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Abstract

In a model where enhanced economic activity (accumulation of produced
capital) leads to environmental effects (depletion of natural capital), competi-
tive steady states corresponding to different discount rates are compared. For
positive discount rates, the steady state stock of produced capital may exceed
the size maximizing sustainable consumption. This implies paradoxical con-
sumption behavior ; that is, a lower discount rate may be associated with lower
steady state consumption. The theoretical significance of this phenomenon for
intergenerational equity is discussed, and examples indicating the empirical rel-
evance of the underlying assumptions are presented.
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1 Introduction

This paper presents a model of an economy interacting with the natural environ-

ment. The term natural environment is meant to comprise non-produced resources,
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the availability of which is measured by a one-dimensional indicator called natural

capital. The economy is assumed to produce a composite good that can be either

consumed or stored; the quantity being stored is referred to as produced capital. The

dichotomy between natural and produced capital seems fundamental; by definition,

saved production can only be turned into produced capital.

In the model analyzed here, enhanced economic activity, characterized by a larger

stock of produced capital and a higher production rate, leads to increased environ-

mental effects, resulting in a smaller stock of natural capital and a reduced produc-

tion rate. Unlike the neoclassical one-sector growth model, an increased stock of

produced capital does not without continuous reinvestment lead to a constant and

perpetual stream of positive benefits. Because economic activity has environmental

effects, the stream of net benefits is tilted towards the present and may eventu-

ally become negative. This points to the possibility that a lower discount rate may

increase economic activity to the extent that the resulting environmental effects re-

duce steady state consumption, leading to paradoxical steady states. Such a positive

relationship between the discount rate and steady state consumption may indeed

occur in the model and is referred to as paradoxical consumption behavior (pcb).

A consequence of the occurrence of pcb and the related phenomenon of reswitch-

ing is that the economy’s rate of return on lending to the future may not equal the

cost of borrowing from the future. In particular, the real rate of interest, measuring

produced capital’s rate of net marginal productivity, depends on the rate at which

future utilities are discounted and does not necessarily reflect the economy’s ability

to transform saved production into a constant and perpetual stream of additional

future consumption. This property is related to the observation that, in the model,

the value of natural capital in terms of produced capital is a decreasing function

of the discount rate. Hence, capital cannot be aggregated, and (outside a steady

state) current income cannot be defined independently of weight assigned to future

consumption.

Resemblance to the problems stated here is found elsewhere in the economic

literature: in the Cambridge controversies in the theory of capital (cf. Cohen and

Harcourt 2003) it was argued that heterogeneous capital cannot be aggregated and

does not determine a rate of marginal productivity by technical properties alone.

However, the theoretical significance is different. The literature of the Cambridge

controversies emphasizes what consequences the indeterminacy of capital’s produc-

tiveness has for the functional distribution of income between capital and labor.
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Here we emphasize what significance the indeterminacy of the economy’s current

productiveness has for the intertemporal distribution of consumption between the

present and the future.

The present model is structurally similar to partial equilibrium models of re-

source exploitation (see, e.g., Clark et al. 1979) There are also papers showing within

the context of partial equilibrium models that a lower discount rate

• need not lead to greater conservation (Farzin 1984, Hannesson 1986),

• may increase the social profitability of resource development projects in spite

of delayed environmental costs (Prince and Rosser 1985).

Hence, the main contribution of the present paper is to present a general equilibrium

model that connects the paradoxical phenomena like pcb and reswitching (see, e.g.,

Ahmad 1991) with the issue of whether the present shortchanges the future through

its management of produced and natural capital (as discussed in the literature on

Hartwick’s rule; see, e.g., Solow 1974, Hartwick 1977, Dixit et al. 1980, Asheim et al.

2003). In this respect the present investigation is similar to the analysis of the Brock

(1977) model presented by Becker (1982), who however does not provide sufficient

conditions for paradoxical steady states nor argue for their empirical relevance.

There are by now many contributions on economic growth with environmental

externalities (see, e.g., Beltratti 1996 and Smulders 2000 and the references therein),

some of which discuss the effects of discounting on environmental preservation (see,

e.g., Smulders 1999). The possibility and significance of the paradoxical phenomena

of the Cambridge controversies do not seem to be emphasized in this literature.

The model is introduced in Section 2 where the existence, uniqueness, and sta-

bility of a competitive steady state (for a given discount rate) is shown. In Section 3,

the characteristics of competitive steady states corresponding to different discount

rates are compared, and the occurrence of pcb is established. In Section 4, the

theoretical implications of pcb are explored, and it is pointed out that the econ-

omy’s rate of return on lending to the future may not equal the cost of borrowing

from the future. Empirical evidence is evaluated in Section 5, where it is argued

that the assumptions underlying the paradoxes might be of a pervasive rather than

exceptional nature. Some proofs are contained in a mathematical appendix.
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2 The model

The model combines the neoclassical one-sector growth model with features of a

biodynamic model due to Schaefer (1954) and others. The Schaefer model (discussed

in, e.g., Clark 1990) is based on the differential equation

ẋ(t) = g(x(t))− y(t) , (1)

where x denotes natural capital and y the rate of production, and where g, the

natural growth function, is assumed to satisfy the following.

Assumption 1 g is a continuous, twice differentiable function defined for x ∈ [0, x̄]

such that g(0) = g(x̄) = 0 and, ∀x ∈ (0, x̄), g′′ < 0.

Assumption 1 implies that g(x)/x is a decreasing function of x (and thus, g′(x) <

g(x)/x), and it is satisfied by a logistic growth function such as the one illustrated in

Figure 1. The production rate is assumed to depend on the stock of natural capital

and a variable e, productive effort, such that y is proportional to x:

y(t) = x(t)e(t) . (2)

One important characteristic of the neoclassical one-sector growth model, as de-

veloped by Solow (1956) and Swan (1956), is the aggregate production function.

Here productive effort is a function of produced capital, k, and labor, `. The popu-

lation and the supply of labor are assumed to be identical to one. Hence, no further

reference will be made to whether variables express total or per capita quantities.

By allowing for partial utilization of labor, we obtain

e(t) = f̃(k(t), `(t)) , (3)

where 0 ≤ `(t) ≤ 1 and f̃ is assumed to have the usual neoclassical properties,

including non-negative marginal productivities of both factors.

Equations (1), (2), and (3) yield the first of three feasibility conditions:

Condition 1 ẋ = g(x)− xf̃(k, `).

Another characteristic of the Solow-Swan model is that production is a composite

good that can be split between consumption and gross investment. We assume that

y(t) = c(t) + k̇(t) + δk(t) , (4)

4



where δ denotes the positive rate at which produced capital depreciates. The rate of

consumption c is required to be non-negative, and since irreversibility of investment

is not assumed (for mathematical convenience), c is allowed to exceed y provided

that k is positive.

Hence, the two remaining feasibility conditions are

Condition 2 k̇ = xf̃(k, `)− c− δk ,

Condition 3 c ≥ 0 , c = 0 when k = 0 , and 0 ≤ ` ≤ 1 .

For the analysis of Sections 2 and 3 we assume full utilization of labor (`(t) ≡ 1)

and then show in the Appendix that this is without loss of generality. Define f by

f(k) = f̃(k, 1) for all k, where f has the usual neoclassical properties.

Assumption 2 f is a continuous, twice differentiable function defined for k ∈
[0,∞) such that f(0) = 0, f ′(0) =∞, f ′(∞) = 0, and, ∀x ∈ (0,∞), f ′′ < 0.

Note that any absolutely continuous path {k(t)}∞t=0 determines a continuously

differentiable path {x(t)}∞t=0 through Condition 1 for a given initial stock of natural

capital, x(0). Since d(g(x)/x)/dx < 0 for x ∈ (0, x̄), and thus ẋ/x is a decreasing

function of x for given k, we may define a continuous function ξ by

lim
t→∞

x(t) = ξ(k∗) when x(0) > 0 and k(t) = k∗ .

Hence, ξ(k∗) is the stable equilibrium stock of natural capital when the stock of

produced capital is identical to k∗. It follows from Assumptions 1 and 2 that

(a) ξ(0) = x̄,

(b) ξ(k∗) ∈ (0, x̄) and ξ′(k∗) < 0 (since ξ′ = ξf ′/(g′(ξ)−f) and g′(ξ) < g(ξ)/ξ = f)

when 0 < f(k∗) < g′(0), and

(c) ξ(k∗) = 0 when f(k∗) when f(k∗) ≥ g′(0).

The result that the equilibrium stock of natural capital is negatively related to the stock

of produced capital shows that (in the model) economic activity has environmental

effects.

Note that any piecewise continuous path {c(t)}∞t=0 determines an absolutely con-

tinuous path {k(t), x(t)}∞t=0 through Conditions 1 and 2 for given initial stocks of

produced and natural capital, (k(0), x(0)). Condition 3 ensures that k and x are both
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Figure 1: The natural growth function.

non-negative when Assumptions 1 and 2 are satisfied. A path {c(t), k(t), x(t)}∞t=0

is feasible from (k(0), x(0)) if it satisfies Conditions 1–3 at all times and has initial

stocks (k(0), x(0)), and {c(t)}∞t=0 is piecewise continuous. A path {c(t), k(t), x(t)}∞t=0

is interior if (k(t), x(t))� 0 for all t. A steady state is a triple (c∗, k∗, x∗) with the

property that the stationary path {c(t), k(t), x(t)}∞t=0 defined by

(c(t), k(t), x(t)) = (c∗, k∗, x∗) for all t ≥ 0

is feasible from (k∗, x∗). (The set of steady states is the union of {(c∗, k∗, x∗) | x∗

= ξ(k∗) and c∗ = x∗f(k∗)−δk∗ ≥ 0} and {(0, 0, 0)} since x∗ = 0 is the only unstable

equilibrium stock of x.)

The economy seeks to maximize the sum of discounted utilities, where utility

is derived from consumption. In order words, a path {cρ(t), kρ(t), xρ(t)}∞t=0 feasible

from (k(0), x(0)) is optimal from (k(0), x(0)) if∫ ∞

0

[
u(c(t))− u(cρ(t))

]
e−ρtdt ≤ 0

for any path (c(t), k(t), x(t))∞t=0 feasible from (k(0), x(0)). The rate of discount, ρ, is

assumed to be positive, and the utility function satisfies the following assumption.

Assumption 3 u is a continuous, twice differentiable, increasing and concave func-

tion defined for c ∈ [0,∞).

The optimality of an interior path {cρ(t), kρ(t), xρ(t)}∞t=0 implies the existence

of continuously differentiable current value shadow prices of produced and natural

capital, p(t) and q(t), such that the following conditions are satisfied at all times:
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Condition 4 q̇ = q
(
ρ− g′(xρ)

)
− (p− q)f(kρ) ,

Condition 5 ṗ = p(ρ + δ)− (p− q)xρf
′(kρ) ,

Condition 6 cρ maximizes u(c)− pc .

Conditions 4, 5, and 6 are necessary optimality conditions, obtained from Pontrya-

gin’s maximum principle by formulating the Hamiltonian:

H =
[
u(c) + p

(
xf(k)− c− δk

)
+ q

(
g(x)− xf(k)

)]
e−ρt ,

provided that the usual “normalization procedure” can be justified (see the technical

note at the beginning of the Appendix). Sufficient optimality conditions are given

in the Appendix.

A competitive steady state (css) is a triple (c∗ρ, k
∗
ρ, x

∗
ρ) with the properties that

(i) the stationary path {cρ(t), kρ(t), xρ(t)}∞t=0 defined by

(cρ(t), kρ(t), xρ(t)) = (c∗ρ, k
∗
ρ, x

∗
ρ) for all t ≥ 0

is interior and feasible from (k∗ρ, x
∗
ρ), and (ii) Conditions 4–6 are satisfied from some

pair of constant shadow prices:

(p(t), q(t)) = (p∗, q∗) for all t ≥ 0 .

Assuming that {cρ(t), kρ(t), xρ(t)}∞t=0 is interior excludes the steady state (0, 0, 0),

which is trivially feasible from (0, 0), and thereby ensures that x∗ρ = ξ(k∗ρ). The

definition of a css combined with Assumptions 1 and 2 implies that

• x∗ρ maximizes (p∗ − q∗) xf(k∗ρ)− q∗ (ρx− g(x)) over all x, and

• k∗ρ maximizes (p∗ − q∗) x∗ρf(k)− p∗ (ρ + δ) k over all k.

In the remaining part of this section, we prove that there exists a unique css

(for a given discount rate) and that the optimal path converges to this steady state.

The former result (Lemma 1) forms the basis of the comparative dynamics analysis

of Section 3. The latter (Lemma 2), which relies on the simplifying assumption of

a linear utility function, has a two-fold purpose. First, it shows the stability of the

css. This is of particular interest since Solow suggested that steady states at which

pcb occurs might never be reached:
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“The paradoxes themselves show that some simple conclusions deduced from

models with one capital good may not hold for more general models, but it

remains to be seen how significant this is. If the paradoxes matter at all,

they are likely to matter for this ubiquitous question of convergence to steady

states. The simpler question is whether such paradoxes can be observed in an

optimizing economy, or whether if an optimal path comes upon such a situation,

it will go around it, so to speak, so “paradoxical behavior” will never be observed

along an optimal path” (Solow 1970, viii-ix).

This question of convergence to paradoxical steady states was subsequently ana-

lyzed by Burmeister and Hammond (1977), Burmeister and Long (1977), and Rosser

(1983). Second, Lemma 2 describes the converging path, thereby giving insight into

why paradoxical phenomena occur. The assumption of a linear utility function de-

tracts from the generality of Lemma 2. Still, it shows that an optimal path can reach

a paradoxical steady state and illustrates the properties of the converging path.

Provided that p(t) > 0, Condition 5 can be rewritten as follows:

ρ− ṗ
p = (1− v)xρf

′(kρ)− δ = zf ′(kρ)− δ , (5)

where v(t) := q(t)/p(t) is the value of natural capital in terms of produced capital,

and z(t) := (1− v(t))xρ(t) is the value of productive effort also in terms of k (since

1−v is the net value of production in terms of k, and xρ is the marginal product of e).

Equation (5) shows that the real interest rate ρ− ṗ/p (using the composite good as

numeraire) measures produced capital’s rate of net marginal productivity zf ′(kρ)− δ

(defined as the difference between its rates of gross productivity and depreciation).

The case where the shadow price p(t) of produced capital is constant is of im-

portance both in Lemma 1, which considers competitive steady states, and in the

convergence phase of the optimal paths characterized in Lemma 2, which assumes a

linear utility function. With a constant p(t), equation (5) and the strict concavity

of f imply that the optimal stock of produced capital is a continuous function of the

value of productive effort: kρ(t) = κ(z(t)) when p(t) ≡ p∗ > 0, where κ is defined by

ρ ≡ zf ′(κ(z))− δ . (6)

Equation (6) equalizes the discount rate and the rate of net marginal productivity of

capital. It follows from Assumption 2 that κ is a one-to-one correspondence between

positive values of kρ and z.
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By these definitions, Conditions 1, 4, and 5 can be rewritten as

ẋρ = g(xρ)− xρf(κ(z)) (7)

ż = z
xρ

g(xρ)− (xρ − z)
(
ρ− g′(xρ)

)
(8)

provided that p(t) ≡ p∗ > 0. Note that the system of differential equations, (7) and

(8), is determined given (xρ(0), z(0)). By the definition of κ, xρ = ξ(κ(z)) implies

ẋρ = 0. Similarly, one may define a continuous function ζ such that z = ζ(xρ) if and

only if ż = 0. Through extending the domain of the function κ (so that κ(z) = 0 for

z ≤ 0), ξ(κ(ζ(·))) becomes a continuous function from [0, x̄] into itself. Hence, by

Brouwer’s fixed point theorem there exists an x∗ρ ∈ [0, x̄] such that x∗ρ = ξ(κ(ζ(x∗ρ)));

in fact, 0 < z∗ < x∗ρ < x̄ (where z∗ = ζ(x∗ρ)). Furthermore, the signs of the partial

derivatives of ẋρ and ż w.r.t. xρ and z imply that (x∗ρ, z
∗) is unique and has saddle

point characteristics. (The details of the argument is given in the Appendix, and

the results are illustrated in Figure 4.)

The existence and uniqueness of (x∗ρ, z
∗) is the key to the following lemma.

Lemma 1 Let the functions g, f , and u satisfy Assumptions 1, 2, and 3 respectively.

For each ρ > 0, there exists a unique css (c∗ρ, k
∗
ρ, x

∗
ρ). Furthermore, the stationary

path {cρ(t), kρ(t), xρ(t)}∞t=0 defined by (cρ(t), kρ(t), xρ(t)) = (c∗ρ, k
∗
ρ, x

∗
ρ) for all t ≥ 0

is optimal from (k∗ρ, x
∗
ρ).

Proof. Existence. The triple (c∗ρ, k
∗
ρ, x

∗
ρ), where k∗ρ = κ(z∗) and c∗ρ = x∗ρf(k∗ρ)−

δk∗ρ, is a steady state. It follows from (6) and the concavity of f that c∗ρ > 0.

Moreover, (6), (7), and (8) imply that Conditions 4, 5, and 6 are satisfied by letting

p(t) ≡ p∗ and q(t) ≡ p∗v∗ (where p∗ := u′(c∗ρ) > 0 and v∗ := 1− z∗/x∗ρ).

Uniqueness. Let (c∗ρ, k
∗
ρ, x

∗
ρ) be any css. Since c∗ρ > 0, it follows from the defi-

nition of ξ that x∗ρ = ξ(k∗ρ) and by Condition 6 that p(t) ≡ p∗ = u′(c∗ρ) > 0. By

Condition 5, there exists z∗ such that q(t) ≡ p∗
(
1−z∗/x∗ρ

)
and k∗ρ = κ(z∗). Further-

more, Condition 4 implies that z∗ = ζ(x∗ρ). Thus, any css corresponds to (x∗ρ, z
∗).

Optimality of {cρ(t), kρ(t), xρ(t)}∞t=0 is shown in the Appendix.

The unique css can be implemented in a competitive market economy, pro-

vided that the discount rate ρ reflects the intertemporal preferences of the con-

sumers (including their intergenerational altruism) and the cost of using the ser-

vices of the natural environment is internalized. In such an intertemporal compet-

itive equilibrium, ρ equals the real interest rate measuring produced capital’s rate
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of net marginal productivity, and consumption c∗ρ is split into the functional shares

z∗
(
f ′(k∗ρ)− δ

)
k∗ρ for the owners of produced capital, z∗

(
f(k∗ρ)− f ′(k∗ρ)k

∗
ρ

)
for the

workers, and (x∗ρ−z∗)f(k∗ρ) = v∗x∗ρf(k∗ρ) = v∗g(x∗ρ) for the owners of natural capital.

Assume now for mathematical convenience that the utility function is linear,

and let the initial stocks of produced/natural capital be larger/smaller than the

equilibrium stocks, corresponding to what might be the empirical relevant case.

Then the saddle point characteristics of (x∗ρ, z
∗) entail that the css is stable, as

stated by the following lemma.

Lemma 2 Let the functions g and f satisfy Assumptions 1 and 2 respectively, and

assume that the function u is of the following form:

u(c) = p∗c where p∗ > 0 and c ∈ [0,∞) .

If ρ > 0 and x(0) = ξ(k(0)) ∈ (x∗ρ, x̄), then there exists a unique optimal path

{cρ(t), kρ(t), xρ(t)}∞t=0 from (k(0), x(0)) converging to the css; that is,

limt→∞
(
cρ(t), kρ(t), xρ(t)

)
= (c∗ρ, k

∗
ρ, x

∗
ρ) .

The path is characterized by an initial investment phase, in which cρ(t) = 0, followed

by a convergence phase, in which cρ(t) > c∗ρ.

Proof. The convergence phase. Let xρ(τ) ∈ (x∗ρ, x̄). Since there is a stable

manifold leading to the saddle point (x∗ρ, z
∗) (see Figure 4), there exists z(τ) ∈ (0, x∗ρ)

such that the path {xρ(t), z(t)}∞t=τ satisfies (7) and (8) and converges to (x∗ρ, z
∗). The

path {cρ(t), kρ(t), xρ(t)}∞t=τ , where kρ = κ(z) and cρ = xρf(kρ)−δkρ− k̇ρ, is feasible

from (kρ(τ), xρ(τ)). It follows from (6), the concavity of f , and the properties of the

path that cρ(t) > c∗ρ for all t > τ .

The investment phase. Since the initial stock of produced capital is smaller

than the size corresponding to the converging interior path, the latter is not feasible

from (k(0), x(0)). Consider the path {cρ(t), kρ(t), xρ(t)}∞t=0 feasible from (k(0), x(0)),

where cρ(t) = 0 during the investment phase. Throughout the investment phase,

k̇ρ > 0 and ẋρ ≤ 0 by Conditions 1 and 2, since ξ(k(0)) < x̄ (and thus k(0) > 0)

and, for each (xρ, kρ), kρ < κ(z) where (xρ, z) is on the stable manifold (and thus

xρf(xρ) − δkρ > 0 by (6) and the concavity of f). Hence, the path reaches the

converging interior path at some t = τ .

By the Appendix, {cρ(t), kρ(t), xρ(t)}∞t=0 is the unique optimal path from (k(0),

x(0)).
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Figure 2: The optimal path of consumption.

It follows from the analysis of the Appendix that

p > p∗ and p > q + p
ρ + δ

xρf ′(kρ)

in the investment phase (0 < t < τ). Hence, the marginal benefit of k accumulation

exceeds both (a) the marginal utility of consumption and (b) the marginal cost of

x depletion plus the marginal steady state cost of production. This leads to zero

consumption and maximizes accumulation of produced capital.

In the convergence phase (all t > τ), the rates of consumption and k accumula-

tion are adjusted such that

p∗ = p = q + p
ρ + δ

xρf ′(kρ)
.

The resulting consumption path is illustrated in Figure 2.

The unique optimal path can be implemented in a competitive market economy,

provided that the consumers lack intertemporal inequality aversion (as entailed by

the linear utility function), their intertemporal preferences (including their inter-

generational altruism) is reflected by the discount rate ρ, and the cost of using the

services of the natural environment is internalized. The former of these assumption

(that consumers have no preferences for consumption smoothing) is troublesome.

Hence, the purpose of Lemma 2 is not to describe the smooth path that an actual

economy would implement, but to demonstrate the possibility of convergence and

highlight the qualitative properties of the converging path.
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3 Comparative dynamics

The set of steady states is one-dimensional. Since economic activity has environ-

mental effects, a larger stock of produced capital leads to a smaller stock of natural

capital. This negative relationship is expressed by the function ξ:

Condition 1∗ x∗ = ξ(k∗).

Hence, steady state consumption is a function solely of k∗:

Condition 2∗ c∗ = ξ(k∗)f(k∗)− δk∗ ≡ g(ξ(k∗))− δk∗.

Figure 2 illustrates the consumption path during the transition between steady

states where the new equilibrium has a larger stock of produced capital, but lower

steady state consumption. Such a transition may be undertaken at a positive dis-

count rate even when leading to a lower steady state state consumption because

the intermediate gain may more than cancel out initial and eventual losses. Impa-

tience clearly prevents the transition at higher values of ρ (since then the initial loss

dominates the intermediate gain), suggesting that steady state consumption may be

positively related to the discount rate (i.e., pcb). The transition is also suboptimal

at lower discount rates (since then the eventual loss is weighted too heavily compared

to the intermediate gain), indicating that steady state consumption approaches the

maximum sustainable level as ρ approaches zero.

This section is organized as follows. The stock of produced capital maximizing

steady state consumption (i.e., corresponding to the Golden Rule) is identified in

Lemma 3. Steady states in which k∗ exceeds the Golden Rule stock are referred to

as paradoxical. It is demonstrated in Lemma 4 that for some positive discount rates,

the optimal path may converge to a paradoxical steady state. The reason is that by

increasing the stock of produced capital above the Golden Rule size, the economy

can for a finite period of time enjoy a consumption rate exceeding the maximum

sustainable level. The main result (that the optimality of paradoxical steady states

implies pcb) is pointed out in the Theorem. The propositions are illustrated by a

numerical example.

By Conditions 4 and 5, the css corresponding to ρ satisfies

Condition 4∗ ρ =
(

1
v∗ − 1

)
f(k∗ρ) + g′(ξ(k∗ρ)) ,

Condition 5∗ ρ = (1− v∗)ξ(k∗ρ)f
′(k∗ρ)− δ .
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Since ξ(0)f ′(0) = ∞, ξ(∞)f ′(∞) = 0, and d(ξf ′)/dk∗ < 0 when ξ(k∗)f ′(k∗) > 0,

there exists a unique stock k̄ of produced capital satisfying 0 = ξ(k̄)f ′(k̄) − δ. We

have that k̄ is an upper bound for the stock of produced capital at dynamically

efficient steady states. It follows from the proof of Lemma 1 that (a) v∗ ∈ (0, 1) for

all ρ > 0 (since z∗ ≡ (1 − v∗)x∗ρ ∈ (0, x∗ρ)), and (b) k∗ρ ∈ (0, k̄) for all ρ > 0 (since

x∗ρ = ξ(k∗ρ) ∈ (0, x̄), and ξ(k∗ρ)f
′(k∗ρ)− δ > 0 by Conditions 5∗).

Define vg and kg as the limits of v∗ and k∗ρ as ρ approaches zero. Conditions 4∗

and 5∗ imply that vg ∈ (0, 1) and kg ∈ (0, k̄). The following result establishes that

kg corresponds to the Golden Rule in the sense that steady state consumption is

maximized when the stock of produced capital equals kg.

Lemma 3 Let c∗ be steady state consumption when the stock of produced capital

equals k∗. Then

dc∗

dk∗
> 0 for k∗ ∈ (0, kg) ,

dc∗

dk∗
< 0 for k∗ ∈ (kg, k̄) .

Proof. Conditions 4∗ and 5∗ imply g′(ξ(kg)) + δf(k∗)/
(
ξ(kg)f ′(kg) − δ

)
= 0.

Furthermore, d
(
g′(ξ) + δf/(ξf ′ − δ)

)
/dk∗ > 0 for k∗ ∈ (0, k̄). Finally,

dc∗

dk∗
= g′(ξ)ξ′ − δ =

(
g′(ξ) +

δf

ξf ′ − δ

)
ξf ′ − δ

g′(ξ)− f

by Condition 2∗ since ξ′ = ξf ′/
(
g′(ξ)− f

)
for k∗ ∈ (0, k̄). Hence,

sgn
(

dc∗

dk∗

)
= −sgn

(
g′(ξ) +

δf

ξf ′ − δ

)
= sgn (kg − k∗)

since ξf ′ − δ > 0 and g′(ξ)− f < 0 for k∗ ∈ (0, k̄).

By rewriting Conditions 2∗ as follows

c∗ = (1− v∗)ξ(k∗)f(k∗)− δk∗ + v∗g(ξ(k∗))

and applying Conditions 4∗ and 5∗ we obtain an alternative result for dc∗/dk∗:

dc∗

dk∗
= (1− v∗)ξ(k∗)f ′(k∗)− δ +

(
(1− v∗)f(k∗) + v∗g′(ξ(k∗))

)
ξ′(k∗)

= ρ(1 + v∗ξ′(k∗)) .

(9)

Since steady state consumption must decrease when moving away from the Golden

Rule stocks, it follows from (9) that k∗ρ must increase beyond kg for small discount
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rates if and and only if 1 + vgξ′(kg) < 0. Moreover, since Conditions 4∗ and 5∗

and the properties of the functions f , g, and ξ imply that the steady state value of

natural capital in terms of produced capital decreases with the discount rate,

dv∗

dρ
< 0 for all ρ > 0 ,

and v∗ → 0 as ρ → ∞, it follows that k∗ρ must eventually backtrack and decrease

with steady state consumption for k∗ρ < kg. This behavior of the steady state stock

of produced capital as a function of ρ is shown in the following result.

Lemma 4 Let (c∗ρ, k
∗
ρ, x

∗
ρ) be the css corresponding to the discount rate ρ. Then

there exists ρ1 ≥ 0, where ρ1 > 0 if and only if 1 + vgξ′(kg) < 0, such that

dk∗ρ
dρ

< 0 for all ρ > ρ1 .

If ρ1 > 0, then
dk∗ρ
dρ

> 0 for 0 < ρ < ρ1 .

Furthermore, if ρ1 > 0, then there exists ρ2, where ρ2 > ρ1, such that k∗ρ2
= kg.

Proof. Conditions 4∗ and 5∗ imply that k∗ρ is a continuous and differentiable

function of ρ satisfying that sgn
(
dk∗ρ/dρ

)
= sgn (nρ), where nρ is a continuous and

differentiable function of ρ defined by

nρ := v∗ −$(k∗ρ) and $(k∗) :=

√
f(k∗)

ξ(k∗)f ′(k∗)
.

Since dv∗/dρ < 0, it follows that dnρ/dρ < 0 if nρ = 0. Hence, there are two cases.

Case 1: vg ≤ $(kg). nρ < 0 and dk∗ρ/dρ < 0 for all ρ > 0.

Case 2: vg > $(kg). Suppose nρ > 0 for all ρ > 0. Then k∗ρ > kg and

ξ(k∗ρ)f
′(k∗ρ) < ξ(kg)f ′(kg) for all ρ > 0. This is impossible since, by Condition 5∗,

ξ(kg)f ′(kg) = (1− v∗)ξ(k∗ρ̄)f
′(k∗ρ̄) < ξ(k∗ρ̄)f

′(k∗ρ̄) ,

where ρ̄ is determined by ρ̄ = ξ(kg)f ′(kg) − δ. Hence, let ρ1 > 0 be defined by

nρ1 = 0. Then nρ > 0 and dk∗ρ > 0 for 0 < ρ < ρ1, and nρ < 0 and dk∗ρ/dρ < 0 for

all ρ > ρ1. Furthermore, since k∗ρ is a continuous function of ρ and k∗ρ1
< kg < k∗ρ̄,

there exists ρ2, where ρ1 < ρ2 < ρ̄, such that k∗ρ2
= kg. We have that

f(kg)
vgξ(kg)f ′(kg)

= −g′(ξ(kg))
δ

= − 1
ξ′(kg)

,

14



where the left equality follows from Conditions 4∗ and 5∗ and the right inequality is

implied by Lemma 3 since dc∗/dk∗ = g′(ξ)ξ′ − δ. Hence, vg > $(kg) if and only if

vg > −1/ξ′(kg) (or equivalently, 1 + vgξ′(kg) < 0).

Lemma 4 proves that the css is paradoxical for positive discount rates smaller

than ρ2, where ρ2 is positive if produced capital is sufficiently productive; see remark

at the end of this section. Hence, it may be optimal (and therefore, dynamically

efficient) to maintain the stock of produced capital above the Golden Rule size. In

the Solow-Swan model, all such paths are dynamically inefficient (see Burmeister

and Dobell 1970, pp. 52–53). Paradoxical steady states are optimal in the present

model because production both requires prior accumulation of produced capital,

since y = xf(k), and leads to posterior depletion of natural capital, since ẋ =

g(x) − y. Thus, the costs of production are not only borne by the past, but also

by the future through environmental effects. A positive discount rate may (by

discounting future environmental effects) lead to “too much” economic activity. In

the Solow-Swan model, a positive discount rate leads to “too little” economic activity

since production only requires prior accumulation of produced capital.

If ρ1 > 0, then the css corresponding to a discount rate ρ between 0 and ρ1

corresponds also to some discount rate ρ̄ between ρ1 and ρ2. Since ρ equals the

real interest rate in steady states, it follows that the same technique is competitive

at two different interest rates, but not at the intermediate interest rates. In the

terminology of the Cambridge controversies, this is reswitching (see, e.g., Starrett

1969, p. 673, and Robinson 1975, p. 35).

The behavior of steady state consumption as a function of the discount rate is

determined by Lemmas 3 and 4. The consumption behavior is normal for ρ > ρ2;

lower discount rates lead to larger stocks of produced capital and higher steady state

consumption. Consumption reaches its maximum sustainable level cg at ρ2. For ρ1 <

ρ < ρ2, lower discount rates lead to increasingly excessive stocks of produced capital

and lower steady state consumption; pcb occurs in this interval. Consumption

reaches a local minimum at ρ1. Since steady state consumption approaches the

Golden Rule level as ρ approaches zero, the economy switches back to smaller stocks

of produced capital and higher steady state consumption for 0 < ρ < ρ1. We have

established the following main result.

Theorem 1 Let (c∗ρ, k
∗
ρ, x

∗
ρ) be the css corresponding to the discount rate ρ. Then
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Table 1: The behavior of k∗ρ and c∗ρ when f(k) = 3
√

k, g(x) = x(2− x), and δ = 1

ρ k∗ρ c∗ρ

0 9
100

9
10

0.5 1
9

8
9

2.0 1
9

8
9

ρ2 = 3.4 9
100

9
10

there exists ρ2 ≥ 0, where ρ2 > 0 if and only if 1 + vgξ′(kg) < 0, such that

dc∗ρ
dρ

< 0 for all ρ > ρ2 .

If ρ2 > 0, then there exists ρ1, where 0 < ρ1 < ρ2, such that

dc∗ρ
dρ

< 0 for 0 < ρ < ρ1 ,

dc∗ρ
dρ

> 0 for ρ1 < ρ < ρ2 .

Furthermore, c∗ρ2
= cg.

Note that the economy is regular in the terminology of Burmeister and Long

(1977, Definition 2; i.e., dk∗ρ/dρ+v∗dx∗ρ/dρ < 0 for all ρ > 0) if and only if pcb does

not occur since, by (9),

dc∗ρ
dρ

=
dc∗

dk∗
dk∗ρ
dρ

= ρ
(
1 + v∗ξ′(k∗)

)dk∗ρ
dρ

= ρ

(
dk∗ρ
dρ

+ v∗
dx∗ρ
dρ

)
.

Table 1 illustrates functional forms and parameter values for which the economy is

not regular and pcb occurs in some range for the discount rate ρ.

If the technical productiveness (as expressed through the function f) is negligible

compared to the natural productiveness (as expressed through the function g), then

an increase in k has a negligible effect on the equilibrium stock of x (ξ(k∗) ' x̄ and

ξ′(k∗) ' 0 for relevant sizes of k∗), natural capital is abundant (vg ' 0 and kg ' k̄),

and the present model reduces to a Solow-Swan model. But if the technical produc-

tiveness is high compared to the natural productiveness, due to a large population

and/or a high level of technology, then an increase in k has a large effect on the

equilibrium stock of x (|ξ′(kg)| is large), natural capital is relatively scarce (vg is

close to 1), and paradoxical phenomena occur (1 + vgξ′(kg) < 0).
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4 Discussion

Within the setting of the model, it is only by accumulating produced capital (and

thereby enhancing economic activity) that current production can be transferred

to the future. Since economic activity has environmental effects, such a transfer is

costly in terms of natural capital. The occurrence of pcb signifies that optimally

accumulated produced capital (at some positive discount rate) cannot give rise to

a perpetual stream of additional consumption due to this kind of negative effects

on the stock of natural capital. Hence, the produced capital’s rate of net marginal

productivity in a steady state does not necessarily reflect the economy’s ability to

transform saved production into a constant and perpetual stream of additional future

consumption. This line of thought suggests that the economy’s rate of return on

lending to the future may not equal the cost of borrowing from the future.

To facilitate this discussion, consider paths being optimal according to the max-

imin criterion. A path {cµ(t), kµ(t), xµ(t)}∞t=0 feasible from (k(0), x(0)) is maximin

from (k(0), x(0)) if

inft≥0 c(t)− inft≥0 cµ(t) ≤ 0

for any path (c(t), k(t), x(t))∞t=0 feasible from (k(0), x(0)).

Lemma 3 can used to analyze the properties of maximin paths in this model.

There exists no pair of initial stocks from which inft≥0 u(cµ(t)) > cg. By letting

{cµ(t)}∞t=0 satisfy 0 < cµ(t) = c∗ ≤ cg for all t and applying Lemma 3, one obtains a

phase diagram in (x, k)-space for each c∗. The converging paths, which are illustrated

in the lower panel of Figure 3, can be shown to be efficient maximin paths; except

for the efficient path with cµ(t) ≡ cg leading to the Golden Rule stocks, the paths

are regular maximin paths (Burmeister and Hammond 1977, Dixit et al. 1980). It is

consistent with the analysis of Burmeister and Hammond that no regular maximin

path converges to a paradoxical steady state.

The following observations conclude the analysis of maximin paths in the vicinity

of css. If x(0) > ξ(kg) and k(0) is greater than the stock of produced capital

corresponding to the path converging to the Golden Rule stocks, then a maximin

path entails consuming more than cg initially so that convergence to the Golden Rule

stocks is ensured. If ξ(k(0)) < x(0) ∈ (ξ(k̄), ξ(kg)], then the maximin path entails

partial utilization of labor initially, converging to some (x̃, k̃) satisfying ξ(k̃) = x̃ ≥
x(0), and then staying put at (x̃, k̃) if reached in finite time.

Let the economy be in the css (c∗ρ, k
∗
ρ, x

∗
ρ) corresponding to ρ. Consider an
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increase in the stock of produced capital, ∆k > 0, and let ∆c = inft≥0 cµ−c∗ρ denote

the maximal uniform increase in consumption that such a stock increase can lead

to, where {cµ(t), kµ(t), xµ(t)}∞t=0 is maximin from (k∗ρ + ∆k, x∗ρ). Let

ρ` = lim sup∆k↓0+
∆c
∆k

be the rate of return on lending to the future when current positive saving are

transformed into a uniform increase in future consumption. Likewise, consider a

decrease in the stock of produced capital, ∆k < 0, and let ∆c = inft≥0 cµ − c∗ρ

denote the minimal uniform decrease in consumption that such a stock increase

must lead to, where {cµ(t), kµ(t), xµ(t)}∞t=0 is maximin from (k∗ρ + ∆k, x∗ρ). Let

ρb = lim inf∆k↑0−
∆c
∆k

be the cost of borrowing from the future when current negative savings are trans-

formed into a uniform decrease in future consumption. The optimality under dis-

counted utilitarianism of the css (cf. Lemma 2) implies that

ρ` ≤ ρ ≤ ρb , (10)

because otherwise it would be possible to increase the sum of discounted utilities by

either positive or negative initial savings followed by maximin behavior.

If ρ1 > 0, so that pcb occur, then the css corresponding to a discount rate

ρ between 0 and ρ1 corresponds also to some discount rate ρ̄ between ρ1 and ρ2.

Hence, it follows from (10) that, in paradoxical steady states, the rate of return on

lending to the future is smaller than the cost of borrowing from the future:

ρ` ≤ ρ < ρ̄ ≤ ρb .

Schedules for ρ` and ρb satisfying the above condition are sketched in the upper

panel of Figure 3. This implies that there is a wedge between ρ` and ρb for css

corresponding to ρ ∈ [0, ρ2]. On the other hand, it follows from the properties of the

regular maximin paths (see lower panel of Figure 3) and Assumptions 1–3 that the

rate of return on lending to the future equals the cost of borrowing from the future

for css corresponding to ρ > ρ2.

The discrepancy between the rate of return on lending to the future and the

cost of borrowing from the future for 0 ≤ ρ ≤ ρ2 represents a cost of intertemporal

transfers of income. Since ρ` and ρb are not equal for 0 ≤ ρ ≤ ρ2, the technological
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Figure 3: Rate of return on lending and cost of borrowing.
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trade-off between well-being now and in the future is not measured by the rate of

marginal productivity of “aggregated capital”, as in the Solow-Swan model.

Because production requires prior accumulation of produced capital and leads

to posterior depletion of natural capital, the value of natural capital in terms of

produced capital, v, is positively related to the relative cost of future environmental

effects in terms of past economic activity. Since there is no well-defined trade-

off between the present and the future, this intertemporal (or intergenerational)

comparison of costs cannot be based solely on a dynamic efficiency criterion. As

v is a decreasing function of the rate at which future utilities are discounted, the

comparison depends on the weight assigned to future consumption and, thus, must

also involve normative judgements concerning intertemporal (or intergenerational)

equity. This inference, which is supported by the result in Section 3 concerning the

behavior of the relative value at the css (dv∗/dρ < 0), has two consequences:

(a) Natural and produced capital cannot be aggregated.

(b) Along an optimal path that is not in a steady state, income (defined as cρ +

k̇ρ + vẋρ, the sum of consumption and the value of net investments) depends

on normative judgements concerning intergenerational equity. In particular, if

natural capital is turned into produced capital, then the economy’s income is

an increasing function of ρ.

The two consequences are interrelated. The essence of the aggregation problem

is the ambiguity as to whether the economy is saving or dissaving when its structure

of capital is altered. To what extent can accumulated produced capital make up

for depleted natural capital when their relative value is dependent on the utility

discount rate? Since the contributions of Solow (1974) and Hartwick (1977), this

question has been related to the concept of Hartwick’s rule and a discussion of the

significance of this rule (see, e.g., Asheim et al. 2003). An investigation into how,

in the present model, a change in consumption affects income in the steady state

satisfying the Golden Rule sheds light on this question. The following result is useful

for this purpose.

Lemma 5 Along an optimal path {cρ(t), kρ(t), xρ(t)}∞t=0, the time derivative of the

economy’s income, cρ + k̇ρ + vẋρ, equals the real interest rate, ρ− ṗ
p , times the value

of net investments, k̇ρ + vẋρ:

d
dt

(
cρ + k̇ρ + vẋρ

)
=

(
ρ− ṗ

p

)(
k̇ρ + vẋρ

)
. (11)
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Proof. The lemma follows from Asheim and Weitzman (2001, Proposition 3)

(see also Dixit et al. 1980, proof of Theorem 1), and can alternatively be shown in

the context of this model by using Conditions 1, 2, 4, and 5.

Starting from a steady state (e.g., with initial stocks corresponding to the Golden

Rule), the consumption rate c cannot instantaneously influence the stock of natural

capital (ẋ = 0). By letting c fall below the steady state consumption level, only

produced capital is accumulated (k̇ > 0), so that (11) simplifies to

d
dt

(
cρ + k̇ρ + vẋρ

)
=

(
ρ− ṗ

p

)
k̇ρ

at the moment the path leaves the steady state.

Under a zero discount criterion, there is a zero growth potential with initial

steady state stocks corresponding to the Golden Rule:

ρ− ṗ
p = (1− vg)ξ(kg)f ′(kg)− δ = 0

by equation (5) since Condition 5∗ is satisfied for ρ = 0, k∗ρ = kg, and v∗ = vg.

Accumulated produced capital cannot offset the depletion of natural capital because

kg maximizes sustainable consumption.

When future utilities are discounted at a positive rate, there is a positive growth

potential even with initial stocks corresponding to the Golden Rule. If paradoxical

steady states are optimal for 0 < ρ < ρ2, then equation (5) and the analysis of the

Appendix imply that

ρ− ṗ
p = (1− v)ξ(kg)f ′(kg)− δ > ρ > 0

for 0 < ρ < ρ2 (keeping in mind that we are at the beginning of the investment

phase of the path considered in Lemma 2). Implementing such growth through the

accumulation of produced capital would lead to a potential Pareto improvement for

all future generations if the economy’s rate of return on lending to the future ρ` were

equal to the produced capital’s rate of net marginal productivity (1−v)ξ(kg)f ′(kg)−
δ. However, no actual Pareto improvement is feasible since the economy is not able

to transform saved production into a constant and perpetual stream of additional

future consumption, recalling that ρ` equals zero for initial stocks corresponding to

the Golden Rule. The accumulated produced capital offsets the depletion of natural

capital only if the economy is willing to accept present gains of a finite duration as an

adequate compensation for infinitely lasting future losses. Present benefits cannot
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be redistributed to the future due to the cost of intertemporal (or intergenerational)

transfers of income: no reinvestment possibilities exist.

Page (1977) has suggested that discounting additive utility is not an appropriate

criterion of intergenerational equity in such cases. Instead the economy should adopt

an ‘almost anywhere dominant’ standpoint, which would rule out consumption paths

(like the one illustrated in Figure 2) favoring a finite number of generations at the

expense of an infinite number, and thus, prevent accumulation of produced capital

above the Golden Rule size. Asheim et al. (2006) have recently shown how such a

normative position can be incorporated in an axiomatic analysis in the tradition of

Koopmans (1960), entailing that sustainability is imposed as a side constraint in a

discounting procedure.

5 Concluding remarks

By analyzing a generalized Solow-Swan model, we have shown that in an economy

interacting with the natural environment, intertemporal (or intergenerational) trans-

fers of consumption are costly. Due to this cost, substituting produced capital for

depleted natural capital have consequences for intergenerational equity: well-being

of future generations depends on maintaining natural capital. In this respect, the

model formalizes the opinion of many conservationists, namely that a high level of

present economic activity may not benefit the future due to environmental effects.

Here such a problem of intergenerational equity has been related to the observation

that the economy’s rate of return on lending to the future may not equal the cost

of borrowing from the future.

The model is clearly restrictive in the sense that sustainable consumption is ef-

fectively bounded by the natural productiveness. Empirical evidence does however

support its postulated complementarity between economic activity and environmen-

tal effects: important classes of production techniques that require prior accumu-

lation of produced capital do in fact lead to posterior depletion of natural capital.

Several such examples are the following:

(a) Fossil fuel consumption, being the result of prior economic development, in-

creases the stock of greenhouse gases in the atmosphere, having potentially

catastrophic long term environmental effects;

(b) Nuclear power generation, being the result of prior investment, gives rise to
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long lasting reduction of environmental quality due to accumulation of radio-

active waste products;

(c) Resource exploitation (e.g., strip mining; see Prince and Rosser 1985), re-

quiring prior development costs, leads to serious long term environmental ef-

fects;

(d) Intensive agricultural practices using fertilizers and pesticides, having been

developed through prior research in order to enhance current production, seem

to have negative long term effects on the soil’s productiveness;

(e) Medical treatment by means of antibiotics, having been developed through

prior research in order to improve health conditions, leads to the emergence of

resistant strains of bacteria and thus increased future health problems.

In general, economic activity affects the natural environment by extracting and

emitting materials. Empirical observation indicates that by capital intensifying pro-

duction techniques, the material throughput is increased or new materials are intro-

duced into the economic process, such that the availability of non-produced resources

tends to be reduced. Moreover, theoretical considerations suggest that production

techniques not having future environmental effects are prone to be exceptional if fu-

ture utilities are discounted: at any point in time, the economy will seek to engage in

activity that converts natural capita into sufficiently large short run benefits. Such

behavior is reinforced by a large population and a high technological level, and it

may well be prevalent even if natural capital is relatively scarce.

Appendix: Sufficient conditions for optimality

Conditions 4–6 are necessary for optimality if one can justify the usual “normaliza-

tion procedure” (i.e. setting equal to unity the constant multiplier, say λ0, associated

with the integrand of the objective function) when formulating the Hamiltonian.

One can set λ0 = 1 if certain growth conditions are satisfied (cf. Sydsæter et al.,

2005, Theorem 9.11.2, and its more general version in Seierstad and Sydsæter, 1987,

Theorem 16). This result cannot be applied here without modifying the optimization

problem slightly.

In this appendix we show that paths satisfying Conditions 4–6 as well as the

additional properties (12)–(14) are indeed optimal, and that these conditions and
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properties are satisfied for the paths considered in Lemmas 1 and Lemma 2. None

of the results of this paper depends on Conditions 4–6 being necessary.

Proposition 1 Let {cρ(t), kρ(t), xρ(t)}∞t=0 be an interior path feasible from (k(0),

x(0)), which satisfies `(t) = 1 (i.e., full utilization of labor) for all t. If there exist

continuously differentiable functions p(t) and q(t) satisfying Conditions 4–6 and the

following additional properties,

p(t) > 0 and q(t) > 0 for all t , (12)

limt→∞p(t)e−ρt = 0 and limt→∞q(t)e−ρt = 0 (13)

d
(
(p(t)− q(t))xρ(t)e−ρt

)
dt

≤ 0 for all t , (14)

then {cρ(t), kρ(t), xρ(t)}∞t=0 is the unique optimal path from (k(0), x(0)).

Proof. Showing sufficiency is complex because xf(k) is not a concave function.

Note that (13) and (14) imply (p − q)xρ ≥ 0 and p − q ≥ 0 for all t ≥ 0 since the

path is interior. Let {c(t), k(t), x(t)}∞t=0 be any path feasible from (k(0), x(0)). This

alternative path may have partial utilization of labor; hence, we only require that

{`(t)}∞t=0 is a piecewise continuous path satisfying 0 ≤ `(t) ≤ 1 for all t. Then∫ ∞

0

[
u(c)− u(cρ)

]
e−ρtdt

=
∫ ∞

0

[
u(c)− u(cρ) + p

((
xf̃(k, `)− c− δk − k̇

)
−

(
xρf(kρ)− cρ − δkρ − k̇ρ

))
+ q

((
g(x)− xf̃(k, `)− ẋ

)
−

(
g(xρ)− xρf(kρ)− ẋρ

))]
e−ρtdt

(by Conditions 1 and 2)

≤
∫ ∞

0

[
(p− q)

(
x− xρ

)(
f̃(k, `)− f(kρ)

)
− p

(
(k̇ + δk)− (k̇ρ + δkρ)

)
+ (p− q)xρ

(
f̃(k, `)− f(kρ)

)
− q

(
(ẋ− g(x))− (ẋρ − g(xρ))

)
+ (p− q)

(
x− xρ

)
f(kρ)

]
e−ρtdt

(by Condition 6 and by rearranging terms). Conditions 4 and 5 imply that the four

last terms are non-positive since

(a) (p− q)xρ

(
f̃(k, `)− f(kρ)

)
≤

(
k − kρ

)
(p− q)xρf

′(kρ)

by f ′′ < 0 and (p− q)xρ ≥ 0 since f̃(k, l) ≤ f(k)
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(b) q
(
g(x)− g(xρ) ≤

(
x− xρ

)
qg′(xρ) by g′′ < 0 and q > 0,

(c) −
∫∞
0 p

(
k̇ − k̇ρ

)
e−ρtdt =

∫∞
0

(
k − kρ

)
(ṗ− pρ)e−ρtdt,

(d) −
∫∞
0 q

(
ẋ− ẋρ

)
e−ρtdt =

∫∞
0

(
x− xρ

)
(q̇ − qρ)e−ρtdt,

where (c) and (d) follows from (13) using integration by parts. Concerning the first

term, Assumption 1 and Condition 1 imply that(
x− xρ

)(
f̃(k, `)− f(kρ)

)
≤

(
x− xρ

) (
ẋρ

xρ
− ẋ

x

)
,

because sgn
(
x − xρ

)
= sgn

(
g(kρ)/xρ − g(x)/x

)
= sgn

(
(ẋρ + xρf(kρ))/xρ − (ẋ +

f̃(k, `))/x
)

= sgn
(
(ẋρ/xρ − ẋ/x) − (f̃(k, `) − f(kρ))

)
. Since p − q ≥ 0, it therefore

follows that∫ ∞

0

[
u(c)− u(cρ)

]
e−ρtdt ≤

∫ ∞

0
(p− q)

(
x− xρ

) (
ẋρ

xρ
− ẋ

x

)
e−ρtdt

=
∫ ∞

0
(p− q)xρ

(
x

xρ
− 1

)
d
dt

(
lnxρ − lnx

)
e−ρtdt =

∫ ∞

0
(p− q)xρe

−ρt
(
e−m − 1

)
ṁdt ,

where m(t) is defined by m(t) := lnxρ − lnx. Note that m(0) = 0. Let T be an

arbitrary positive number. Then, using integration by parts,∫ T

0
(p− q)xρe

−ρt
(
e−m − 1

)
ṁdt

= (p(0)− q(0))xρ(0)− (p(T )− q(T ))xρ(T )e−ρT
(
e−m(T ) + m(t)

)
+

∫ T

0

d
dt

(
(p− q)xρe

−ρt
)(

e−m + m
)
dt

≤ (p(0)− q(0))xρ(0)− (p(T )− q(T ))xρ(T )e−ρT +
∫ T

0

d
dt

(
(p− q)xρe

−ρt
)
dt ,

since (p(T )− q(T ))xρ(T ) ≥ 0, d
(
(p−q)xρe

−ρt
)
/dt ≤ 0 for all 0 < t < T by (14), and

e−m + m ≥ 1 for all m. The last expression is equal to zero, and the optimality of

{cρ(t), kρ(t), xρ(t)}∞t=0 follows by letting T approach infinity. Uniqueness is implied

by g′′ < 0 and q > 0.

The existence, uniqueness, and saddle point characteristics of (x∗ρ, z
∗).

Consider equations (7) and (8). Extend the domain of κ(·) to non-positive values

of z as follows: κ(z) = 0 for z ∈ (−∞, 0]. Then ξ(κ(·)) is a continuous function from

R into [0, x̄] with the following properties:

xρ = ξ(κ(z)) implies ẋρ = 0

ξ(κ(z)) = x̄ for z ∈ (−∞, 0] and ξ(κ(z)) ∈ [0, x̄) for z ∈ (0,∞) .
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Figure 4: A phase diagram.

Since ∂ż/∂z = g(xρ)/xρ − g′(xρ) + ρ ≥ ρ > 0 for all z and xρ and ż = g(xρ) if

z = xρ, there exists a continuous function from ζ(·) from [0, x̄] into R with the

following properties

z = ζ(xρ) if and only if ż = 0

ζ(0) = 0 , ζ(xρ) < xρ for xρ ∈ (0, x̄) , and ζ(x̄) = x̄ .

By Brouwer’s fixed point theorem, there exists x∗ρ ∈ [0, x̄] such that x∗ρ = ξ(κ(ζ(x∗ρ))).

It follows that 0 < x∗ρ < x̄ and z∗ = ζ(x∗ρ) > 0 since

x∗ρ = 0 ⇒ z∗ = ζ(x∗ρ) ≤ 0 ⇒ x∗ρ = ξ(κ(z∗)) = x̄

⇒ z∗ = ζ(x∗ρ) > 0 ⇒ x∗ρ = ξ(κ(z)) < x̄ .

Furthermore, z∗ < x∗ρ, since z∗ = ζ(x∗ρ) ≥ x∗ρ implies x∗ρ = 0 or x∗ρ = x̄. Finally,

(x∗ρ, z
∗) is unique and has saddle point characteristics since

∂ẋρ

∂xρ
< 0 and

∂ẋρ

∂z
< 0 when xρ = ξ(κ(z)) ∈ (0, x̄)

∂ż

∂xρ
< 0 and

∂ż

∂z
> 0 when z = ζ(xρ) ∈ (0, xρ) .

These results are illustrated by a phase diagram in Figure 4.
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Lemma 1 and sufficient optimality conditions.

Properties (12) and (13) are satisfied since both p and q are positive and constant.

Property (14) is satisfied since (p − q)xρ ≡ p∗(1 − v∗)x∗ρ ≡ p∗z∗ is positive and

constant.

Lemma 2 and sufficient optimality conditions.

If p > 0, then it follows from Conditions 1, 4, and 5 that

ż = z
xρ

g(xρ)− (xρ − z)
(
zf ′(kρ)− δ − g′(xρ)

)
, (15)

which becomes (8) under the additional assumption that ṗ = 0. Since {kρ}∞t=0 and

{xρ}∞t=0 are absolutely continuous, it follows that z is continuously differentiable.

The convergence phase. By the linearity of u, Condition 6 is satisfied by letting

p = p∗ > 0 for all t ≥ τ . Since p > 0 and ṗ = 0 for t ≥ τ , {xρ(t), z(t)}∞t=τ moves along

the stable manifold of Figure 4 leading to the saddle point (x∗ρ, z
∗). The properties

of the converging path from (xρ(τ), z(τ)) with xρ(τ) > x∗ρ imply that z > 0 and

ż < 0 for all t ≥ τ . It follows from (6), (7), and (8) that Conditions 4 and 5 are

satisfied by letting q = p∗v ≡ p∗
(
1− z/xρ

)
for all t ≥ τ .

The investment phase. Turn now to the properties of p and q for 0 < t < τ when

Conditions 4 and 5 are imposed. Since p(τ) = p∗ > 0 and p is continuous, we must

have p > 0 for all t > τ − ε, for some ε > 0. Hence, (15) holds for τ − ε < t < τ .

Furthermore, for τ − ε < t < τ ,

(a) z = xρ implies ż > 0 by (15) since 0 < xρ < 1,

(b) z ∈ (0, xρ) and ż = 0 imply that dż/dt exists and is positive since (15) holds,

and k̇ρ > 0 and ẋρ ≤ 0 (by the proof of Lemma 2).

Hence, z(τ) > 0 and ż(τ) < 0 imply that z < x for τ − ε < t < τ by (a) and z > 0

and ż < 0 for τ−ε < t < τ by (b). Therefore, 0 < z < xρ and ż < 0 for τ−ε < t < τ .

It follows from the previous paragraph that kρ < kρ(τ) = κ(z(τ)) < κ(z) for

τ − ε < t < τ , since k̇ρ > 0 and ż < 0 for τ − ε < t < τ and κ is strictly increasing.

By (5) (which follows from Condition 5) and (6) this means that

− ṗ
p = zf ′(k)− (ρ + δ) > zf ′(κ(z))− (ρ + δ) ≡ 0

for τ − ε < t < τ since z > 0, implying that ṗ < 0 for τ − ε < t < τ . This implies

that we can set ε = τ , so that p > p∗ and ṗ < 0 for 0 < t < τ . Therefore, 0 < z < xρ

and ż < 0 for 0 < t < τ .
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It follows from the above analysis that, for 0 < t < τ , Conditions 4 and 5 are

satisfied by construction, while Condition 6 is satisfied since p > p∗ and cρ = 0.

The analysis of the convergence and investment phases entails that p > 0, ṗ ≤ 0,

0 < z < xρ, and ż < 0 for all t > 0. Since thus p > 0 and q = pv = p(1− z/xρ) > 0

for all t > 0, property (12) is satisfied. Furthermore, both p and q converge to

the positive constants p∗ and q∗ := p∗
(
1 − z∗/x∗ρ

)
, implying that property (13) is

satisfied. Finally, (p− q)xρ ≡ pz is positive and decreasing, implying that property

(14) is satisfied.
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