆ =

(
βr1(x)/β̂r1(x)

βrt(x)/β̂rt(x)
− u′(xt)û

′(x1)

u′(x1)û′(xt)

)
u′(x1)/u′(xt)

β̂rt(x)/β̂r1(x)
, (7)

∆ =

(
u′(x1)û′(xt)

u′(xt)û′(x1)
− βrt(x)/β̂rt(x)

βr1(x)/β̂r1(x)

)
û′(x1)/û′(xt)

βrt(x)/βr1(x)
. (8)

Using the definitions of Dβ,β̂ and Cu,û, we obtain: by Eq. (7), for xt > x1,

∆ ≥
(
Dβ,β̂ − Cu,û

)(
u′(x1)/u′(xt)

)
/
(
β̂rt(x)/β̂r1(x)

)
≥ 0

by Proposition 7, noting that rt(x) > r1(x); by Eq. (8), for xt < x1,

∆ ≤
(
Cu,û −Dβ,β̂

)(
û′(x1)/û′(xt)

)(
βrt(x)/βr1(x)

)
≤ 0

by Proposition 7, noting that rt(x) < r1(x).

It is a strength of the class of HERDU criteria that the two parameters δ

and η have a consistent, common interpretation in terms of intergenerational

inequality aversion. By increasing each of δ and η, inequality aversion is en-

hanced. For increasing streams, a more inequality averse society discounts the

future more, with the social discount rate having a clear ethical significance.

This is in contrast with the class of homothetic DU criteria where the two

parameters δ and η represent different ethical notions. The time utility discount

rate δ measures the intensity of intergenerational (procedural) inequity. A fairer

society should choose a lower δ. On the other hand, the elasticity of marginal

utility η is often interpreted as a measure of intra-temporal inequality aversion.

A more egalitarian society should choose a higher η. As a consequence, it is not

clear what the social discount rate of an ‘equity-minded’ society should be: it

should discount the future less to avoid intergenerational inequity, but discount

the future more because it is more averse to intra-period inequalities.

The result in Proposition 9 has important policy implications, in particular

for the question of climate change. If one believes that future generations will
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be better off in spite of climate change,5 then a more inequality averse ERDU

social observer will agree with the recommendation of Nordhaus [35] to have

a gradual emissions-control policy with an increasing carbon price rather than

with that of Stern [44], who calls for strong immediate action to mitigate climate

change. Indeed, Nordhaus proposes to use δ = 0.015 and η = 2, whereas Stern

argues in favor of δ = 0.001 and η = 1. However, the policy recommendation

will be totally different if one believes that climate change might strongly affect

the economy, so that declining consumption would occur for some generations

in the future. This perspective may not be unrealistic for some poor developing

countries particularly exposed to climate change. In that case, an ERDU social

observer using η = 1 and δ > 0 will recommend discounting future consumption

at a negative rate. This rate is lower than the one promoted by Stern for

decreasing consumption streams, thus leading to even stronger action.

6 Optimal rank-discounted utilitarian policies

In this section, we establish that ERDU SWOs can be applied to two benchmark

models — the Ramsey and Dasgupta-Heal-Solow (DHS) growth models — and

show that the ERDU optimal streams in these models are the same as the ones

promoted by the SDU SWOs recently studied by Asheim and Mitra [5].

In these model, the ERDU optimal streams maximize DU welfare over all

non-decreasing streams. By the justification of sustainability proposed by As-

heim, Buchholz and Tungodden [4], Finite Anonymity combined with the Strong

Pareto principle rules out all streams that are not non-decreasing when applied

to ‘productive’ technologies. Morever, ERDU welfare coincides with DU welfare

on the set of non-decreasing streams, thereby providing intuition for choosing

streams that maximize DU welfare over all non-decreasing streams. However,

Asheim, Buchholz and Tungodden’s [4] argument is not directly applicable here

since (i) ERDU SWOs do not satisfy the Strong Pareto principle for streams

5The assumption is verified in the central scenario of most climate-economy integrated
assessment models, such as the RICE model of Nordhaus [35] and the PAGE model used in
the Stern Review [44].
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that cannot be reordered into non-decreasing streams, and (ii) the DHS growth

model is ‘productive’ only if resource extraction is positive.

For this section, assume that the SWR % on the set of bounded consumption

streams is an ERDU SWO represented by W , as defined by Definition 2, where

u is assumed to strictly concave and continuously differentiable (on R++) with

limx→0 u
′(x) = +∞. These additional properties on u do not follow from the

axiomatic basis for ERDU SWOs, but is imposed on the SWO for the purpose

of the analysis of this section. Write %β,u for the ERDU SWO determined by β

and u, where the properties of u are as described in this paragraph.

Both the Ramsey and DHS models allow for streams that are not bounded

above, a complication that must be addressed. For an unbounded stream x,

`(x) need not exist. If `(x) does not exist, then x can be permuted into a non-

decreasing stream, implying that Proposition 1 can be reformulated as follows

on any set X ⊆ RN
+ where X admits elements that are not bounded above.

Proposition 1′.

(a) If `(x) does not exist for an allocation x ∈ X, then x belongs to X.

(b) If `(x) exists for an allocation x ∈ X and |L(x)| < +∞, then x belongs

to X if and only if xt ≤ `(x) for all t ∈ N.

(c) If `(x) exists for an allocation x ∈ X and |L(x)| = +∞, then x belongs

to X if and only if xt < `(x) for all t ∈ N.

Let W be defined by W (x) = W (x) (cf. Definition 1) if `(x) does not exist,

whileW is defined by Definition 2 if `(x) exists. ThenW (x) = W (x) (cf. Eq. (4))

still holds, where x = x whenever `(x) does not exist.

As shown by Lemmata 1 and 2 in Asheim and Mitra [5], in our applications,

the unilateral Laplace transform (
∑

t∈N β
t−1xt) is finite for any 0 < β < 1 and

any feasible x with these technologies. We will see below that this implies that

W (x) is finite for all feasible streams. Hence, let X = {x ∈ RN
+ | W (x) < +∞}

for this section, and let the SWR % on X be an ERDU SWO represented by W .

The two subsequent subsections introduce sets of feasible streams. A stream

x is optimal if x is feasible and W (x) ≥ W (x′) for all feasible streams x′.
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6.1 The Ramsey growth model

Assume that the technology is given by a strictly increasing, concave, and con-

tinuously differentiable production function f : R+ → R+, satisfying f(0) = 0

and limk→∞ f
′(k) = 0. A consumption stream x = (x1, x2, . . . ) is feasible given

an initial capital stock k1 > 0 if there exists a stream {k2, k3, . . . } such that

xt + kt+1 ≤ f(kt) + kt, xt ≥ 0, kt ≥ 0 (9)

for all t ∈ N. Such a technology is referred to as a Ramsey technology.

Lemma 5. If x ∈ X is feasible with a Ramsey technology, then x is also feasible.

If x ∈ X is feasible with a Ramsey technology, then x[ ] is also feasible.

Proof. These results follow as storage is costless with a Ramsey technology;

cf. Asheim [1, Lemma 3].

It follows from Lemma 1 of Asheim and Mitra [5] and Lemma 5 above,

combined with the concavity of u, that W (x) is finite for any feasible stream x

with a Ramsey technology.

Following Asheim and Mitra [5] (but changing notation slightly), define the

gross output function as g(k) = f(k)+k, and denote by x(y) the unique solution

to the equation y = g(y − x(y)) such that 0 ≤ x(y) ≤ y. The function x(y) is

well-defined, continuous and differentiable [see 5]. Write y∞(β) ≡ min{y ≥ 0 |
βg′(y − x(y)) ≤ 1}. The function y∞ is strictly increasing for all β for which

there exists k ≥ 0 such that βg′(k) = 1 [5].

Proposition 10. Consider an ERDU SWO %β,u where u is assumed to be

strictly concave and continuously differentiable (on R++) with limx→0 u
′(x) =

+∞, a Ramsey technology, and an initial capital stock k1 > 1. Then there

exists a unique optimal consumption stream, denoted x∗, which is characterized

as follows:

(a) If y1 = g(k1) ≥ y∞(β), then x∗ is a stationary stream with x∗t = x(y1) for

all t ≥ 1.
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(b) If y1 = g(k1) < y∞(β), then x∗ is an increasing stream, converging to

x(y∞(β)) and maximizing (1− β)
∑

t∈Nβ
t−1u(xt) over all feasible streams.

Proof. Step 1: If x ∈ X is optimal, then x ∈ X is also optimal. If x is optimal,

then x is also feasible. By Lemma 5, x is also feasible. By Eq. (4), W (x) =

W (x) = W (x) ≥ W (x′) for all feasible streams x′. Hence, x ∈ X is also optimal.

Step 2: If x ∈ X is optimal, then x[ ] ∈ X+ is also optimal. If x is optimal,

then x is also feasible. By Lemma 5, x[ ] is also feasible. Since x[ ] is a permuta-

tion of x, W (x[ ]) = W (x) ≥ W (x′) for all feasible streams x′. Hence, x[ ] ∈ X+

is also optimal.

Step 3: If x ∈ X+ is optimal, then x is the efficient stream x∗ characterized

by (a) and (b). The optimality of a non-decreasing x implies that x maximizes

W (x′) over all non-decreasing streams x′. By Proposition 6 of Asheim [1], the

efficient stream x∗ characterized by (a) and (b) is the unique stream maximizing

W (x′) over all non-decreasing streams x′.

Step 4: If x ∈ X\X+, then x is not optimal. Suppose x ∈ X\X+ is optimal.

By Step 2, x[ ] ∈ X+ is optimal. However, by Step 3, if x[ ] ∈ X+ is optimal, then

x[ ] coincides with the efficient stream x∗ characterized by (a) and (b) However,

it is not feasible to permute the efficient x∗ ∈ X+ into x ∈ X\X+, as this

contradicts the fact that acceleration of consumption along an efficient stream

with positive capital stocks is costly with a Ramsey technology [1, Lemma 3].

Hence, x is not optimal.

Step 5: If x ∈ X\X, then x is not optimal. Suppose x ∈ X\X is optimal.

By Step 1, x ∈ X is optimal and, by the property of costless augmentation of

initial consumption [cf. 1, Lemma 3], inefficient. However, by Steps 3 and 4, if

x ∈ X is optimal, then x coincides with the efficient stream x∗ characterized by

(a) and (b). This contradicts that x is optimal.

Step 6: The efficient stream x∗ characterized by (a) and (b) is optimal. By

Proposition 6 of Asheim [1], W (x∗) = W (x∗) ≥ W (x) = W (x) if x is non-

decreasing. If x ∈ X\X+, then by Lemma 5, the permutation of x into the

non-decreasing stream x[ ] is feasible, and, furthermore, W (x∗) = W (x∗) ≥
W (x[ ]) = W (x[ ]) = W (x). Hence, W (x∗) ≥ W (x) if x ∈ X. If x ∈ X\X, then
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W (x∗) ≥ W (x) = W (x) = W (x) by Eq. (4) since x ∈ X.

Proposition 10 shows that ERDU preferences can be operationalized in the

basic Ramsey model. We are able to characterize a unique optimal solution,

which we call the sustainable discounted utilitarian solution because it is the

same as in Asheim [1] and Asheim and Mitra [5].

Compared to SDU preferences, ERDU preferences emphasize more clearly

the influence of inequality aversion on optimal policy. Indeed, we know that a

necessary condition for an ERDU SWF Wβ,u to be more inequality averse than

another ERDU SWF Wβ̂,û is that β ≤ β̂. From Proposition 10, it follows that:

• A more inequality averse ERDU society %β,u converges to a lower steady

state consumption than a less inequality averse society %β̂,û whenever k1

satisfies g(k1) < y∞(β̂) and leads to the same steady state consumption

otherwise.

• A more inequality averse ERDU society %β,u prevents growth for a larger

set of initial conditions than a less inequality averse society %β̂,û (for k1

satisfying g(k1) ≥ y∞(β), as opposed to k1 satisfying g(k1) ≥ y∞(β̂)).

Regarding the second point, recall that maximin always prevents growth.

Maximin is the special case of ERDU preferences in which β → 0, an extreme

aversion to inequality. However, growth is also prevented for low values of β.

Inequality aversion therefore modifies both the long-run perspectives of the

society and the prospects of an egalitarian (stationary) distribution. Only the

parameter β determines the long-term impact of inequality aversion. The other

dimension of inequality aversion, the concavity of the function u, has only an

impact on the speed of the convergence to the steady state when g(k1) < y∞(β).

6.2 The Dasgupta-Heal-Solow growth model

The Dasgupta-Heal-Solow model [18, 43] is the standard model of growth with

an exhaustible natural resource. Production depends on man-made physical

capital kmt , on the extraction dt of a natural exhaustible resource knt and on the
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labor supply `t. The natural resource is depleted by the resource use, so that

knt+1 = knt − dt. The production function f̂(kmt , dt, lt) is concave, non-decreasing,

homogeneous of degree one, and twice continuously differentiable. It satisfies

(f̂km , f̂d, f̂`) � 0 for all (km, d, `) � 0 and f̂(km, 0, `) = f̂(0, d, `) = 0 (both

physical capital and the natural resource are essential in production). Moreover,

given (k̃m, d̃)� 0, there exists a scalar χ̃ such that
(
df̂d(k

m, d, 1)
)
/
(
f̂`(k

m, d, 1)
)

≥ χ̃ for (km, d) satisfying km ≥ k̃m and 0 ≤ d ≤ d̃ (the ratio of the share of the

resource to the share of labor is bounded away from zero when labor is fixed at

a unit level).

Assume that the labor force is constant and normalized to 1. Write f(km, d) :=

f̂(km, d, 1). Also assume that f is strictly concave and fkm,d(k
m, d) � 0 for all

(km, d) � 0. A consumption stream x = (x1, x2, . . . ) is feasible given initial

stocks (km1 , k
n
1 )� 0 if there exists a stream {(km2 , kn2 ), (km3 , k

n
3 ), . . . } such that

xt + kmt+1 ≤ f(kmt , k
n
t − knt+1) + kmt , xt ≥ 0, kmt ≥ 0, knt ≥ 0 (10)

for all t ∈ N. Hence, production f(kmt , k
n
t − knt+1) is split between consumption

xt and capital accumulation kmt+1 − kmt at each time t.

The assumptions made so far do not ensure that it is feasible to maintain a

constant and positive consumption level forever. Therefore, assume in addition

that there exists from any (km1 , k
n
1 ) � 0, a constant stream with positive con-

sumption. Cass and Mitra [14] give a necessary and sufficient condition on f

for this assumption to hold. Under this additional assumption there exists an

efficient constant consumption stream from any (km1 , k
n
1 ) � 0 [see 20, Propo-

sition 5]. A technology satisfying the above assumptions is referred to as a

Dasgupta-Heal-Solow (DHS) technology.

When establishing the implications of ERDU SWOs in the DHS growth

model, it is a complication that production is increasing in capital only if resource

extraction is positive, but a constant function of capital if resource extraction is

zero. However, the analysis of the Ramsey model above can still be adapted to

the DHS growth model.
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Lemma 6. If x ∈ X is feasible with a DHS technology, then x is also feasible.

If x ∈ X is feasible with a DHS technology, then x[ ] is also feasible.

Proof. These results follow as storage is costless with a DHS technology; cf. As-

heim [1, Lemma 4].

It follows from Lemma 2 of Asheim and Mitra [5] and Lemma 6 above,

combined with the concavity of u, that W (x) is finite for any feasible stream x

with a DHS technology.

Denote by x(km1 , k
n
1 ) the positive and constant level of consumption that

can be sustained forever along an efficient constant consumption stream from

(km1 , k
n
1 )� 0. It is possible to attach a sequence of shadow prices

(p1(km1 , k
n
1 ), p2(km1 , k

n
1 ), . . . , pt(k

m
1 , k

n
1 ), . . . )

to the corresponding stationary consumption stream (for a characterization of

the prices, see [5, Lemma 3]). Write

β∞(km1 , k
n
1 ) =

∑+∞
t=2 pt(k

m
1 , k

n
1 )∑+∞

t=1 pt(k
m
1 , k

n
1 )

for the long-run discount factor at time 1 supporting this stationary stream.

Proposition 11. Consider an ERDU SWF %β,u where u is assumed to be

strictly concave and continuously differentiable (on R++) with limx→0 u
′(x) =

+∞, a Dasgupta-Heal-Solow technology, and initial stocks and resource (km1 , k
n
1 )�

0. Then there exists a unique optimal consumption stream, denoted x∗, which is

characterized as follows:

(a) If β∞(km1 , k
n
1 ) ≥ β, then x∗ is a stationary stream with x∗t = x(km1 , k

n
1 ) for

all t ≥ 1.

(b) If β∞(km1 , k
n
1 ) < β, then x∗ is a non-decreasing stream maximizing (1 −

β)
∑

t∈Nβ
t−1u(xt) over all feasible and non-decreasing streams. The stream

exhibits the following pattern:
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• For t < τ , x∗t < x∗t+1,

• For all t ≥ τ , x∗t = x((kmτ )∗, (knτ )∗),

where τ := min{t ∈ N | β∞((kmt )∗, (knt )∗) ≥ β}.

The proof of Proposition 11 closely follows the proof of Proposition 10, differ-

ing only by substituting Lemma 6 for Lemma 5, Asheim and Mitra [5, Lemma 6]

for Asheim [1, Proposition 6], and Asheim [1, Lemma 4] for Asheim [1, Lemma

3]. Hence, it is not repeated here.

Proposition 11 shows that the consequences of a higher level of inequality

aversion exhibited in the Ramsey growth model still hold in the Dasgupta-Heal-

Solow model. Indeed:

• A more inequality averse ERDU society %β,u will prevent growth for a

larger set of initial conditions than a less inequality averse society %β̂,û

(for (km1 , k
n
1 ) satisfying β∞(km1 , k

n
1 ) ≥ β, as opposed to (km1 , k

n
1 ) satisfying

β∞(km1 , k
n
1 ) ≥ β̂).

In particular, in the maximin case, growth is always prevented. Again, the

maximin case represents an extreme form of inequality aversion, and less extreme

degrees of inequality aversion may allow for growth in an initial phase.

7 Conclusion

The ERDU approach to intertemporal welfare has several appealing features.

First, it offers a continuous and numerically representable criterion that rec-

onciles intergenerational procedural equity and efficiency on the set of alloca-

tions that can be rearranged into non-decreasing streams. Second, compared to

procedurally equitable, but incomplete, criteria like undiscounted utilitarianism

and lexicographic maximin, it allows for more flexibility in the specification of

inequality aversion. This is of particular importance in conflicts between the

present generation and an infinite number of future generations [cf. 2]. Last,

it provides a consistent and intuitive interpretation of the ethical parameters

determining the social discount rate. With the ERDU interpretation, we have
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obtained the provocative statement that inequality aversion increases the social

discount rate along increasing consumption streams.

This statement is at odds with the traditional ethical approach to social

discounting. It comes from the fact that ERDU criteria satisfy procedural equity

(the reason why people endorsing the traditional ethical approach have called for

lower discount rates) while allowing for inequality-aversion-based discounting.

We believe that ERDU may spark off new debates on social discounting within

the ethical approach to social discounting.

The ERDU criterion can be operationalized. In particular, in benchmark

growth models, the ERDU optimal policies coincide with those promoted by the

sustainable discounted utilitarian criterion that has been recently studied by

Asheim and Mitra [5]. While its recommendations may not be new, the ERDU

criterion offers an interesting new perspective that respects procedural equity

and displays concerns for intergenerational redistribution. It sheds some new

lights on what the present generation owes to future generations. On the one

hand, we must guarantee that they will not be worse off than we are. On the

other hand, intergenerational inequalities in favor of future generations should

not be too large as this would be unfair to the present generation. This con-

ception of intergenerational equity, more in line with the intuitive notion of

distributional equity, may seem appealing to many.

Appendix A

Proof of Proposition 2. Assume that % satisfies Order, Continuity, Mono-

tonicity, Restricted Dominance, Restricted Separable Present, Restricted Sepa-

rable Future, Restricted Stationarity and Strong Anonymity. Order, Continuity,

and Monotonicity imply that there exists a monotonic SWF W representing %

on X. By Strong Anonymity, for all x ∈ X, W (x) = W (x[ ]). We can therefore

restrict attention to the set X+.

Now, for each T ∈ N, we introduce the following subset of X+:

{x ∈ X+ : xt = xT+1,∀t ≥ T + 1} .
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These are the nondecreasing intergenerational allocations with a constant tail

from period T + 1 onward. Denote the restriction of % to this set by %T , which

is a continuous monotonic weak order on the following rank-ordered set:

X+
T =

{
(x1, . . . , xT+1) ∈ RT+1 : x1 ≤ · · · ≤ xT+1

}
.

Let T = {1, . . . , T + 1} denote the set of indices of the coordinates of X+
T .

We then proceed by showing that %T satisfies a separability property. A

subset of coordinates S ⊂ T is said to be separable for %T if for all (x1, . . . , xT+1),

(y1, . . . , yT+1), (x′1, . . . , x
′
T+1), (y′1, . . . , y

′
T+1) in X+

T , if xs = x′s and ys = y′s for

all s ∈ S and xt = yt and x′t = y′t for all t ∈ T \ S, then:

(x1, . . . , xT+1) %T (y1, . . . , yT+1)⇐⇒ (x′1, . . . , x
′
T+1) %T (y′1, . . . , y

′
T+1) .

A subset of coordinates S ⊂ T is said to be essential if there exist (vs)s∈S

and (ws)s∈S in R|S| and (zt)t∈T \S in R|T \S| such that, if (x1, . . . , xT+1) and

(y1, . . . , yT+1) are defined by xs = vs and ys = ws for all s ∈ S and xt =

yt = zt for all t ∈ T \ S, then (x1, . . . , xT+1) ∈ X+
T , (y1, . . . , yT+1) ∈ X+

T and

(x1, . . . , xT+1) �T (y1, . . . , yT+1). The set T is completely separable for the

relation %T if every subset S ⊂ T is separable and essential.

To show that the set T = {1, . . . , T + 1} is completely separable for the

ordering %T , we use Theorem 1 in Gorman [27]. Let (I,K,L,M) be a partition

of the set of indices T such that each subset is not the empty set. The theorem

states that: If I ∪ K and L ∪ K are separable and essential for %T , then I, K,

L, I ∪ L and I ∪ K ∪ L are separable and essential for %T .

For any t ≤ T , consider the following elements of X+
T :

(z1, . . . , zt−1, xt, xt+1, zt+2, . . . , zT+1), (z1, . . . , zt−1, yt, yt+1, zt+2, . . . , zT+1),

(w1, . . . , wt−1, xt, xt+1, wt+2, . . . , wT+1), (w1, . . . , wt−1, yt, yt+1, wt+2, . . . , wT+1).

By repeated application of Restricted Separable Future and Restricted Station-

arity, we have that:
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(z1, . . . , zt−1, xt, xt+1, zt+2, . . . , zT+1) %T (z1, . . . , zt−1, yt, yt+1, zt+2, . . . , zT+1)

⇐⇒

(xt, xt+1, zt+2, . . . , zT+1) %T−t+1 (yt, yt+1, zt+2, . . . , zT+1) .

By Restricted Separable Present,

(xt, xt+1, zt+2, . . . , zT+1) %T−t+1 (yt, yt+1, zt+2, . . . , zT+1)

⇐⇒

(xt, xt+1, wt+2, . . . , wT+1) %T−t+1 (yt, yt+1, wt+2, . . . , wT+1) .

And once again by repeated application of Restricted Separable Future and

Restricted Stationarity,

(xt, xt+1, wt+2, . . . , wT+1) %T−t+1 (yt, yt+1, wt+2, . . . , wT+1)

⇐⇒

(w1, . . . , wt−1, xt, xt+1, wt+2, . . . , wT+1)%T (w1, . . . , wt−1, yt, yt+1, wt+2, . . . , wT+1).

As a consequence,

(z1, . . . , zt−1, xt, xt+1, zt+2, . . . , zT+1) %T (z1, . . . , zt−1, yt, yt+1, zt+2, . . . , zT+1)

⇐⇒

(w1, . . . , wt−1, xt, xt+1, wt+2, . . . , wT+1)%T (w1, . . . , wt−1, yt, yt+1, wt+2, . . . , wT+1),

establishing that the set {t, t+ 1} is separable for %T for all t ≤ T .

By Restricted Dominance and repeated application of Restricted Separable

Future and Restricted Stationarity as above, the set {t, t+ 1} is also essential.

Setting I = {t}, K = {t+1} and L = {t+2}, by Gorman’s theorem the sets

{t}, {t + 1}, {t + 2}, {t, t + 2} and {t, t + 1, t + 2} are separable and essential.

Repeating this reasoning, all sets {t, t′} ⊂ T are separable and essential. By

taking unions of such sets and Gorman’s theorem, we can obtain any subset

S ⊂ T .6 Hence, T = {1, . . . , T + 1} is completely separable for the relation %T .

6Singleton sets having been obtained in the preceding steps.
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Because X+
T is a rank-ordered set and T = {1, . . . , T + 1} is completely

separable for the relation %T , we know by Theorem 3.2 and Corollary 3.6 of

Wakker [48] that there exists a cardinal additive representation of %T :

W T (x) =
∑T

t=1
ut,T (xt) + VT (xT+1), ∀x ∈ X+

T . (11)

The functions ut,T and VT are all continuous and nondecreasing. In addition,

by Monotonicity, Restricted Dominance, Restricted Separable Future and Re-

stricted Stationarity, the functions u1,T and VT must be increasing. By cardi-

nality, we may set ut,T (0) = 0 for all t ≤ T and VT (0) = 0 (the normalization

condition).

Now, representation (11) exists for %T for all T ∈ N. Furthermore, %T

and %T+1 represent the same ordering on X+
T . By standard uniqueness results

for additive functions on rank-ordered sets [48, Theorem 3.2], we can let (after

the appropriate normalization) ut,T ≡ ut,T+1 and VT ≡ uT,T+1 + VT+1. We can

henceforth drop the subscript T in the functions ut,T .

By Restricted Separable Future and Restricted Stationarity, we also know

that W T (x) =
∑T

t=1 ut(xt)+VT (xT+1) and W T (x) =
∑T+1

t=2 ut(xt−1)+VT+1(xT+1)

represent the same preferences for all x ∈ X+
T . By the cardinality of the additive

representation and the normalization condition, there must exists a β > 0 such

that ut+1(x) = βut(x) and VT+1(x) = βVT (x) for all x ∈ R+. Note that β does

not depend on t. Let ū ≡ u1 and V ≡ V1, we have the following representation

of %T :

W T (x) =
∑T

t=1
βt−1ū(xt) + βTV (xT+1), ∀x ∈ X+

T

with ū and V being two increasing functions.

Now note that we must also have V (x) = ū(x) + βV (x), so that V (x) =

ū(x)/(1 − β). This implies that β < 1 by Monotonicity and Restricted Dom-

inance. This also implies that V (x) =
∑+∞

t=1 β
t−1ū(x). Hence, we obtain the

following representation of % on
⋃
T∈N X+

T by letting u(x) ≡ ū(x)/(1− β):

W (x) = (1− β)
∑+∞

t=1
βt−1u(xt) .
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Now it remains to prove that the representation extends to the whole set X+.

For any x ∈ X+, we define the sequence x1,x2, . . . ,xk, . . . of allocations in X+

as follows: for any k ∈ N, xkt = xt for all t ≤ k and xkt = xk for all t > k. Each

allocation in the sequence belongs to
⋃
T∈N X+

T , and limk→∞ supt∈N |xkt − xt| = 0

because we consider bounded streams. By Continuity, we obtain that W (x) =

(1− β)
∑+∞

t=1 β
t−1u(xt) is a SWF representing % on X+.

Proof of Lemma 3. We prove the result for the case where T = 0. The exten-

sion to the case where T > 0 (provided that |L(x)| ≥ T ) is straightforward: pull

these dates out and redo the arguments below on the remainder of the stream.

Hence, by Eq. (2) we seek to establish that, for all x ∈ X,

W̃ (x) ≤ u(`(x)) .

Let y be defined by, ∀t ∈ N, yt = max{xt, `(x)} ≥ xt. By Monotonicity,

W̃ (x) ≤ W̃ (y). Hence, it is sufficient to show that W̃ (y) ≤ u(`(x)). Write

m := supt yt. Note that m ∈ R+ exists since y is bounded.

Case 1: m = `(x). Then yt = `(x) for all t and W̃ (y) = u(`(x)).

Case 2: m > `(x). W.l.o.g. normalize the consumption scale s.t. m = 1 and

`(x) = 0. Because `(x) = 0, we can construct

z = (1, . . . , 1, 1
2
, 1, . . . , 1, 1

3
, 1, . . . , 1, 1

4
, 1, . . . , 1, 1

5
, 1, . . . , 1, 1

6
, 1, . . . )

by starting with 1 and continuing with 1 until there is some τ such that 1
2
≥ yτ ;

going back to 1 and continuing with 1 until there is some τ ′ such that 1
3
≥ yτ ′ ;

and so on. By the definition of m = 1, ∀t ∈ N, zt ≥ yt. By Monotonicity,

W̃ (x) ≤ W̃ (y) ≤ W̃ (z). Hence, it is sufficient to show that W̃ (z) ≤ u(0).

By Strong Anonymity, z is indifferent to each member of the following se-
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quence of streams (where in zi, the 1s appear at even dates t satisfying t ≥ 2i):

z1 = (1
2
, 1, 1

3
, 1, 1

4
, 1, 1

5
, 1, 1

6
, 1, . . . )

z2 = (1
3
, 1

2
, 1

4
, 1, 1

5
, 1, 1

6
, 1, 1

7
, 1, . . . )

z3 = (1
4
, 1

3
, 1

5
, 1

2
, 1

6
, 1, 1

7
, 1, 1

8
, 1, . . . )

z4 = (1
5
, 1

4
, 1

6
, 1

3
, 1

7
, 1

2
, 1

8
, 1, 1

9
, 1, . . . )

· · ·

Write, ∀i, j ∈ N, mij := maxt∈{1,...,j} z
i
t. If j ≥ 2i, then mij = 1. If there

exists k ∈ Z+ such that j < 2(i − k), then mij ≤ 1/(2 + k). Define, ∀i, j ∈ N,

wij by, ∀t ∈ N, wijt = mij if t ≤ j and wijt = 1 otherwise.

Since, ∀i, j ∈ N, wij ∈ X+ and, ∀t ∈ N, wijt ≥ zit, it follows that, for all i,

j ∈ N,

W̃ (x) ≤ W̃ (y) ≤ W̃ (z) = W̃ (zi) ≤ W̃ (wij) = (1− β)
∑

t∈N
βt−1u(wijt )

because % satisfies Monotonicity and Strong Anonymity and is represented on

X ⊇ X+ by W .

Suppose W̃ (z) = u(0) + ε, where ε > 0. Since 0 < β < 1, one can choose

j ∈ N such that βj(u(1) − u(0)) < 1
2
ε. Since u is continuous and, for fixed

j ∈ N, mij → 0 as i → ∞, one can choose i ∈ N such that (1 − βj)u(mij) <

(1− βj)u(0) + 1
2
ε. Then

W̃ (wij) = (1− βj)u(mij) + βju(1) < u(0) + 1
2
ε+ 1

2
ε = u(0) + ε .

This contradicts that W̃ (z) ≤ W̃ (wij) for all i, j ∈ N. Hence, W̃ (x) ≤ W̃ (y) ≤
W̃ (z) ≤ u(0) = u(`(x)).

Proof of Lemma 4. Define y by, ∀t ∈ N, yt = `(x). Construct a sequence of
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streams, yj, j ∈ Z+, inductively as follows: y0 = y and, ∀j ∈ N,

yj =

yj−1 if xj ≥ `(x),

(yj−1
1 , . . . , yj−1

j−1, xj, j+1y
j−1) if xj < `(x).

Note that, ∀j ∈ N, `(yj) = `(x). By Lemma 3, ∀j ∈ N,

W̃ (x) ≤ W (yj) . (12)

Case 1: |L(x)| <∞. In this case, there exists j ∈ N s.t., yj = x. As yj ∈ X,

W (yj) = W̃ (yj) ≤ W̃ (x) by Monotonicity. Hence, by Eq. (4),

W̃ (x) = W (yj) = W (x) = W (x) .

Case 2: |L(x)| = ∞. Define, ∀j ∈ N, `j := mint>j xt. Note that `j → `(x)

as j → ∞. For each j ∈ N, define zj by, ∀t ∈ N, zjt = min{xt, `j}. By

Monotonicity, ∀j ∈ N, it holds that W (zj) = W̃ (zj) ≤ W̃ (x) because zj ∈ X

and `j < `(x). Hence, by (12) it follows that, ∀j ∈ N,

W (zj) ≤ W̃ (x) ≤ W (yj) . (13)

For any ε > 0, we can choose j ∈ N s.t. W (yj)−W (zj) ≤ u(`(x))−u(`j) < ε

since u is continuous and `j → `(x) as j →∞. Combined with (13) and Eq. (4),

this implies W̃ (x) = limj→∞W (yj) = W (x) = W (x).

Proof of Proposition 6. If the ERDU SWO %β,u satisfies Pigou-Dalton Tran-

sfer, then β×Cu ≤ 1. Assume that the ERDU SWO %β,u satisfies Pigou-Dalton

Transfer. Consider x ∈ X such that xt = 0 for all t ≤ τ , xτ ≤ xτ+1, and

xt > xτ + xτ+1 for t > τ + 1. Now consider y ∈ X such that yτ + ε = xτ ≤
xτ+1 = yτ+1−ε and yt = xt for all t 6= τ, τ+1, with xτ ≥ ε > 0. Since the ERDU

SWO %β,u satisfies Pigou-Dalton Transfer, it follows from the representation (3)

of ERDU SWOs that:

βτ−1u(xτ )+βτu(xτ+1) ≥ βτ−1u(yτ )+βτu(yτ+1) = βτ−1u
(
xτ−ε

)
+βτu

(
xτ+1+ε

)
.
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This inequality can be rewritten as

1 ≥ β
u
(
xτ+1 + ε

)
− u
(
xτ+1

)
u
(
xτ
)
− u
(
xτ − ε

) . (14)

The construction of allocations x and y yielding this inequality is possible for

any two integers τ < τ ′ and for any real numbers 0 < ε ≤ xτ ≤ xτ ′ . Hence,

1 ≥ sup
0<ε≤x≤x′

β ×
u
(
x′ + ε

)
− u
(
x′
)

u
(
x
)
− u
(
x− ε

) = β × Cu

If β×Cu ≤ 1 holds for the ERDU SWO %β,u, then %β,u satisfies Pigou-Dalton

Transfer. Assume that 1 ≥ β ×Cu holds for the ERDU SWO %β,u. Consider x,

y ∈ X such that ε ≤ yτ + ε = xτ ≤ xτ ′ = yτ ′ − ε and yt = xt for all t 6= τ , τ ′,

where xτ ≥ ε > 0 and τ , τ ′ ∈ N. We want to show that x %β,u y.

If `(x) ≤ xτ ′ , then x %β,u y by a dominance argument for those components

that matter. In the case where xτ ′ < `(x) < yτ ′ , the same argument as below

applies, replacing yτ ′ by `(x). Therefore, assume that yτ ′ ≤ `(x).

Using representation (3), it follows that x %β,u y if and only if:

W (x)−W (y) =
∑

r̄τ (y)≤r≤rτ (x)

βr−1
(
u(x[r])−u(y[r])

)
−

∑
r̄τ ′ (x)≤r≤rτ ′ (y)

βr−1
(
u(y[r])−u(x[r])

)
≥ 0.

For r̄τ (y) ≤ r ≤ rτ (x), we have u(x[r]) − u(y[r]) ≥ 0, and for r̄τ ′(x) ≤ r ≤
rτ ′(y), we have u(y[r])− u(x[r]) ≥ 0. Hence:

∑
r̄τ (y)≤r≤rτ (x)

βr−1
(
u(x[r])− u(y[r])

)
−

∑
r̄τ ′ (x)≤r≤rτ ′ (y)

βr−1
(
u(y[r])− u(x[r])

)
≥ βrτ (x)−1 ×

∑
r̄τ (y)≤r≤rτ (x)

(
u(x[r])− u(y[r])

)
− β r̄τ ′ (x)−1 ×

∑
r̄τ ′ (x)≤r≤rτ ′ (y)

(
u(y[r])− u(x[r])

)
.

By the definition of the Pigou-Dalton Transfer,
∑

r̄τ (y)≤r≤rτ (x)

(
u(x[r])−u(y[r])

)
=
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u(xτ )−u(yτ ) and
∑

r̄τ ′ (x)≤r≤rτ ′ (y)

(
u(y[r])−u(x[r])

)
= u(yτ ′)−u(xτ ′). Therefore:

W (x)−W (y) ≥ βrτ (x)−1
(
u(xτ )− u(yτ )

)
− β r̄τ ′ (x)−1

(
u(yτ ′)− u(xτ ′)

)
= βrτ (x)−1

(
u(xτ )− u(yτ )

)(
1− β r̄τ ′ (x)−rτ (x)u(yτ ′)− u(xτ ′)

u(xτ )− u(yτ )

)
≥ βrτ (x)−1

(
u(xτ )− u(yτ )

)(
1− β × u(xτ ′ + ε)− u(xτ ′)

u(xτ )− u(xτ − ε)

)
.

Since 1 ≥ β × Cu, it follows that W (x)−W (y) ≥ 0 and thus x %β,u y.

The next lemma is needed for the proof of Proposition 7. Write

X̂ =
{

(x1, x2, x3, x4) ∈ R4
+ : 0 ≤ x1 < x2 ≤ x3 < x4, where

x4 = û−1
(
û(x3) + β̂τ−τ

′
(û(x2)− û(x1))

)
for some τ , τ ′ ∈ N with τ < τ ′

}
and

C̃u,û = sup
(x1,x2,x3,x4)∈X̂

[
u(x4)− u(x3)

]
/
[
û(x4)− û(x3)

][
u(x2)− u(x1)

]
/
[
û(x2)− û(x1)

] .
Lemma 7. Cu,û = C̃u,û.

Proof. Let y1 = û(x1), y2 = û(x2), y3 = û(x3) and y4 = û(x4). Then

Cu,û = sup
0≤y1<y2≤y3<y4

[u ◦ û−1(y4)− u ◦ û−1(y3)]/[y4 − y3]

[u ◦ û−1(y2)− u ◦ û−1(y1)]/[y2 − y1]
= Gu◦û−1 ,

where Gu◦û−1 is Chateauneuf, Cohen and Meilijson’s [15] ‘greediness’ index for

the function u ◦ û−1. Also let

X̂λ =
{

(y1, y2, y3, y4) ∈ R4
+ : 0 ≤ y1 < y2 ≤ y3 < y4, where y4−y3

y2−y1 = λ
}

and

Gu◦û−1(λ) = sup
(y1,y2,y3,y4)∈X̂λ

[u ◦ û−1(y4)− u ◦ û−1(y3)]/[y4 − y3]

[u ◦ û−1(y2)− u ◦ û−1(y1)]/[y2 − y1]
.

Then C̃u,û = supλ=β̂τ−τ ′ ,τ<τ ′ Gu◦û−1(λ). By Chateauneuf, Cohen and Meilijson

[15, Lemma 1], Gu◦û−1 = Gu◦û−1(λ) for any λ > 0. Hence, Cu,û = C̃u,û.
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Proof of Proposition 7. If %β,u is at least as inequality averse as %β̂,û, then

Dβ,β̂ ≥ Cu,û. Assume that %β,u is at least as inequality averse as %β̂,û. Consider

x, y ∈ X such that, for some τ , τ ′ ∈ N with τ < τ ′:

• xt = yt = 0 for all t < τ ;

• 0 ≤ yτ < xτ ≤ yt = xt ≤ xτ ′ for all τ < t < τ ′;

• yτ ′ = û−1
(
û(xτ ′) + β̂τ−τ

′
(û(xτ )− û(yτ ))

)
, so that yτ ′ ≥ xτ ′ ;

• yt = xt > yτ for t > τ ′.

(a) By construction, β̂τ
′(
û(yτ ′)− û(xτ ′)

)
= β̂τ

(
û(xτ )− û(yτ )

)
, so x ∼β̂,û y.

(b) Because y �I x and %β,u is at least as inequality averse as %β̂,û, x %β,u y, it

follows that βτ
′(
u(yτ ′)− u(xτ ′)

)
≤ βτ

(
u(xτ )− u(yτ )

)
. Facts (a) and (b) imply

βτ/β̂τ

βτ ′/β̂τ ′
≥
(
u(yτ ′)− u(xτ ′)

)
/
(
û(yτ ′)− û(xτ ′)

)(
u(xτ )− u(yτ )

)
/
(
û(xτ )− û(yτ )

) .

The construction of x and y yielding this inequality is possible for any two

integers τ < τ ′ and for any real numbers 0 ≤ yτ < xτ ≤ xτ ′ < yτ ′ such that

yτ ′ = û−1
(
û(xτ ′) + β̂τ−τ

′
(û(xτ )− û(yτ ))

)
. Then

Dβ,β̂ = inf
t<t′

βτ/β̂τ

βτ ′/β̂τ ′
≥ sup

(x1,x2,x3,x4)∈X̂

[
u(x4)− u(x3)

]
/
[
û(x4)− û(x3)

][
u(x2)− u(x1)

]
/
[
û(x2)− û(x1)

] = C̃u,û .

By Lemma 7 it follows that Dβ,β̂ ≥ Cu,û.
If Dβ,β̂ ≥ Cu,û, then %β,u is at least as inequality averse as %β̂,û. Assume

that y �I x and x ∼β̂,û y.7 We want to show that x %β,u y if Dβ,β̂ ≥ Cu,û.
If `(x) ≤ xτ ′ , then x %β,u y and x %β̂,û y. If xτ ′ < `(x) < yτ ′ , then the argu-

ment below applies, replacing yτ ′ by `(x). Therefore, assume that yτ ′ ≤ `(x).

7If x �β̂,û y, then by monotonicity there exists xτ − yτ > ε > 0 such that x′ defined by

x′τ = xτ − ε (where τ is as in Definition 4) and x′t = xt for all t 6= τ satisfies x′ ∼β̂,û y. By

monotonicity, x �β,u x′. By transitivity, x �β,u y. It is also the case that y �I x′. Hence, if
(y �I x & x ∼β̂,û y) =⇒ (x %β,u y), then (y �I x & x �β̂,û y) =⇒ (x �β,u y).
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By using β̂rτ (x)
(
û(xτ )− û(yτ )

)
= β̂ r̄τ ′ (x)

(
û(yτ ′)− û(xτ ′)

)
(which follows from

Eq. (3) and x ∼β̂,û y), we obtain

βrτ (x)
(
u(xτ )− u(yτ )

)
− β r̄τ ′ (x)

(
u(yτ ′)− u(xτ ′)

)
= β̂ r̄τ ′ (x)

(
û(yτ ′)− û(xτ ′)

)(βrτ (x)
(
u(xτ )− u(yτ )

)
β̂rτ (x)

(
û(xτ )− û(yτ )

) − β r̄τ ′ (x)
(
u(yτ ′)− u(xτ ′)

)
β̂ r̄τ ′ (x)

(
û(yτ ′)− û(xτ ′)

))

=
β r̄τ ′ (x)(û(yτ ′)− û(xτ ′))

û(xτ )−û(yτ )
u(xτ )−u(yτ )

(β
β̂

)rτ (x)−r̄τ ′ (x)

−
u(yτ ′ )−u(xτ ′ )
û(yτ ′ )−û(xτ ′ )

u(xτ )−u(yτ )
û(xτ )−û(yτ )


≥ β r̄τ ′ (x)(û(yτ ′)− û(xτ ′))

û(xτ )−û(yτ )
u(xτ )−u(yτ )

(
Dβ,β̂ − Cu,û

)
.

It now follows from Eq. (3) that x %β,u y whenever Dβ,β̂ ≥ Cu,û.
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