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Abstract

To control Medicaid�s increasing expenditure on reimbursement of outpatient prescrip-

tion drugs, the Omnibus Budget Reconciliation Act of 1990 included a rebate program

that featured a most favored customer (MFC) clause. This clause guarantees that Medic-

aid pays the minimum price o¤ered in the market (minimum price provisioning or MPP)

or a proportion of the average manufacturer price (average price provisioning or APP).

We characterize the optimal pricing strategy of a third-degree price discriminating mo-

nopolist in response to the imposition of MPP or APP rules. Among our �ndings are

conditions under which these rules result in higher prices charged in all markets. We also

examine the e¤ects of these rules on aggregate demand for the drug and on social welfare.

In general, these rules may change aggregate demand and social welfare in either direc-

tion. We are able to provide some useful su¢ cient conditions. For example, imposing

MPP increases social welfare if it results in higher aggregate demand.

1 Introduction

Medicaid is a U.S. government program to pay for health-care services for some low-income

families and individuals. It is funded jointly by the federal and state governments. Growing

concern over the rapid increase in Medicaid�s spending for outpatient prescription drugs led

to the enactment of the Medicaid rebate program in 1990. This rebate program, established

by the Omnibus Budget Reconciliation Act (OBRA) of 1990, requires drug manufacturers to

o¤er rebates to Medicaid based on the discounts o¤ered to other large purchasers. This is a

form of �most favored customer�(MFC) clause. In particular, Medicaid is only required to

pay the manufacturer the minimum of the prices that the manufacturer charges any purchaser

in the market (minimum price provisioning or MPP), or a percentage below the quantity-

weighted average price it charges (average price provisioning or APP), whichever is lower.

1



As Medicaid consumers constitute a signi�cant fraction of the whole market, the Medicaid

rebate program provides drug manufacturers with a strategic incentive to alter their price

distribution in the market. This article studies the optimal response of a monopolist to the

imposition of these types of minimum price and average price MFC clauses. More speci�cally,

we are interested in examining their e¤ect on pricing when the monopolist practices third

degree price discrimination across markets. We also examine how these rebates a¤ect the

total demand for the product as well as social welfare.

Drug manufacturers often practice price discrimination to increase pro�ts. For single-

source products (branded drugs with patent protection), suppliers enjoy a high degree of

market power. Manufacturers can categorize various purchasers according to their price

sensitivity, and charge each group a distinct price. This leads to a high level of price dispersion

in the market. In 1991, before the rebate rule went into e¤ect, nearly one-third of the single

source drugs had a best price discount of at least 50 percent (i.e., the lowest price charged

for the drug was less than half of the highest price charged) (Congressional Budget O¢ ce [3]

, pp xi).

As of 2002, Medicaid constituted approximately 18.5% of the prescription drug market

(Duggan and Scott Morton [7])1. As such a large purchaser, Medicaid might be expected to

use its bargaining power to obtain relatively good prices. However, Medicaid was unable to

do this as well as other large purchasers, in part because it reimbursed individual pharmacies

and hospitals rather than purchasing in bulk from the manufacturer. To secure better prices

for Medicaid patients, OBRA 90 included a voluntary program in which pharmaceutical

manufacturers could enroll their product to have access to all state Medicaid formularies2.

In return, drug manufacturers are required to pay rebates to state and federal Medicaid

programs. The rebate rule has a fairly complex structure (and has been modi�ed somewhat

over time). As of 2006, manufacturers of branded products are required to sell to Medicaid

at 84.9% of the Average Manufacturer Price (AMP), or the �best�price, whichever is lower

(see Hearne [8]). AMP is a quantity-weighted average of the wholesale prices available to a

member of the �retail pharmaceutical trade�. The price at which the drug is sold to hospitals

or HMOs are not counted in the calculation of AMP. The best price is simply the minimum

price at which the product is sold to any purchaser, including hospitals and HMOs3. Generic

1As of 2006, those individuals over 65 who would have previously been covered by the Medicaid prescription

drug program are now covered under Medicare�s prescription drug program. Thus Medicaid�s market share

has likely shrunk somewhat recently. More recent numbers suggest a market share closer to 15% (Jacobson,

Panangala and Hearne [9]).
2When this program was introduced, nearly all branded and generic drug manufacturers did enroll (Scott

Morton [18]).
3The Veterans Administration (VA) and Department of Defense (DoD), being large purchasers, enjoy

substantial discounts o¤ the wholesale price. When the rebate program was originally enacted, these prices

were included in the calculation of the best price. However, in 1992, Congress amended OBRA to exclude

prices paid by VA, DoD and some other public purchasers from the calculation of best price.
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products are not subject to the best price provision. The price of a generic product to

Medicaid is required to be 89% of the AMP (see Hearne [8])4.

The Medicaid rebate program was introduced to reduce Medicaid�s expenditures on out-

patient prescription drugs. Although this program seems to have succeeded in lowering

Medicaid�s in�ation-adjusted drug expenditures (Congressional Budget O¢ ce [3]), its overall

e¤ects are not obvious. Pharmaceutical manufacturers should react to the rebate rule, thus

potentially changing their price distribution across markets. What is the nature of this opti-

mal price response? The savings to Medicaid, if any, would not generally be the same as those

calculated without taking into account the change in optimal pricing strategy. Non-Medicaid

purchasers are also a¤ected by the rebate rule. For example, Duggan and Scott Morton [7]

estimate that for the top 200 drug treatments, the average price of a non-Medicaid prescrip-

tion would have been 13.3 percent lower in 2002 if the Medicaid MFC clause had not been

in e¤ect. The rebate rule also a¤ects the manufacturer�s pro�t adversely. It is important to

examine the aggregate welfare e¤ects of this cost-saving mechanism. Given the changes that

take place as a consequence of the rebate rule, what happens to social welfare?

We analyze a model where a monopolist optimally determines her pricing strategy, subject

to MPP or APP clauses. We examine these two types of MFC clauses separately. We also

consider two assumptions about the demand of Medicaid participants for drugs: (i) Medicaid

participants�demand curve is same as that of non-Medicaid consumers, and (ii) Medicaid

participants�demand is completely inelastic and non-Medicaid consumers�demand is elastic.

We consider only these two polar cases for simplicity. Medicaid consumers do not pay for

their drugs directly (though in some states they do have small co-payments (Hearne [8])).

Thus, their price sensitivity may be di¤erent from non-Medicaid purchasers�price sensitivity.

On the other hand, Medicaid customers�purchases are in�uenced by physicians and others

(including those running state drug formularies) as well as possible co-payments and so we

think the case of elastic demand is worth investigating in addition to the inelastic case5. In

examining the impact of the rebate rule on social welfare, we use Marshallian welfare, the

sum of consumers�and producers�surplus, as our measure of social welfare.

What do we �nd? A quick preview of some of our results follows. Under MPP, the

4Average price provisioning is also subject to another restriction in terms of the in�ation rate. If AMP rises

faster than the in�ation rate, an additional rebate, which is equal to the di¤erence between the current AMP

and the base year AMP increased by the consumer price index (CPI), is imposed. For a detailed discussion

of the Medicaid rebate program, see Congressional Budget O¢ ce report [3]. Duggan and Scott Morton [7]

point out that since price increases for any treatment are limited by CPI in�ation, if the optimal price for a

drug increases faster, there is an incentive to instead introduce and sell a new version of the same drug with

a di¤erent dosage amount or type (e.g., liquid, capsule, tablet) that would have an unrestricted base price.

They �nd evidence consistent with this behavior by drug manufacturers.
5Note that our work also applies to contracts in natural gas or international trade where the use of a most

favored customer clause is common. In those applications, it is more natural to assume that the most favored

customer�s demand is also price sensitive.
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minimum price charged always rises compared to the no regulation case. In fact, prices in

all markets (weakly) rise if Medicaid and non-Medicaid consumers have the same demand

characteristics (the �elastic� scenario). In contrast, if Medicaid demand is inelastic (the

�inelastic� scenario), prices in all markets where the minimum is not charged will fall. In

either scenario, the welfare e¤ect of MPP may be good or bad. A useful su¢ cient condition

for MPP to be welfare improving is that MPP raise aggregate quantity.

Under APP and elastic demand, prices in all markets move in the same direction. Prices

increase if and only if the discount percentage o¤ of average price is above a threshold. When

MFCs�demand is inelastic, we provide conditions su¢ cient for prices to move together in

each direction. Prices under APP are decreasing in the discount, and if the discount is high

enough, APP will lower prices in every market. Thus large discounts have opposite e¤ects on

price movements under APP in the elastic versus inelastic cases. As with MPP, the welfare

e¤ect of imposing APP is ambiguous in general. If MFCs�demand is inelastic, then if prices

in all markets increase, both welfare and aggregate quantity fall, while if all prices decrease

this is welfare and quantity improving.

Understanding the e¤ects of these regulations is not simply of interest for evaluation of

Medicaid policy, but is also important as a guide to future regulation. For example, recently

there has been debate about the appropriate regulatory regime to govern drug purchases

and reimbursement under Medicare, the US government program of health insurance for the

elderly (Jacobson, Panangala and Hearne [9]).

1.1 Related Literature

The literature related to the Medicaid rebate program and its rebate rules has been primarily

empirical. The only theoretical models of monopoly behavior under these rules that we know

of are in the brief theory sections of Scott Morton [18] and Congressional Budget O¢ ce [3].

The seminal Scott Morton [18] is the most closely related to our analysis, as we borrow

the third degree price discrimination structure, the focus on the polar cases of elastic and

inelastic Medicaid demand, and the de�nitions of the APP and MPP rules from her model.

We build on and extend her theoretical analysis in a number of ways. First, we do not

limit our analysis to the case of linear market demand curves �we allow general downward

sloping, continuously di¤erentiable demands. Second, we provide a full characterization of the

solution for the minimum price provision problem. Even in the special case of linear demand,

this solution only coincides with that in Scott Morton [18] under additional and restrictive

assumptions. Moreover, we are able to describe conditions that determine whether prices

increase or decrease when an average price provision rule is imposed. Finally, we analyze

how these clauses could a¤ect aggregate demand and social welfare, an aspect not studied

in Scott Morton ([18], [19]) or Congressional Budget O¢ ce [3]. This last aspect of our

work has close connections with the literature on the welfare e¤ects of third degree price
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discrimination by a monopolist. The e¤ect of price discrimination on social welfare was

�rst studied by Robinson [14]. Schmalensee [16] reexamined the problem, and provided a

su¢ cient condition for welfare to decrease under uniform pricing as compared to third degree

price discrimination6. He shows that uniform pricing can lead to a decrease in welfare only

if it leads to an decrease in aggregate demand. As stated above we show a similar result for

MPP �imposition of MPP can lead to a decrease in welfare only if it leads to a decrease in

aggregate demand. Schmalensee�s techniques prove useful in our analysis.

The empirical work on the Medicaid rebate program includes two United States General

Accounting O¢ ce (GAO) studies ([23], [24]), a Congressional Budget O¢ ce report [3], Scott

Morton ([18], [19]) and Duggan and Scott Morton [7]. All of these papers �nd some evidence

of post-rebate rule increases in drug prices for non-Medicaid buyers. GAO [23] studied

how Veterans A¤airs (VA) and Department of Defense (DoD) prescription drug prices had

changed, while GAO [24] examined drug prices to health maintenance organizations (HMOs)

and hospitals. In both cases price increases were observed, but the GAO could not determine

whether the price growth was attributable to the rebate rules. The Congressional Budget

O¢ ce [3] report concluded that although the rebate rule lowered Medicaid expenditure, it

increased the prices paid by some purchasers in the private sector. Scott Morton [18] �nds

that the price of branded products facing generic competition rose. For generic drugs, the

increase in price is higher as markets become more concentrated. Scott Morton [19] �nds

that products with higher ex-ante price dispersion show a greater increase in price when the

rebate rule is in e¤ect, consistent with the theory. Duggan and Scott Morton [7], as mentioned

above, estimate that the average price of a non-Medicaid prescription would have been 13.3

percent lower in 2002 if the Medicaid MFC clause had not been in e¤ect. They also �nd an

increase in new drug introductions for the purpose of raising prices in reaction to a provision

in the OBRA 90 legislation that ties increases in existing drug prices to in�ation.

Rules like MPP have been studied in a number of other contexts. The impact of simi-

lar most favored customer clauses in oligopoly settings has been studied extensively in the

theoretical literature. Most of the research explores the situation where the sellers strategi-

cally exploit the clause to soften price competition. See for example Besanko and Lyon [1],

Cooper [4], Cooper and Fries [5], Png [12], Png and Hershleifer [13], and Salop [15]. Spier

[20] studies uses of MFC-type clauses in settlement of litigation. The use of MPP with long

term contracts has been studied by Butz [2] in the context of durable goods monopoly. Butz

analyzes how MPP can be used to facilitate commitment not to reduce price in the future,

and thereby sustain the monopoly price for the product. In his analysis, MPP is used as

a strategic device by the monopolist in its intertemporal game with consumers to change

consumer demand by changing beliefs about future prices. Thus even in the monopoly con-

text, the emphasis has been on strategic e¤ects. Our analysis di¤ers substantially from those

6Varian [25] and Schwartz [17] are able to generalize Schmalensee�s result.
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mentioned in this paragraph because our focus is on the unilateral/own-price e¤ects of such

clauses rather than the strategic e¤ects operating through competitor or consumer reaction.

In particular, none of our pricing or welfare results may be derived from this literature.

This paper is organized as follows. Section 2 provides a simple example (with three

markets and linear demands with a common slope) of price changes and welfare e¤ects under

the two di¤erent rebate rules in the elastic case of identical Medicaid and non-Medicaid

demand. In section 3, we describe the general model and specify the monopolist�s objective

function under the two rules. In section 4, we solve the optimization problem under MPP and

examine its welfare implications. We do this for both the elastic and inelastic MFC demand

cases. Section 5 carries out a similar investigation for the APP rule. Section 6 concludes.

2 Example

We start with a simple numerical example to demonstrate the e¤ect of these rebate rules

on prices, demand and welfare when MFC and non-MFC consumers have the same demand

characteristics.

Example 1 Let us assume there are three submarkets with demand curves D1(p) = 90 �
5p;D2(p) = 100 � 5p and D3(p) = 200 � 5p respectively. Assume the marginal cost of

producing each unit of the product is $2 and, in each market, let us suppose 20% of the

consumers are protected by an MFC clause. Further, assume that the demand characteristics

of consumers covered by the MFC clause are the same as those who are not. In the absence

of an MFC clause, the monopolist charges the pro�t maximizing prices in each market, which

are p1 = 10; p2 = 11 and p3 = 21. The monopolist makes a pro�t of $2530 ($320, $405 and

$1805 from submarkets 1, 2 and 3 respectively). With minimum price provisioning for the

MFCs, optimal prices will be p1 = 11:45; p2 = 11:45 and p3 = 21: The monopolist�s total

pro�t is reduced to $2427.27. This increase in prices (strict increase in p1 and p2 with p3
remaining same) as a consequence of the MPP is a general result. As the MPP clause means

that some higher valuation consumers are now paying the minimum price, there is incentive

to raise the minimum price. In the following section, we will show that in submarkets where

this minimum price is not charged, the monopolist�s optimal policy would be to maintain

the pro�t maximizing price. Furthermore, the markets where the minimum price is charged

will be shown to be all markets where the pro�t maximizing price is below an endogenously

determined threshold.

We now turn to an average price provision MFC clause (with a 15% discount o¤ the quantity-

weighted average price) in this example. With this APP clause, the monopolist�s optimal

pricing strategy will be p1 = 10:07; p2 = 11:07 and p3 = 21:07 and it will earn a total pro�t of

$2455:7. MFCs pay 85% of the quantity-weighted average price ($16:14), which is $13:72: In
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this example, prices in all markets increase under APP. The same will be true in any example

with linear demand curves with a common slope. In general, we will show that under APP

all prices must move in a common direction, but may either increase or decrease. Moreover,

we will describe exactly when they will do one or the other.

The monopolist�s total pro�t is reduced under either clause. The intuition is straightforward.

The optimal solution for the case without an MFC clause coincides with the solution of a

less constrained optimization problem, namely, the situation where the monopolist is allowed

to charge di¤erent prices to MFCs and non-MFCs in each market without any restriction.

Both MPP and APP put additional restrictions on the prices o¤ered and reduce the size of

the feasible set of solutions.

Table 1

No MFC MPP APP

Mkt1 $10 $11.45 $10.07

Price Mkt2 $11 $11.45 $11.07

Mkt3 $21 $21 $21.07

Pro�t $2530 $2427.27 $2455.7

What happens to quantities purchased and to overall welfare? In the absence of an MFC

clause, the aggregate quantity purchased is 180. Overall welfare, as measured by the sum of

producer�s and consumers�surplus, is $3795. Under MPP, aggregate quantity is unchanged,

but overall welfare rises by $51:36 due to the reallocation of units from the lower valuation

markets 1 and 2 to the higher valuation MFC consumers from market 3. For linear demand,

this example generalizes, in that quantity purchased will stay the same and overall welfare will

always increase. With more general demand structures aggregate quantity may change and

welfare may increase or decrease. Under APP, in this example aggregate quantity increases

slightly (to 180:002) and overall welfare increases by $36:88. As with MPP, for more general

demand structures, quantity may change in either direction as may overall welfare.

3 The Model

Consider a monopolist selling a single good in n di¤erent markets, indexed by i. Each

market i has a downward sloping non-negative continuously di¤erentiable demand curve

qi(pi) for the product, where pi is the price charged in market i. Assume demand is zero

if pi becomes large enough. We assume that the monopolist cannot discriminate between

consumers within a market, but it can prevent arbitrage by consumers between markets.

For simplicity, we consider a linear cost function C(q) = cq. We also assume there are

gains from trade in all markets, i.e., qi(c) > 0. This framework depicts a simple model

of third degree price discrimination. We analyze the consequences of MFC clauses in this
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environment. In particular, we will discuss two types of MFC provisions: (i) Minimum price

provision (MPP), and (ii) Average price provision (APP). Recall that under MPP, MFCs

pay the minimum of the prices charged in the n markets. Under APP, MFCs pay a fraction

(1� �) of the (non-MFC) quantity-weighted average of the prices charged in the n markets.
The discount from the average, �, is a parameter in our model. The presence of a MFC

provision divides consumers in each market into two categories: MFCs and non-MFCs. If

all consumers in market i were non-MFCs, the demand function in market i would be qi, as

above. If all consumers in market i were MFCs, the demand function in market i would be

qMi . More generally, some fraction of consumers in each market will fall into each category.

For simplicity, we assume that the fraction of MFCs in each market is the same and we denote

this fraction by  2 [0; 1].
The monopolist�s total pro�t can be written as

� = (1� )
nP
i=1
(pi � c)qi(pi) + 

nP
i=1
(pMi � c)qMi (pMi ); (3.1)

where pi and pMi denote the prices paid by non-MFCs and MFCs in market i, respectively.

Under MPP, pMi is pmin � min fp1; : : : ; png : Under APP,

pMi = (1� �)pq � pq;� where pq =
(1� )

Pn
i=1 piqi(pi)

(1� )
Pn
i=1 qi(pi)

=

Pn
i=1 piqi(pi)Pn
i=1 qi(pi)

:

As mentioned in the Introduction, we study two scenarios: (i) when the MFCs�demand

curve is the same as that of non-MFCs, i.e., qMi = qi for all i, and (ii) when the MFCs�

demand is completely inelastic, i.e., qMi = zi > 0 for constants zi.

We will assume throughout our analysis that all n markets are served even after the MFC

provisions are imposed. In an elastic demand framework, a su¢ cient condition for this is

that every market is served with positive output under the optimal uniform monopoly price.

We also assume that demand in each market is such that pro�t in that market (assuming

no MFC) is a strictly concave function of price in that market whenever demand is positive.

This assumption ensures that a solution of the pro�t maximization problem may be found

by solving the �rst-order conditions. Under MPP, this assumption makes the �rst-order

condition both necessary and su¢ cient for a solution of the pro�t maximization problem. For

APP, stronger conditions are required for an analogous result. We defer further discussion

of that case to Section 5. Formally, the following are imposed for the remainder of the paper

unless explicitly stated otherwise:

Assumption 1 Demand of non-MFCs is positive in every market at the optimal prices in
the unconstrained, MPP and APP problems.

Assumption 2 (p� c)qi (p) is strictly concave in p whenever qi (p) > 0.
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4 Minimum Price Provision

4.1 Elastic MFC demand

As a point of comparison, it is useful to begin our analysis by looking at the pro�t max-

imization problem for the monopolist when there is no provision for MFCs. Without any

regulation, the monopolist cannot (and would not want to) discriminate between MFCs and

non-MFCs within each market. The monopolist chooses prices to maximize

� =
nP
i=1
(pi � c)qi(pi): (4.1)

Let pmi denote the �rst best monopoly price in market i. Under Assumption 2, p
m
i is the

unique solution to the equation

(pmi � c)q0i(pmi ) + qi(pmi ) = 0:

Without loss of generality, assume pm1 < p
m
2 < : : : < p

m
n
7. Denote the uniform monopoly

price (pro�t maximizing price under no discrimination) by pu; which is the unique solution

to
nP
i=1

�
(p� c)q0i(p) + qi(p)

�
= 0:

Following Robinson�s (Robinson [14]) terminology, we call those markets with pmi > p
u strong

markets. Let S be the set of the corresponding indices. Similarly, weak markets are markets

with pmi < pu and W denotes the set of the corresponding indices. Let I be set of indices

of those intermediary markets where pmi = pu: Observe that pm1 < pmn and Assumption 2

together imply that there is always at least one strong and one weak market.

We now examine the problem under MPP. Since MFCs and non-MFCs in market i have

identical demand qi(�), equation (3.1) implies the monopolist�s pro�t maximization problem
becomes:

max
fpigni=1

(1� )
nP
i=1
(pi � c)qi(pi) + 

nP
i=1
(pmin � c)qi(pmin): (4.2)

The following result describes the form of the optimal solution of this problem.

Proposition 1 Suppose Assumptions 1 and 2 hold. The unique solution of the maximization
problem under MPP will be of the form (p̂; : : : ; p̂; pmk+1; : : : ; p

m
n ) where k 2 f1; 2; : : : ; n� 1g is

the smallest value such that p̂ 2 [pmk ; pmk+1) and k 2 f1; 2; : : : ; n� 1g :
7 If this is strictly violated, simply reindex the markets so that their numbering agrees with the monopoly

price induced order. In cases where there is equality in monopoly prices across markets, a similar analysis

can be carried out by �rst combining these markets into one. To see this, let us consider a situation where

pm1 < ::: < pmk = pmk+1 < ::: < pmn . If we de�ne a market indexed by k
0 by combining market k and market

k+1 such that qk0 = qk+ qk+1, then p
m
k0 remains the same as p

m
k or pmk+1. This returns us to a situation where

strict inequality is maintainted among the optimal individual monopoly prices in each of these markets.
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Proof. Let a solution vector be (~p1; : : : ; ~pn) and J = fi 2 f1; 2; : : : ; ngj ~pi = min f~p1; : : : ; ~pngg:
Claim 1: If j =2 J; then ~pj = pmj :
If j =2 J; then ~pj > min f~p1; : : : ; ~png. ~pj is also the solution of the optimization problem:

maxp (p� c) qj(p) such that p � min f~p1; : : : ; ~png.
If pmj > min f~p1; : : : ; ~png ; and as pmj maximizes (p� c) qj(p) globally, ~pj = pmj :
If pmj � min f~p1; : : : ; ~png ; then (p� c) qj(p) being concave in p, is maximized at p =

min f~p1; : : : ; ~png over the range fp : p � min f~p1; : : : ; ~pngg: This implies that ~pj = min f~p1; : : : ; ~png,
or, j 2 J: which is ruled out.

Claim 2: If j 2 J; l =2 J; then j < l:
If not, let us suppose 9 l =2 J and j 2 J such that j > l:
Then, Claim 1 suggests ~pl = pml : Moreover, p

m
l > min f~p1; : : : ; ~png since l =2 J: As j > l;

we have pmj > p
m
l > min f~p1; : : : ; ~png : Therefore, j =2 J: Contradiction.

Claim 3: min f~p1; : : : ; ~png 2 [pmk ; pmk+1) for k = maxJ .
By Claim 1, ~pk+1 = pmk+1 > min f~p1; : : : ; ~png : Suppose ~pk < pmk : Then, the monopolist

could strictly increase pro�ts by setting ~pk = pmk . This increases pro�ts from the non-MFC

customers in market k, and leaves all other terms in the pro�t expression unchanged.

Claim 4: k < n.

Suppose k = n. Then min f~p1; : : : ; ~png = pu, the uniform monopoly price. Since pmn > pu,
this contradicts Claim 3.

Claims 1, 2, 3 and 4 together yield that the solution is of the desired form.

It remains to show that the solution is unique. Suppose (�p1; : : : ; �pn) is a di¤erent solution.

It can di¤er from (~p1; : : : ; ~pn) only in the choice of k and p̂. We now show that there is a

unique pro�t maximizing choice of k and p̂ so that the existence of such di¤erent solutions

is not possible. For any �xed k, it follows from Assumption 2 that there is a unique pro�t

maximizing price which satis�es maxp
Pk
i=1(p�c)qi(p)+

Pn
i=k+1(p�c)qi(p). Call this p̂ (k).

Suppose that there exist k1 < k2 such that p̂ (k1) 2 [pmk1 ; p
m
k1+1

) and p̂ (k2) 2 [pmk2 ; p
m
k2+1

) as

was shown to be required for pro�t maximization by the �rst part of this proof. By revealed

preference, pro�ts from the �rst k1 markets and the MFCs from the remaining markets are

strictly higher when charging p̂ (k1) rather than p̂ (k2). Since p̂ (k2) 2 [pmk2 ; p
m
k2+1

), pro�ts

from the non-MFCs in markets k1 + 1; : : : ; k2 would be higher my charging the monopoly

prices in those markets. Combining these facts implies that pro�ts are higher with k = k1

and p̂ = p̂ (k1) than with k = k2 and p̂ = p̂ (k2). This shows that a pro�t maximizing solution

of the required form must be unique.

From Proposition 1, it is apparent that prices in all markets weakly increase under MPP

as compared to no regulation, and that they strictly increase only in an initial segment of

markets. In the markets with strict increase, prices rise exactly to the minimum price under

MPP. They rise because, under MPP, the price in these markets now also serves MFCs from
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the higher valuation markets. In contrast, for markets with prices above the minimum under

MPP there is no reason to deviate from the original monopoly price, as the consumers facing

these prices have the same demand characteristics as without MPP. Notice that the number

of markets where the minimum price is charged should be determined endogenously along

with the level of that minimum price. To fully understand pricing under MPP, therefore,

we must explore how both k and p̂ are determined. To do this, we construct an alternative

optimization problem and show that its optimal solution coincides with the optimal solution

of the original problem (4.2). We then derive properties of the optimal minimum price and

cuto¤ k by studying the �rst order condition of this modi�ed problem.

In Claim 3 of the proof of Proposition 1, the lower bound on pmin was derived by con-

structing a feasible and pro�table deviation in k. Given this argument and Proposition 1, the

maximization problem (4.2) may be rewritten as the following problem of maximizing with

respect to k and pmin, where only the upper bound on pmin is imposed:

max
p<pmk+1;k2f1;2;:::;n�1g

(1� )
 

kP
i=1
(p� c)qi(p) +

nP
i=k+1

(pmi � c)qi(pmi )
!

+
nP
i=1
(p� c)qi(p)

= max
p<pmk+1;k2f1;2;:::;n�1g

kP
i=1
(p� c)qi(p) + 

nP
i=k+1

(p� c)qi(p) (4.3)

+(1� )
nP

i=k+1

(pmi � c)qi(pmi ):

Let p�; k� solve (4:3). Consider the following optimization problem:

max
p

k�P
i=1
(p� c)qi(p) + 

nP
i=k�+1

(p� c)qi(p): (4.4)

Lemma 1 The unique solution of (4.4) is p�.

Proof. By strict concavity, this problem has a unique solution �call it p0. By inspection,

if p0 < pmk�+1 then p
0 = p�. Otherwise, the monopolist could strictly increase pro�ts by

setting p = p0 (instead of p�) in (4:3). Suppose p0 � pmk�+1. Then p� < p0. Since p0

optimizes a strictly concave function, any increase in p�, no matter how small, will increasePk�

i=1(p � c)qi(p) + 
Pn
i=k�+1(p � c)qi(p). But some increase in p� is always feasible in

problem (4:3) as p� < pmk�+1 and so could be increased at least some amount and still remain

the minimum. Thus, optimality of p� in (4:3) is contradicted and it cannot be that p0 � pmk�+1.
Therefore, p0 < pmk�+1 and p

0 = p�.

Observe that if  were to change, this would give rise to di¤erent optimal p� and k�.

Therefore let us denote the functions yielding the corresponding k�; p� for each possible 
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by k() and p̂() respectively. k() and p̂(), therefore, satisfy the �rst order condition (in

price) of (4.4):

k()P
i=1
[(p̂()� c)q0i(p̂()) + qi(p̂())] + 

nP
i=k()+1

[(p̂()� c)q0i(p̂()) + qi(p̂())] = 0: (4.5)

This equation shows how the minimum price is determined if MPP is imposed. For

su¢ ciently low values of , price increases only in market 1 and k() = 1. As  increases,

the demand corresponding to the minimum price increases, which has a �rst order increasing

e¤ect on the pro�t. Since pro�t is a concave function in prices (by Assumption 2) and pmk
is strictly less than pmk+1 for every k, the monopolist increases the minimum price with an

increase in . For su¢ ciently high values of , the minimum price exceeds the monopoly

price in market 2; and the monopolist increases prices in both the markets. Thus, k() is

weakly increasing in  and p̂() is strictly increasing in .

Lemma 2 Suppose Assumptions 1 and 2 hold. k() is weakly increasing and p̂() is strictly
increasing in , the fraction of MFCs in the population.

Proof. In the Appendix.

The following proposition states that prices would increase, compared to the case of no

MFC clause, only in weak markets. The key to this is showing that the monopolist will never

set the minimum price above the uniform monopoly price.

Proposition 2 Suppose Assumptions 1 and 2 hold. If MPP is imposed, prices weakly in-
crease in all markets. However, prices strictly increase only in an initial segment of weak

markets, i.e., in markets where the monopoly price is lower than a cuto¤ value below the

uniform monopoly price. Moreover, the optimal minimum price, p̂(), is bounded above by

the uniform monopoly price and is strictly below this price when the fraction of MFCs, , is

strictly less than 1.

Proof. When  = 1, the demand corresponding to the minimum price is
Pn
i=1 qi(p), i.e.

total consumer demand. Hence, p̂(1) = pu: Lemma 2 shows that p̂() is an strictly increasing

function of . Hence, p̂() < pu, for any  2 [0; 1): The rest of the statements now follow
directly from Proposition 1.

4.2 Welfare analysis (when MFCs�demand is elastic)

We now turn to the welfare e¤ects of MPP. Let Q be the total quantity produced by the

monopolist. We use the classical Marshallian welfare measure, consumers�surplus plus pro-
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ducers�surplus, as a measure of social welfare8:

W = (1� )
nP
i=1
f
Z 1

pi

qi(v)dv + (pi � c)qi (pi)g

+
nP
i=1
f
Z 1

pmin

qi(v)dv + (pmin � c)qi (pmin)g:

In order to analyze the welfare e¤ect of this clause, we will do the following. We join the

two price vectors (pm1 ; : : : ; p
m
n ) and (p̂; : : : ; p̂; p

m
k()+1; : : : ; p

m
n ) on the plane Rn by a piecewise

smooth curve such that every point on the curve is a solution of a di¤erent optimization

problem, where the problems are parametrized by � 2 [0; 1]. We study how Q and W change

as � varies and prices move along the curve.

Formally, we de�ne a set of optimization problem indexed by � , and denoted by OP� ,

such that OP0 is identical to the monopolist�s pro�t maximization problem with no MPP

(i.e., the problem in (4.1)), and OP1 is the monopolist�s pro�t maximization problem with

MPP. Speci�cally, for any � 2 [0; 1];

OP� : max
fpigni=1

(1� �)
nP
i=1
(pi � c)qi(pi)

+�

�
(1� )

nP
i=1
(pi � c)qi(pi) + 

nP
i=1
(pmin � c)qi(pmin)

�
= max

fpigni=1
(1� �)

nP
i=1
(pi � c)qi(pi) + �

nP
i=1
(pmin � c)qi(pmin)

Q(�) and W (�) de�ne the total production and the measure of welfare respectively, when

the monopolist is solving OP� : As is evident from the above equation, OP� is identical to the

pro�t maximization problem with a � fraction of MFCs. The solution of OP� will be of the

form as described in Proposition 1 with  replaced by �: In the remainder of this subsection,

we will, for simplicity, change parameters from � to t, where t takes values in the interval

[0; ]. As t is increased from zero to , p̂(t) moves from the optimal pre-MPP minimum price

pm1 to the optimal post-MPP minimum price p̂(): We can, therefore, compare aggregate

demand and welfare at these two extreme points t = 0 and t =  by studying dQ=dt and

dW=dt.

De�nition 1 Given  2 [0; 1], de�ne j ; j = 1; 2; 3; : : : ; k() + 1 by 1 � 0, k()+1 � 

and, for j = 2; 3; : : : ; k(), j � minf0 : k(0) � jg, the argument at which k(�) �rst changes
its value from j � 1 to j.

Observe that 0 = 1 < 2 < : : : < k() � k()+1 = , and for any t 2 (j�1; j); j =
2; 3; : : : ; k () + 1; p̂(t) solves the equation (4.5) with k() and p̂() replaced by j � 1 and
p̂(t) respectively. In the interval (j�1; j), p̂(t) is a di¤erentiable function of t. Since p̂(t) is

8See Schmalensee [16] and Varian [25] for discussions on the legitimacy of this measure.
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a di¤erentiable function over the interval [0; ] except for possibly �nitely many points, we

can measure the change in Q and W by �Q and �W respectively, where

�Q = Q()�Q(0) =
k()+1P
i=2

Q(i)�Q(i�1) =
k()+1P
i=2

Z i

i�1

(dQ=dt)dt

and; �W =
k()+1P
i=2

Z i

i�1

(dW=dt)dt

The following equation (derived in the Appendix) expresses dQ=dt in terms of prices and

demands. For any t 2 (j�1; j); j = 2; 3; : : : k () + 1;

dQ=dt =
j�1P
i=1
q0i(p̂(t))p̂

0(t) + t
nP
i=j
q0i(p̂(t))p̂

0(t) +
nP
i=j
[qi(p̂(t))� qi(pmi )] (4.6)

= (�1
2
)(p̂(t)� c)p̂0(t)

"
j�1P
i=1
q00i (p̂(t)) + t

nP
i=j
q00i (p̂(t))

#
(4.7)

� 1
2

nP
i=j

�
(p̂(t)� c)q0i(p̂(t)) + qi(p̂(t))

�
+

nP
i=j
[qi(p̂(t))� qi(pmi )]

To better understand this expression, note that as the fraction of MFC consumers, t,

changes from t0 2 (j�1; j) to t0 + � 2 (j�1; j) for small � > 0, the only change in the

optimal prices is that the minimum price increases. This a¤ects three classes of consumers

who will pay the new minimum price: all consumers in the minimum price markets, the

fraction, t0, of consumers in markets where the monopoly price is charged who were MFC

consumers before the change and the marginal fraction of consumers, �, in markets where

the monopoly price is charged switched from non-MFC to MFC status. The three terms in

the �rst line of equation (4.6) give the change in quantity for these three classes of consumers

respectively.

After simplifying, (4.6) can be written as (4.7). The marginal change in quantity, dQ=dt,

can be either positive or negative. The �rst term in the expression after the second equals

sign can be positive or negative, depending on whether demand curves are concave or convex.

The second term (without the negative sign) is positive, as p̂(t) is less than pmi for i � j: The
third term is always positive as we have assumed negatively sloped demand. Note further

that if dQ=dt is positive (negative) for some value of t in the interval [0; ], this does not

imply dQ=dt is always positive (negative) over the whole interval. The following example

illustrates a case where �Q is positive and shows how to modify it so that �Q would be

negative.

Example 2 Let us consider an example with n distinguishable markets where in every market
other than the �rst one, we have a linear demand curve. In particular, we consider qi(p) =

ai � bp; i = 2; 3 : : : n and a2 < a3 < : : : < an: We do not specify any functional form

14



for q1(p) except for the restriction that q1(p) is a strictly concave function of p. In market

i; i = 2; 3; : : : ; n; the optimal monopoly price is (ai + bc)=2b: Thus, for large enough values

a2; : : : ; an; we will have pm1 < pm2 < : : : < pmn : Let us consider an interval (j�1; j);

for some j 2 f2; 3; : : : k () + 1g : For t 2 (j�1; j), the optimal minimum price, p̂(t), lies

between (aj�1+bc)=2b and (aj+bc)=2b: Hence, p̂(t) is equal to (a+bc)=2b for some a; aj�1 <

a � aj : The second term plus the third term in equation (4.6) then becomes

(�1
2
)

nP
i=j+1

fbc� a
2

+
2ai � a� bc

2
g+

nP
i=j+1

f2ai � a� bc
2

� ai � bc
2

g

= (�1
2
)

nP
i=j+1

(ai � a) +
nP

i=j+1
(
ai � a
2

) = 0:

This holds for any t 2 (j�1; j); and for any j 2 f2; 3; : : : ; k () + 1g: However, the �rst
term of (4.6) is always positive for any such t, as q1(p) is strictly concave in p and all other

qi are linear. We, therefore, have dQ=dt > 0 for every t 2 (j�1; j): Integrating over the
intervals (j�1; j) and summing over j, we get �Q > 0: A similar example with a strictly

convex demand function q1(p) will give �Q < 0:

We now analyze the change in welfare due to MPP. Di¤erentiating W with respect to t

for t 2 (j�1; j); we get (derived in the Appendix):

dW=dt = (p̂ (t)� c)
"
j�1P
i=1
q0i (p̂ (t)) p̂

0 (t) + t
nP
i=j
q0i (p̂ (t)) p̂

0 (t)

#
(4.8)

+
nP
i=j
(p̂ (t)� c) fqi(p̂ (t))� qi(pmi )g+

nP
i=j
f
Z pmi

p̂(t)
fqi(v)� qi (pmi )g dv

= (p̂ (t)� c)dQ
dt
+

nP
i=j
f
Z pmi

p̂(t)
fqi(v)� qi (pmi )g dv: (4.9)

To better understand this expression, note that as the fraction of MFC consumers, t,

changes from t0 2 (j�1; j) to t0 + � 2 (j�1; j) for small � > 0, the only change in the

optimal prices is that the minimum price increases. This a¤ects three classes of consumers

who will pay the new minimum price: all consumers in the minimum price markets, the

fraction, t0, of consumers in markets where the monopoly price is charged who were MFC

consumers before the change and the marginal fraction of consumers, �, switched from non-

MFC to MFC status in markets where the monopoly price is charged. For the minimum

price markets there will be a decrease in social welfare as price increases and moves further

away from the competitive price c. The �rst term in (4.8) measures the marginal change in

welfare in these minimum price markets. In the markets where the monopoly price is charged,

there will also be a similar decrease in welfare related to those consumers who were already

covered by the MFC provision as the minimum price increases. The second term in (4.8)

measures the marginal change in welfare for this portion of the monopoly price markets. For
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the marginal fraction of consumers who switched from non-MFC to MFC status, there will

be a gain in consumer surplus, as their price is reduced from the monopoly price pmi for their

market and the minimum price p̂(t). Part of this gain, however, is simply a transfer from the

drug manufacturer. The net gain in social welfare for this section of the market is given by

the third term in (4.8). After simplifying, (4.8) can be written as (4.9). The second term in

(4.9) is always positive. Therefore, dW=dt is positive if dQ=dt � 0: Note that (p̂(t) � c) is
bounded below by (pm1 � c); which is positive. Integrating over the intervals (j�1; j) and
summing over j, we get �W > (pm1 � c)�Q: Hence, we have the following useful su¢ cient
condition for MPP to increase welfare:

Proposition 3 Suppose Assumptions 1 and 2 hold. Welfare increases under MPP if MPP
leads to a weakly higher level of output.

However, the e¤ect on welfare is not unambiguous when �Q < 0:Welfare may increase if

the decrease in Q is not high enough to overcome the gains (as quanti�ed by the second term

in equation (4.9)) from the drop in price of the incremental units sold to MFC consumers in

monopoly price markets under MPP. Otherwise it will decrease. The next example illustrates

the possibility of a fall in welfare.

Example 3 We consider an example in the framework of Example 2. Consider n = 2. Let
q1(p) = a1 � bp + dp2 and q2(p) = a2 � bp be the demand functions in markets 1 and 2
respectively. Consider parameter values, fa1 = 40; a2 = 60; b = 5; c = 2; d = 0:15g and
let the fraction of MFCs, , be 0:15. Without MPP, the optimal monopoly prices are fpm1 =
6:52; pm2 = 7g: Aggregate demand and total welfare are 38:7652 and 288:744 respectively. With
MPP in e¤ect, the monopolist charges fp̂ = 6:6394; pm2 = 7g, where p̂ is the optimal minimum
price. Aggregate demand and welfare decrease to 38:6857 units and 288:444 units respectively.

4.3 Inelastic MFC demand

Here we assume that MFCs�demand for the product is completely inelastic. They demand a

�xed quantity of the product while non-MFCs have a downward sloping demand curve. The

monopolist, therefore, charges (p1; : : : ; pn) to maximize

(1� )
nP
i=1
(pi � c)qi(pi) + 

nP
i=1
(pi � c)zi. (4.10)

De�ning mi � zi
1� , and substituting yields

(1� )
�
nP
i=1
(pi � c)qi(pi) +

nP
i=1
(pi � c)mi

�
.

Under MPP, this objective function becomes

(1� )
�
nP
i=1
(pi � c)qi(pi) +

nP
i=1
(pmin � c)mi

�
. (4.11)
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Unlike before, we de�ne pmi as the optimal monopoly price if facing only the non-MFCs

in market i and, similarly, pu as the uniform monopoly price that would be optimal if the

monopolist ignored the inelastic MFCs in all markets. We order the markets so that pm1 <

pm2 < : : : < p
m
n : Note that this ordering of the markets is on the basis of the optimal monopoly

prices when facing the non-MFC consumers only, and that this is di¤erent from the way we

ordered markets in the previous section. Here, pu solves the equation

nP
i=1
f(p� c)q0i(p) + qi(p)g = 0;

and each pmi solves

(p� c)q0i(p) + qi(p) = 0:

The following condition will be useful in characterizing the optimal solution under MPP:

nX
i=1

mi +
nP
i=1
f(pmn � c)q0i(pmn ) + qi(pmn )g � 0: (Condition A)

If the same price is being charged in all markets, the left-hand side of Condition A is the

derivative of the pro�t function with respect to price evaluated at a price of pmn . Therefore,

given strict concavity, Condition A is necessary and su¢ cient for the optimal uniform price

to be above pmn . Note that, by de�nition, f(pmn � c)q0n(pmn ) + qn(pmn )g is zero, whereas, by
concavity, f(pmn � c)q0i(pmn )+ qi(pmn )g is negative for any other i: The next result describes the
optimal solution under MPP.

Proposition 4 Suppose Assumptions 1 and 2 hold. If Condition A is violated, the solution
of the pro�t maximization problem under MPP will be of the form

(p̂; : : : ; p̂| {z }
k times

; pmk+1; : : : ; p
m
n )

where p̂ 2 [pmk ; p
m
k+1) for some k 2 f1; 2; : : : ; n� 1g

where p̂ 2 [pmk ; pmk+1) for some k 2 f1; 2; : : : ; n� 1g. If Condition A holds, the solution of the
pro�t maximization problem under MPP will be of the form (p̂; : : : ; p̂| {z }

n times

) where p̂ � pmn :

We do not provide an explicit proof for this result, as the arguments are essentially the

same as in the proof of Proposition 1. Two comments are worth noting in this regard. First,

Assumption 2 remains su¢ cient to guarantee strict concavity of the pro�t function in the

minimum price. The reason for this is that the inelastic part of the pro�t is linear in price

whereas Assumption 2 says that the elastic portion (corresponding to non-MFCs in those

markets where the minimum price is charged) is strictly concave in price. Second, as before,
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in any market where the minimum price is not charged, the monopolist will try to extract the

monopoly pro�t from the non-MFCs as long as that optimal price is above the minimum price.

However, if and only if the inelastic demand is su¢ ciently large (as described in Condition

A), the monopolist will �nd it pro�table to keep raising the minimum price until it exceeds

the optimal monopoly price for the non-MFCs in every market. In that case, the monopolist

will end up charging the same price in every market and that price will be weakly higher

than pmn .

An interesting fact is, unlike the elastic demand case, prices may decrease in some of the

markets under MPP compared to no MPP. In those markets where the minimum price is not

charged, the monopolist will optimally extract the monopoly pro�t by charging the monopoly

price for the non-MFCs. In those markets, before MPP is imposed, the optimal price was

higher than the optimal monopoly price based on only the non-MFC section (this is because

of the fact that if demand in a market is composed of both elastic and inelastic demands, then

the optimal monopoly price for the combined market is higher than the optimal monopoly

price for the elastic demand section only). Therefore, these prices decrease under MPP.

However, prices cannot fall in all markets under MPP, since, in particular, prices in market

1 (where the minimum is charged under MPP) must rise because of the fact that this price

will be paid by inelastic consumers in all markets.

To study properties of the minimum price, it is useful to derive the equation that char-

acterizes the minimum price as a function of the fraction of MFCs. To do this, we construct

an alternative optimization problem and show that its optimal solution coincides with the

optimal solution of the original problem (4.11). We then derive properties of the optimal

minimum price by studying the �rst order condition of this modi�ed problem.

Given Proposition 4, the maximization problem (4.11) may be rewritten as the following

problem of maximizing with respect to k and pmin, where only an upper bound on pmin is

imposed:

max
p<pmk+1;k2f1;2;:::;n�1;ng

kP
i=1
(p� c)qi(p) +

nP
i=k+1

(pmi � c)qi(pmi ) +
nP
i=1
(p� c)mi (4.12)

where pmn+1 de�ned as 1.9

Let p� and k� solve (4:12). We now show that the unique solution to the following

unconstrained optimization problem is p = p�:

max
p

k�P
i=1
(p� c)qi(p) +

nP
i=1
(p� c)mi. (4.13)

By strict concavity, this problem has a unique solution �call it p0. By inspection, if p0 < pmk�+1
then p0 = p�. Otherwise, the monopolist could strictly increase pro�ts by setting p = p0

9Unlike the elastic demand scenario, prices in all markets may change. In order to accommodate this e¤ect,

we consider the possibility that k may equal n. Since in that case, the value of k could even be greater than

pmn , we set the upper limit as in�nity (by setting p
m
n+1 =1).
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(instead of p�) in (4:12). Can it be that p0 � pmk�+1 for some k
� 2 f1; 2; : : : ; n� 1g? Then

p� < p0. Since p0 optimizes a strictly concave function, any increase in p above p�, no matter

how small, will increase
Pk�

i=1(p � c)qi(p) +
Pn
i=1(p � c)mi. But some increase is always

feasible in problem (4:12), as p� < pmk�+1 and so could be increased at least some amount

and still remain the minimum. This would contradict the optimality of p� in (4:12) and so it

cannot be that p0 � pmk�+1. Therefore, p0 < pmk�+1 and p0 = p�.
Observe that if the inelastic demand levels m1;m2; : : : ;mn were to change, this would

give rise to di¤erent optimal p� and k�. Therefore let us denote the functions yielding the

corresponding p�; k� for each possible m = (m1;m2; : : : ;mn) by p̂(m) and k(m) respectively.

k(m) and p̂(m), therefore, solve the �rst order condition (in price) of (4.13):

k(m)P
i=1
f(p̂(m)� c)q0i (p̂(m)) + qi(p̂(m))g+

nP
i=1
mi = 0: (4.14)

This condition allows us to show that if MPP is imposed the minimum price will increase

and, in markets where the minimum price is not charged, prices will fall.

Proposition 5 Suppose Assumptions 1 and 2 hold. The minimum price charged by the

monopolist increases under MPP. In those markets where the minimum price is not charged,

prices decrease under MPP.

Proof. First, we show that the minimum price increases after MPP is imposed. If k (m) = n,
then the result trivially follows as the monopolist will charge the optimal uniform monopoly

price which is always greater than the monopoly price in one of the markets. Let us assume

k(m) = k� for some k� 2 f1; 2; : : : ; n� 1g. By Proposition 4, the minimum price will always

be charged in market 1. Let ~p1 denote the price that was charged in market 1 before MPP

was introduced. Then, ~p1 must solve the equation

(~p1 � c)q0i(~p1) + qi(~p1) +m1 = 0: (4.15)

If we can show that ~p1 � p̂(m), this will complete the �rst part of the proof. To see that

~p1 � p̂(m), consider the function

S (p) =
k�P
i=1
f(p� c)q0i (p) + qi(p)g+

nP
i=1
mi = 0:

By Assumption 2, S (p) is decreasing in p.

For every i = 2; 3; :::k�, (~p1 � c)q0i (~p1) + qi(~p1) +mi � 0. Hence, S (~p1) � 0. From (4.14),

we get that ~p1 � p̂(m) since S (p) is decreasing in p.
The second part of the proposition, stating that prices decrease under MPP in those

markets where the minimum price is not charged, directly follows from Proposition 4.
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4.4 Welfare Analysis (when MFCs�demand is inelastic)

As before, we parametrize a set of optimization problems OP� , so that OP0 is identical to the

monopolist�s pro�t maximization problem with no MPP, and OP1 is the monopolist�s pro�t

maximization problem with MPP. Formally, for � 2 [0; 1], we de�ne OP� as follows:

OP� : max
fpigni=1

(1� )
" Pn

i=1(pi � c)qi(pi) + �
Pn
i=1(pmin � c)mi

+(1� �)
Pn
i=1(pi � c)mi

#
(4.16)

= max
fpigni=1

(1� )
�
nP
i=1
(pi � c)fqi(pi) + (1� �)mig+

nP
i=1
(pmin � c)�mi

�
.

Note that the above optimization problem is similar to the pro�t maximizing problem

under MPP (4.11) if we replace the term qi(pi) by fqi(pi) + (1 � �)mig and mi by �mi

respectively in (4.11). Hence, the solution to OP� will be of the form given in Proposition 4.

Let p̂(�) denote the optimal minimum price in problem OP� , and p�i (�) denote the optimal

monopoly price in a market with demand function fqi(pi)+(1��)mig. As before, we partition
the interval [�1 = 0 < �2 < : : : < �n � 1] such that over the interval (� j�1; � j), the optimal
solution is (p̂ (�) ; : : : ; p̂ (�) ; p�j (�) ; : : : ; p

�
n (�)). p̂(�) is an increasing function of � , whereas

p�j+l(�); l = 0; 1; 2; : : : ; n � j; are decreasing in � . For � 2 (� j�1; � j); Q(�); total output
corresponding to OP� , is given by

Q(�) = (1� )
"
j�1P
i=1
qi(p̂(�)) +

nP
i=j
qi(p

�
i (�)) +

nP
i=1
mi

#
; (4.17)

and, W (�); the Marshallian welfare resulting from OP� , is given by

W (�) = (1� )
"
nP
i=1
f(p̂(�)� c)�mi +

Z �M

p̂(�)
�mi dvg

+
j�1P
i=1
f(p̂(�)� c)(qi(p̂(�)) + (1� �)mi) +

Z �M

p̂(�)
(qi(v) + (1� �)mi) dvg

+
nP
i=j
f(p�i (�)� c)(qi(p�i (�)) + (1� �)mi) +

Z �M

p�i (�)
(qi(v) + (1� �)mi) dvg

#

= (1� )
" Pn

i=1

�
�M � c

�
mi +

Pj�1
i=1f(p̂(�)� c)qi(p̂(�))

+
R1
p̂(�) qi(v)dvg+

Pn
i=jf(p�i (�)� c)qi(p�i (�)) +

R1
p�i (�)

qi(v)dvg

#

In this calculation, we assume that the upper bound of the price while measuring the

inelastic consumers�welfare is given by �M , some �nite number large enough so that qi( �M) =

0 for all i. This is equivalent to saying that demand isn�t really inelastic, but rather is

inelastic until price hits �M , and zero thereafter. Otherwise, consumer surplus for the inelastic

consumers will always be in�nity and our welfare measure would not be sensitive to changes in

prices. Observe that the �rst term after the second equals sign is the consumer plus producer
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surplus associated with the inelastic consumers, and that this is a constant � changes in

price simply change the split between these consumers and the producer. Below we will be

interested in changes in welfare, rather than levels. For this purpose, one may then ignore

the inelastic part of the market and the conclusions are insensitive to the choice of �M .

As we show in the Appendix, for any � 2 (� j�1; � j); dQ=d� can be written in terms of
the second derivative of the demand curves as follows:

dQ=d� = (1� )
 
j�1P
i=1
q0i(p̂ (�))p̂

0 (�) +
nP
i=j
q0i(p

�
i (�))p

�0
i (�)

!
(4.18)

= �1� 
2

 Pj�1
i=1 (p̂ (�)� c)q00i (p̂ (�))p̂0 (�)

+
Pn
i=j(p

�
i (�)� c)q00i (p�i (�))p�0i (�)

!
. (4.19)

To better understand the terms in (4.18), note that the monopolist�s objective function in

the constructed optimization problem (4.16) is a convex combination of the objective function

in the pre-MPP case and the objective function in the post-MPP case with weights 1�� and �
respectively. The demand of MFCs is �xed at (1� )

Pn
i=1mi and is independent of � . As �

changes, the optimal minimum price p̂(�) and the optimal prices p�i (�) in the monopoly price

markets change. The e¤ect of these price changes on aggregate demand comes only through

the change in non-MFC demand. The �rst term and the second term in (4.18) measure the

change in aggregate demand for non-MFCs in markets where the minimum price is charged

and in markets where the minimum price is not charged respectively.

We can rewrite (4.18) as (4.19) (derived in the Appendix). Note that p̂0 (�) is positive

by an argument similar to that in the proof of Lemma 2. Also, p�0i (�) is negative since, as �

increases, the inelastic portion of the demand corresponding to consumers paying p�i (�) falls

whereas the elastic portion remains unchanged. Therefore dQ=d� may be either positive or

negative and may be non-monotone in � . In the special case of linear demand, dQ=d� = 0.

For any � 2 (� j�1; � j); dW=d� is given by

dW=d� = (1� ) [
j�1P
i=1
(p̂ (�)� c)q0i(p̂ (�))p̂0 (�) +

nP
i=j
(p�i (�)� c)q0i(p�i (�))p�0i (�)]; (4.20)

= (p̂ (�)� c)dQ=d� + (1� )
nP
i=j
(p�i (�)� p̂ (�))q0i(p�i (�))p�0i (�) . (4.21)

Social welfare for the inelastic section of the consumers is �xed at (1� )
Pn
i=1

�
�M � c

�
mi

and is independent of � . As � changes, the e¤ect of price changes on social welfare comes

only through the changes in welfare for the elastic demand section of markets. The �rst term

and the second term in (4.20) measure the change in aggregate demand for non-MFCs in

markets where the minimum price is charged and in markets where the minimum price is not

charged respectively.

We can rewrite (4.20) as (4.21) (derived in the Appendix). As (p�i (�)�p̂ (�))(q0i(p�i (�))p�0i (�))
is strictly positive for every i 2 fj + 1; : : : ; ng ; it follows that dW=d� > (p̂ (�) � c)dQ=d� .
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Integrating over the intervals (� j�1; � j) and summing over j, we get �W > (p̂ (�) � c)�Q.
Hence, we obtain the same useful su¢ cient condition for MPP to increase welfare as in the

elastic demand case:

Proposition 6 Suppose Assumptions 1 and 2 hold. Welfare increases under MPP in the
inelastic demand framework if MPP results in a weakly higher aggregate demand.

5 Average Price Provision

5.1 Elastic MFC demand

We now analyze the situation when an average price provision is in e¤ect and MFCs�demand

for the product is elastic. We assume that both MFCs and non-MFCs in market i have

identical demand q (�). By de�nition, an average price provision guarantees that MFCs pay
a proportion of the quantity-weighted average price. Under APP, the monopolist�s pro�t

maximization problem becomes:

max
fpigni=1

� = (1� )
nP
i=1
(pi � c)qi(pi) + 

nP
i=1
(pq;� � c)qi(pq;�); (5.1)

where, pq;� = (1� �)pq and pq =
Pn
i=1 piqi(pi)Pn
i=1 qi(pi)

:

As a point of comparison, it is useful to begin our analysis by looking at the solution of

the unconstrained problem when there is no provision for MFCs. Without any regulation,

the monopolist chooses prices to maximize

nP
i=1
(pi � c)qi(pi):

As before, let pmi denote the unique (under Assumption 2) value of pi that solves the

equation qi(pi) + (pi � c)q0i(pi) = 0. In particular, pmi is the monopoly price in market i. In

the elastic demand framework, the monopolist charges the monopoly prices pmi in market i

if no average price provision is in e¤ect.

Let p̂i denote the equilibrium price charged in market i after APP in imposed. Then

p̂ = (p̂1; p̂2; : : : ; p̂n) solves the �rst-order conditions:

(1� )[(pi � c)q0i(pi) + qi(pi)]+

(
d

dpi
pq;�)[

nP
j=1
fqj(pq;�) + (pq;� � c)q0j(pq;�)g] = 0 for i = 1; 2; : : : ; n. (5.2)

Any prices satisfying (5.2) will maximize pro�ts, (5.1), if the objective function is strictly

concave in (p1; p2; : : : ; pn) whenever demand is positive in all markets. Strict concavity of
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this pro�t function under APP is more stringent than Assumption 2. The following condi-

tion (together with Assumption 2) is su¢ cient for strict concavity of the monopolist�s pro�t

function under APP:

Assumption 3
Pn
i=1(pq;� � c)qi(pq;�) is weakly concave in (p1; p2; : : : ; pn).

Under Assumptions 2 and 3, there exists a unique (p1; p2; : : : ; pn) that solves the monop-

olist�s problem under APP. For the analyses that follow, we assume that this condition holds,

and we characterize the behavior of the unique solution. The following lemma shows that

the monopolist always charges a price above the marginal cost in every market after APP is

imposed.

Lemma 3 Suppose Assumptions 2 and 3 hold. At the solution of (5.1), prices are above the
marginal cost in every market, i.e., c < p̂i for all i = 1; 2; : : : ; n.

Proof. See Appendix.
Knowledge of the sign of d

dpi
pq;� is useful for determining how the solution of the APP

problem (5.1) compares to the unconstrained monopolist�s solution, (pm1 ; p
m
2 ; : : : ; p

m
n ). The

next two results show that d
dpi
pq;� is strictly positive at the unconstrained solution and at

least weakly positive at the APP solution.

Lemma 4 Suppose Assumption 2 holds. d
dpi
pq

���p=(pm1 ;pm2 ;:::;pmn ) > 0 for i = 1; 2; : : : ; n.
Proof. See Appendix.

Lemma 5 Suppose Assumptions 1, 2 and 3 hold. At the solution of (5.1), d
dpi
pq;� is positive

for all i.

Proof. See Appendix.
We are now in a position to compare the APP prices, p̂, to the unconstrained prices. By

Lemma 5, and the fact that
Pn
j=1fqj(pq;�) + (pq;� � c)q0j(pq;�)g is independent of i, the �rst

term in (5.2), (pi � c)q0i(pi) + qi(pi), has the same sign at p̂ for all i. At the solution of the
unconstrained problem, this term is equal to zero for all i. Hence, by concavity (Assumption

2), when APP is imposed, prices in all markets move in the same direction compared to the

unconstrained optimal prices. By inspection of (5.2), if
Pn
j=1fqj(pq;�)+(pq;�� c)q0j(pq;�)g at

p̂ is positive (negative) then prices increase (decrease) under APP. The dividing line between

these directions is the uniform monopoly price, pu, as
Pn
j=1fqj(pu) + (pu � c)q0j(pu)g = 0 by

de�nition. Hence, we have the following proposition:

Proposition 7 Suppose Assumptions 1; 2 and 3 hold. Prices in all markets move in the same
direction from unconstrained pro�t maximizing prices when APP is imposed. Under APP,

the discounted quantity-weighted average price is lower than the uniform monopoly price if

and only if prices increase compared to the unconstrained case.
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The second part of the above proposition provides necessary and su¢ cient conditions

for prices to increase when APP is imposed. Since these conditions require observing prices

under APP, however, they would not allow a policy maker to evaluate the e¤ect of im-

posing APP before actually implementing it. In our next result, we provide alternative

necessary and su¢ cient conditions that depend only on unconstrained prices and the uni-

form monopoly price � neither of which depends on observing behavior under APP. Let

pmq denote the quantity-weighted average price for the unconstrained problem, i.e., pmq =Pn
i=1 p

m
i qi(p

m
i )=

Pn
i=1 qi(p

m
i ): Similarly, p

m
q;� � (1� �)pmq .

Proposition 8 Suppose Assumptions 1; 2 and 3 hold. Prices (strictly) increase under APP
if and only if pmq;� (<) � pu, i.e., if and only if the discounted quantity-weighted average price
when the monopolist is unconstrained, is below the uniform monopoly price.

Proof. Suppose pmq;� < pu. Then, by Assumption 2,
Pn
i=1fqi(pq;�) + (pq;� � c)q0i(pq;�)g >

0. By Lemma 4, d
dpi
pq;� > 0 for i = 1; 2; : : : ; n at (pm1 ; p

m
2 ; : : : ; p

m
n ). Furthermore, at

(pm1 ; p
m
2 ; : : : ; p

m
n ), (pi � c)q0i(pi) + qi(pi) = 0 for i = 1; 2; : : : ; n. Therefore, (5.2) evaluated

at (pm1 ; p
m
2 ; : : : ; p

m
n ) is strictly positive. Under Assumptions 2 and 3, problem (5.1) is globally

concave, thus, (5.2) strictly positive at (pm1 ; p
m
2 ; : : : ; p

m
n ) implies p̂i > pmi for i = 1; 2; : : : ; n.

Therefore, prices strictly increase under APP.

Suppose pmq;� = p
u. Then, since

Pn
i=1fqi(pq;�)+(pq;��c)q0i(pq;�)g = 0 and (pi�c)q0i(pi)+

qi(pi) = 0 for i = 1; 2; : : : ; n, (5.2) evaluated at (pm1 ; p
m
2 ; : : : ; p

m
n ) is zero, and by global

concavity, this solves (5.1) and prices do not change under APP.

Suppose pmq;� > pu. Then, by Assumption 2,
Pn
i=1fqi(pq;�) + (pq;� � c)q0i(pq;�)g <

0. By Lemma 4, d
dpi
pq;� > 0 for i = 1; 2; : : : ; n at (pm1 ; p

m
2 ; : : : ; p

m
n ). Furthermore, at

(pm1 ; p
m
2 ; : : : ; p

m
n ), (pi � c)q0i(pi) + qi(pi) = 0 for i = 1; 2; : : : ; n. Therefore, (5.2) evaluated at

(pm1 ; p
m
2 ; : : : ; p

m
n ) is strictly negative. Under Assumptions 2 and 3, problem (5.1) is globally

concave, thus, (5.2) strictly negative at (pm1 ; p
m
2 ; : : : ; p

m
n ) implies p̂i < p

m
i for i = 1; 2; : : : ; n.

Therefore, prices strictly decrease under APP.

The basic intuition for the result is that under APP, MFCs pay a uniform price, namely the

discounted quantity-weighted average of prices charged in di¤erent markets. The monopolist,

therefore, all else equal, prefers to set prices so that the discounted quantity-weighted average

price is close to the uniform monopoly price. When the unconstrained prices leave this average

below the uniform monopoly price, APP pushes prices up and when unconstrained prices put

this average above the uniform monopoly price, APP pushes prices down.

We can use the above result to relate the e¤ect of APP to the discount, �, given o¤ of

average price. For high discounts, it is more likely that the discounted quantity-weighted

average price at the pre-APP prices would be lower than the uniform monopoly price. Let

�� denote the discount for which the discounted quantity-weighted average price for the
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unconstrained problem is the same as the uniform monopoly price, i.e., pmq;�� = p
u. Observe

that �� = 1 � pu

pmq
. From Proposition 8, we see that the monopolist increases price in every

market if and only if the discount is above ��.

Corollary 1 Prices increase in every market when APP is imposed if and only if the discount
� is greater than ��.

Is there anything more we can say about the e¤ect of the discount parameter on prices?

Let p̂i (�) denote the equilibrium price charged in market i after APP with a discount para-

meter � 2 [0; 1] is imposed. If the discount � is less than ��, we will see that optimal prices
under APP are strictly increasing in the discount �. To see the intuition behind this result,

suppose that the current discount is �1 < ��. By the corollary, the optimal price in market i

under APP is therefore strictly less than the monopoly price pmi . Consider the e¤ect of a mar-

ginal increase in discount starting from �1. We argue that the monopolist can increase pro�t

by increasing prices from p̂ (�1). As the discount increases, the discounted quantity-weighted

average price computed at p̂ (�1) falls. On the other hand, by increasing prices slightly in

every market, the monopolist can increase the discounted quantity-weighted average price

(this is because d
dpi
p̂ (�1)q;� � 0). By increasing prices in this way, the monopolist can keep

the discounted quantity-weighted average price close to p̂ (�1)q;�1 . This movement in prices

will thus not a¤ect the monopolist�s pro�t from the MFC section of the market. But an

increase in prices will always increase the monopolist�s pro�t from the non-MFC section of

the market, since the original price p̂i (�1) in market i was less than the monopoly price pmi .

This is why the monopolist would prefer to increase prices as the discount � increases, as

long as � is less than ��. This line of argument does not hold for � > �� since an increase in

prices does not increase pro�t from the non-MFC section of the market anymore. All we can

say for these higher discounts is that whatever movements in prices occur as � moves above

�� are eventually reversed, because when the discount reaches 100% (� = 1), prices return

to the optimal unconstrained prices, just as they were at � = ��.

Proposition 9 Suppose Assumptions 1; 2 and 3 hold. For � < �� (i.e., if APP decreases

prices), optimal prices under APP are strictly increasing in the discount �.

5.2 Welfare Analysis (When MFCs�demand is elastic)

Aggregate demand as well as social welfare may move in either direction with the imposition

of APP. To see this, we �rst consider the special case where pmq;� = p
u. Then, by Proposition

8, the monopolist is not going to change prices, as at the unconstrained monopoly prices it is

extracting monopoly rent from both the MFC and the non-MFC consumers even after APP

is imposed. In this case, there will not be any change in aggregate demand or in welfare in

the non-MFC section of the markets. However, MFCs in both markets will now be paying the
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uniform monopoly price instead of paying the individual monopoly prices for their markets.

Therefore, for the MFC consumers, moving to APP is e¤ectively a move from perfect third

degree price discrimination to uniform pricing. From Schmalensee ([16], pp 244-245), we

know that under such a scenario aggregate demand can move in either direction, depending

on the curvature of the demand curves, and an increase in aggregate demand is su¢ cient for

an increase in welfare. Recall that for MPP, we showed that a similar result was true quite

generally. Unfortunately, the same is not true for evaluating the e¤ect of APP. Speci�cally,

once we leave the special case where the move to APP does not a¤ect prices, there does not

seem to be a simple condition relating changes in aggregate demand to changes in welfare.

To understand this, we brie�y analyze changes in demand and welfare under the move to

APP.

In order to analyze the welfare e¤ect of APP, we will do the following. We join the two

price vectors, giving the optimal prices in the unconstrained case and under APP respectively,

(pm1 ; : : : ; p
m
n ) and (p̂1; : : : ; p̂n) on the plane Rn by a piecewise smooth curve such that every

point on the curve is a solution of a di¤erent optimization problem, where the problems are

parametrized by � 2 [0; 1]. We study how aggregate demand and welfare, Q and W , change

as � varies and prices move along the curve.

Formally, de�ne a set of optimization problems indexed by � , and denoted by OP� , such

that OP0 is identical to the monopolist�s unconstrained pro�t maximization problem, and

OP1 is the monopolist�s pro�t maximization problem with APP. Speci�cally, for any � 2 [0; 1];

OP� : max
fpigni=1

(1� �)
nP
i=1
(pi � c)qi(pi)

+�

�
(1� )

nP
i=1
(pi � c)qi(pi) + 

nP
i=1
(pq;� � c)qi(pq;�)

�
= max

fpigni=1
(1� �)

nP
i=1
(pi � c)qi(pi) + �

nP
i=1
(pq;� � c)qi(pq;�)

Q(�) and W (�) de�ne the total production and social welfare respectively, when the

monopolist is solving OP� . As is evident from the above equation, OP� is identical to the

pro�t maximization problem under APP with a � fraction of MFCs.

As � 2 [0; 1]; � 2 [0; ]. For simplicity, we replace � by t in the above objective

function, and restrict its range to [0; ]. For such t, let p̂i(t) be the unique solution to OP t


and let p̂q;� (t) give the corresponding discounted quantity-weighted average prices. As t is

increased from zero to , p̂i(t) moves from the optimal pre-APP price in market i, pmi , to

the optimal price in market i under APP, p̂i(). Similarly, let Q (t) and W (t) denote the
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corresponding aggregate demand and social welfare respectively. Thus,

Q (t) = (1� t)
nP
i=1
qi(p̂i (t)) + t

nP
i=1
qi(p̂q;� (t))

W (t) = (1� t)
nP
i=1
f(p̂i (t)� c)qi(p̂i (t)) +

Z 1

p̂i(t)
qi(v)dvg

+t
nP
i=1
f(p̂q;� (t)� c)qi(p̂q;� (t)) +

Z 1

p̂q;�(t)
qi(v)dvg:

We can compare aggregate demand and welfare at the two extreme points t = 0 and t = 

by studying dQ=dt and dW=dt. Observe that

dQ

dt
=

�
nP
i=1
fqi (p̂q;� (t))� qi (p̂i (t))g

�
+

�
(1� t)

nP
i=1
fq0i (p̂i (t)) p̂0i (t)

�
(5.3)

+

�
t

�
d

dt
p̂q;� (t)

�
nP
i=1
q0i (p̂q;� (t))

�
;

and

dW

dt
= (p̂q;� (t)� c)

dQ

dt
+

"
nP
i=1

Z p̂i(t)

p̂q;�(t)
fqi(v)� qi(p̂i (t))gdv

#
(5.4)

�
�
(1� t)

nP
i=1
(p̂q;� (t)� p̂i (t))q0i (p̂i (t)) p̂0i (t)

�
:

Depending on the curvature of the demand curve, it is possible for dQdt to be of any sign.

In equation (5.4), the �rst term is the same sign as dQdt and the second term is positive for any

negatively sloped demand curves. However, the third term in (5.4) can be of any sign and

may be large enough to outweigh the �rst two terms. Thus, the relation between dQ=dt and

dW=dt is not unambiguous. Next, we give an example where social welfare decreases while

aggregate demand increases.

Example 4 We reconsider the previous example, now with the imposition of APP. As before,
let q1 (p) = 40�5p+0:15p2, q2 (p) = 60�5p and c = 2. Without APP, the monopolist charges
pm1 = 6:52 and pm2 = 7 in markets 1 and 2 respectively. In this example, for any positive

values of �, pmq;� is less than the uniform monopoly price pu = 6:85. Therefore, for any

discount �, the introduction of APP results in price increases in both markets. Figures 1 and

2 plot aggregate demand and social welfare against the fraction of MFCs, t, over the range

[0; 0:2] with discount � = 0:1. One can see that aggregate demand increases as there are more

MFCs while social welfare decreases. Thus, for these parameters, introduction of APP lowers

welfare but raises aggregate quantity. For higher values of � (for example, � = 0:3), both

aggregate demand as well as welfare increase with t in this example, and thus APP increases

both.

27



0 0.05 0.1 0.15 0.2
t

38.765

38.77

38.775

38.78

38.785

38.79

38.795
etagerggA

dnameD

0 0.05 0.1 0.15 0.2
t

288.66

288.68

288.7

288.72

288.74

laicoS
erafleW

Figure 1: Aggregate demand

vs. fraction of MFCs

Figure 2: Social welfare

vs. fraction of MFCs

5.3 Inelastic MFC Demand

Assume MFCs�demand for the product is completely inelastic. They demand a �xed quantity

of the product while non-MFCs have a downward sloping demand curve. The monopolist,

therefore, chooses (p1; : : : ; pn) to maximize

(1� )
nP
i=1
(pi � c)qi(pi) + 

nP
i=1
(pi � c)zi.

De�ning mi � zi
1� and substituting yields

(1� )
�
nP
i=1
(pi � c)qi(pi) +

nP
i=1
(pi � c)mi

�
.

Under APP, this objective function becomes

(1� )
�
nP
i=1
(pi � c)qi(pi) +

nP
i=1
(pq;� � c)mi

�
. (5.5)

Without any restriction on the prices, the monopolist�s optimal pricing strategy is to

charge p� = (p�1; : : : ; p
�
n) where p

�
i solves

qi(pi) + (pi � c)q0i(pi) +mi = 0. (5.6)

Denote the optimal price vector under APP by p̂ = (p̂1; : : : ; p̂n). p̂ solves the system of

equations

qi(pi) + (pi � c)q0i(pi) + (
nP
j=1

mj)(
d

dpi
pq;�) = 0 for each i. (5.7)

Any prices satisfying (5.7) will maximize pro�ts under APP if the objective function (5.5) is

strictly concave in (p1; : : : ; pn) whenever demand is positive in all markets. Strict concavity

of this pro�t function under APP is more stringent than Assumption 2. The following condi-

tion (together with Assumption 2) is su¢ cient for strict concavity of the monopolist�s pro�t

function under APP:
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Assumption 4 pq;� is weakly concave in (p1; : : : ; pn).

Under Assumptions 2 and 4, there exists a unique (p1; : : : ; pn) that solves the monopolist�s

problem under APP. For the analyses that follow, we assume that this condition holds,

and we characterize the behavior of the unique solution. Our next result provides some

su¢ cient conditions for all prices to increase (and also for all prices to decrease) because

of the introduction of an APP rule. These su¢ cient conditions are potentially useful in

policy planning because they involve only pre-APP price and demand information (and thus

information that is knowable before the policy decision about APP is undertaken).

Proposition 10 Assume MFC demand is inelastic and assumptions 1, 2 and 4 hold. With
the imposition of APP, prices in all markets increase if d

dpi
pq;�, computed at unconstrained

optimal monopoly prices p�, is greater than mi=
Pn
j=1mj for all i. Conversely, if d

dpi
pq;�,

computed at p� is smaller than mi=
Pn
j=1mj for all i, APP decreases prices in all markets.

Proof. Suppose at p�, d
dpi
pq;� > mi=

Pn
j=1mj for each i. Therefore, at p = p�, the left-hand

side of (5.7) is positive for each i. Since Assumptions 2 and 4 ensure that the optimization

problem under APP is globally strictly concave, it must be that p̂i > p�i for each i.

Similarly, suppose at p�, d
dpi
pq;� < mi=

Pn
j=1mj for each i. Then, at p = p�, the left-hand

side of (5.7) is negative for each i. Global strict concavity then implies p̂i < p�i for each i.

How the prices will change under APP if some of the average price derivatives are greater

than mi=
Pn
j=1mj ; while others are not, is not obvious. However, one can show that d

dpi
pq;�

decreases with � for all prices. As a result, for high values of �, d
dpi
pq;�, computed at pre-

APP optimal monopoly prices p� will be smaller than mi=
Pn
j=1mj for each i = 1; 2; :::n:

Therefore, APP will decrease prices in all markets if the discount from average price is high

enough. The next result quanti�es this su¢ cient condition.

Corollary 2 For su¢ ciently high values of �, the imposition of APP decreases prices in

every market. In particular, this occurs if � is greater than maxf1�mi=
Pn
j=1mj

d
dpi

pqjp=p�
; i = 1; 2; :::ng.

Since the pre-APP optimal price p�i in market i is strictly above the monopoly price for

non-MFCs in market i, there is a tension between wanting to reduce prices for the non-

MFCs and making the discounted quantity-weighted average price as high as possible to

extract surplus from the MFCs. For high discounts (i.e., (1 � �) small), the change in the
discounted quantity-weighted average price from any given change in prices is low (since
d
dpi
pq;� = (1 � �) ddpi pq), and the MFC e¤ect is correspondingly small. This is why reducing

prices dominates for high values of �.

The above intuition also suggests that optimal prices under APP decrease with the dis-

count parameter, �. Since MFCs�demand is inelastic, in every market the monopolist charges

a price above the monopoly price for non-MFCs in that market. Therefore, at the optimal
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price in market i, when considering a decrease in price, the marginal gain in pro�t from the

non-MFCs in market i exactly counterbalances the marginal loss in pro�t coming from the

MFCs. As the discount increases, the marginal loss in pro�t from the MFCs when decreasing

price in market i, measured by (
Pn
j=1mj)(

d
dpi
pq;�), decreases. The marginal gain in pro�t

from the non-MFCs in market i is una¤ected. Therefore, as the discount increases, the mo-

nopolist �nds it optimal to decrease prices. The next proposition (proved in the Appendix)

formalizes this reasoning.

Proposition 11 Assume MFC demand is inelastic and Assumptions 1, 2 and 4 hold. Opti-
mal prices under APP are strictly decreasing in �.

5.4 Welfare Analysis (When MFCs�demand is inelastic)

As before, we parametrize a set of optimization problems OP� , so that OP0 is identical to the

monopolist�s pro�t maximization problem with no MPP, and OP1 is the monopolist�s pro�t

maximization problem with MPP. Formally, for � 2 [0; 1], we de�ne OP� as follows:

OP� : (1� )
"
maxfpigni=1

Pn
i=1(pi � c)qi(pi) + �

Pn
i=1(pq;� � c)mi

+(1� �)
Pn
i=1(pi � c)mi

#
(5.8)

= (1� )
�
max
fpigni=1

nP
i=1
(pi � c)fqi(pi) + (1� �)mig+

nP
i=1
(pq;� � c)�mi

�
.

Note that the above optimization problem is similar to the pro�t maximizing problem

under APP (5.5) if we replace the term qi(pi) by fqi(pi)+(1��)mig andmi by �mi respectively

in (5.5). Let p̂(�) = (p̂1(�); : : : ; p̂n(�)) and p̂q;�(�) denote the optimal price in problem OP�

and the discounted quantity-weighted average price computed at the optimal price vector

p̂(�) respectively (Given our notation used to denote the pre-APP optimal monopoly price

and post-APP optimal price, we have p̂(0) = p� and p̂(1) = p̂).

For � 2 [0; 1], Q(�); aggregate demand corresponding to OP� , is given by

Q(�) = (1� )
�
nP
i=1
qi(p̂i(�)) +

nP
i=1
mi

�
; (5.9)

and, W (�); the Marshallian welfare resulting from OP� , is given by

W (�) = (1� )

2664
Pn
i=1

(
(p̂i(�)� c)(qi(p̂i(�)) + (1� �)mi)

+
R �M
p̂i(�)

(qi(v) + (1� �)mi)dv

)
+
Pn
i=1

n
(p̂q;�(�)� c)�mi +

R �M
p̂q;�(�)

�midv
o
3775 (5.10)

= (1� )
" Pn

i=1f(p̂i(�)� c)(qi(p̂i(�)) +
R1
p̂i(�)

(qi(v))dvg
+
Pn
i=1

�
�M � c

�
mi

#
(5.11)

In this calculation, we assume that the upper bound of the price while measuring the

inelastic consumers�welfare is given by �M , some �nite number large enough so that qi( �M) =
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0 for all i. This is equivalent to saying that demand isn�t really inelastic, but rather is

inelastic until price hits �M , and zero thereafter. Otherwise, consumer surplus for the inelastic

consumers will always be in�nity and our welfare measure would not be sensitive to changes in

prices. Observe that the last term in (5.11) is the consumer plus producer surplus associated

with the inelastic consumers, and that this is a constant �changes in price simply change

the split between these consumers and the producer. Below we will be interested in changes

in welfare, rather than levels. For this purpose, one may then ignore the inelastic part of the

market and the conclusions are insensitive to the choice of �M .

As � is increased from 0 to 1, p̂i(�) moves from the optimal pre-APP price in market i,

p�i , to the optimal price in market i under APP, p̂i. We can, therefore, compare aggregate

demand and welfare at these two extreme points � = 0 and � = 1 by studying dQ=d� and

dW=d� . Observe that

dQ

d�
= (1� )

nP
i=1
q0i(p̂i(�))p̂

0
i(�) (5.12)

and

dW

d�
= (1� )

nP
i=1

�
(p̂i(�)� c)q0i(p̂i(�))p̂0i(�) + p̂0i(�) (qi (p̂i(�))� qi (p̂i(�)))

	
(5.13)

= (1� )
nP
i=1
(p̂i(�)� c)q0i(p̂i(�))p̂0i(�) (5.14)

To better understand the terms in (5.12) and (5.14), note that the monopolist�s objective

function in the constructed optimization problem (5.8) is a convex combination of the ob-

jective function in pre-APP case and the objective function in post-APP case with weights

1 � � and � respectively. The demand of MFCs in the optimization problem (5.8) is �xed

at (1� )
Pn
i=1mi and is independent of � . As � changes, the optimal price p̂i(�) in market

i changes and the e¤ect of these price changes on aggregate demand comes only through

the change in non-MFC�s demand. The change in non-MFC�s demand is measured by (5.12).

Similarly, social welfare for the inelastic section of the consumers in the optimization problem

(5.8) is �xed at (1� )
Pn
i=1

�
�M � c

�
mi and is independent of � . As � changes, the e¤ect

of price changes on social welfare comes only through the changes in social welfare for the

elastic demand section of markets. This change is measured by (5.14).

Since prices may move in either direction, change in dQ
d� is not unidirectional. However, the

conditions for all prices to move in the same direction (either all to increase or all to decrease)

stated in Proposition 10 provide su¢ cient conditions for APP to increase or decrease aggre-

gate demand and welfare. From (5.12), we see that aggregate demand decreases (increases) if

prices in every market increase (decrease) (since q0i(p̂i(�)) � 0 for every market i). Since the
monopolist always charges a price above the marginal cost c, welfare decreases (increases) if

prices in every market increase (decrease). Hence, we have the following su¢ cient conditions

for APP to decrease (increase) welfare:
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Proposition 12 Assume MFCs demand is inelastic and Assumptions 1; 2 and 4 hold. With
the imposition of APP, aggregate demand and welfare decrease (increase) if d

dpi
pq;�, computed

at pre-APP optimal prices p�, is greater (smaller) than mi=
Pn
j=1mj for all i.

6 Conclusion

6.1 Other Applications

Though the motivation for this paper mainly comes from the MFC clauses that are featured

in the Medicaid reimbursement policy, our model is closely related to a broad class of contrac-

tual problems featuring similar clauses. Such clauses are used in contractual agreements in

di¤erent industries (e.g. agreements between health care providers and health practitioners10

(see Martin [10]), and most favored nation clauses in legal settlements (see Spier [20], [21]).

In a selling context, they come in the form of minimum price protection that obligates a

seller of a product or a service provider to treat the buyers (who are otherwise distinguish-

able) symmetrically in their pricing decision. Though the exact form of such agreements does

not always match our formulation, we can often accommodate monopoly versions of these

problems into our model with only a slight reformulation. Here, we provide a few examples.

a) Long term trading contracts with price protection: This type of contract is often present

in markets where market power is on the side of the buyer. Applications include natural

gas contracts (see e.g. Crocker and Lyon [6]) and other utility contracts. Sellers often

sign contractual agreements with large buyers (or buyers with large sellers) to provide

the buyers (or sellers) with price protection over an extended time period . We can

accommodate this problem in our set up in the following way. Consider this as an n

period problem, where demand may change from period to period. A section of buyers,

treated as most favored customers, will be paying the minimum price that prevails

over the n periods. However, the seller is allowed to charge di¤erent prices in di¤erent

periods to other customers. As long as it is not possible to substitute demand in one

period for demand in another, we can treat these n di¤erent periods as n di¤erent

markets with distinct demand curves. If the section of most favored customers remains

a �xed fraction of the total consumers in every market, this formulation will directly

�t our model.

b) Exogenous shift of consumers between markets: Consider the example of an electronics

10Ocean State, a for-pro�t HMO, �led an antitrust case against Blue Cross and Blue Shield of Rhode Island,

another health care provider, for introducing a Prudent Buyer policy that involves a most favored customer

contract with physicians. The Prudent Buyer policy ensured that Blue Cross would not pay more for the

services of its physician providers than what its providers are accepting from other health care companies,

including Ocean State.
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goods manufacturer who sells her product in di¤erent locations through retailers. Re-

tailers di¤er in their bargaining power, depending on the size and elasticity of their

individual markets. Assuming a high level of search cost, this would typically result in

high dispersion in retail prices. Now consider an exogenous mechanism that can reduce

the search cost for a section of consumers. For example, with the growth of web based

transactions, almost every retailer now maintains a web site that allows online pur-

chase of electronics goods. Not everybody can easily access or feels comfortable using

that market, but for those who do, search cost is reduced to a large extent. Assuming

that the fraction of consumers who may exercise the online purchasing option remains

relatively constant across di¤erent markets, this implies that a section of consumers

from every market now pay the minimum price (ignoring di¤erences in retailer service

provision and return policies).

What is important from a theoretical perspective is that these contractual agreements or

exogenous shifts in location of consumers create a cross-market e¤ect among the individual

market prices in the monopolist�s objective function. In each market, a fraction of the

consumers is now paying a price that is connected to the prices charged in other markets.

We precisely deal with the situation where this cross-market connection is induced through

one of two di¤erent forms of price protection: MPP or APP.

6.2 Summary

Our analysis shows how the MPP and APP rebate rules a¤ect a monopolist�s optimal pricing

strategy as well as social welfare under third-degree price discrimination. Under MPP, the

minimum price charged always rises compared to the no regulation case. In fact, prices in

all markets (weakly) rise if Medicaid and non-Medicaid consumers have the same demand

characteristics. In contrast, if Medicaid demand is inelastic, prices in all markets where the

minimum is not charged will fall. In either scenario, the welfare e¤ect of MPP may be good

or bad. A useful su¢ cient condition for MPP to be welfare improving is that MPP raise

aggregate quantity.

Under APP and elastic demand, prices in all markets move in the same direction. Prices

increase if and only if the discount percentage o¤ of average price is above a threshold. When

MFCs�demand is inelastic, we provide conditions su¢ cient for prices to move together in

each direction. Prices under APP are decreasing in the discount, and if the discount is high

enough, APP will lower prices in every market. Thus large discounts have opposite e¤ects on

price movements under APP in the elastic versus inelastic cases. As with MPP, the welfare

e¤ect of imposing APP is ambiguous in general. If MFCs�demand is inelastic, then if prices

in all markets increase, both welfare and aggregate quantity fall, while if all prices decrease

this is welfare and quantity improving.
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The analysis of these policies is surprisingly intricate, even in a relatively simple setting

such as ours. This suggests that great care is needed when implementing such MFC rules and

that making provisions for data collection to support follow-up empirical work measuring the

pricing and demand response has high potential value in avoiding mistakes or helping �ne-tune

the policy. Some theoretical issues that we have not addressed here, such as incorporating

demand uncertainty, second-degree price discrimination and the e¤ect on dynamic R&D

incentives for the manufacturer are also interesting topics for future work to explore.
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7 Appendix

Proof of Lemma 2. :
We �rst show that k() is an (weakly) increasing function of . Let us take 0 � 1 < 2.

Note that p̂() and k() solve equation (4.5) for  = 1; 2: Thus,

k(1)P
i=1

f(p̂(1)� c)q0i(p̂(1)) + qi(p̂(1))g+ 1
nP

i=k(1)+1

f(p̂(1)� c)q0i(p̂(1)) + qi(p̂(1))g(7.1)

=
k(2)P
i=1

f(p̂(2)� c)q0i(p̂(2)) + qi(p̂(2))g+ 2
nP

i=k(2)+1

f(p̂(2)� c)q0i(p̂(2)) + qi(p̂(2))g.

We will now show that k(2) < k(1) contradicts (7.1). If k(2) < k(1), from Proposition

1, it follows that p̂(2) < p̂(1). By Assumption (2), we have

(p̂(1)� c)q0i(p̂(1)) + qi(p̂(1)) < (p̂(2)� c)q0i(p̂(2)) + qi(p̂(2)) (7.2)

for every i = 1; 2; :::n. Furthermore, from Proposition 1, it follows that

f(p̂()� c)q0i(p̂()) + qi(p̂())g < 0 for i = 1; 2; : : : k ()� 1
� 0 for i = k ()

and

f(p̂()� c)q0i(p̂()) + qi(p̂())g > 0 for i = k () + 1; : : : n:
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Hence,

2
nP

i=k(2)+1

f(p̂(2)� c)q0i(p̂(2)) + qi(p̂(2))g

> 1
nP

i=k(2)+1

f(p̂(2)� c)q0i(p̂(2)) + qi(p̂(2))g

(as 1 < 2 and
nP

i=k(2)+1

f(p̂(2)� c)q0i(p̂(2)) + qi(p̂(2))g > 0)

> 1
nP

i=k(1)+1

f(p̂(2)� c)q0i(p̂(2)) + qi(p̂(2))g (as k(2) < k(1)

> 1
nP

i=k(1)+1

f(p̂(1)� c)q0i(p̂(1)) + qi(p̂(1))g

(by (7:2)).

Similarly,

k(2)P
i=1

f(p̂(2)� c)q0i(p̂(2)) + qi(p̂(2))g >
k(2)P
i=1

f(p̂(1)� c)q0i(p̂(1)) + qi(p̂(1))g

�
k(1)P
i=1

f(p̂(1)� c)q0i(p̂(1)) + qi(p̂(1))g.

But then

k(2)P
i=1

f(p̂(2)� c)q0i(p̂(2)) + qi(p̂(2))g+ 2
nP

i=k(2)+1

f(p̂(2)� c)q0i(p̂(2)) + qi(p̂(2))g

>
k(1)P
i=1

f(p̂(1)� c)q0i(p̂(1)) + qi(p̂(1))g+ 1
nP

i=k(1)+1

f(p̂(1)� c)q0i(p̂(1)) + qi(p̂(1))g

contradicting the equality in (7.1). This proves k() is (weakly) increasing in .

To complete the proof, we must show that p̂() is a strictly increasing function of . Fix

1 < 2. By what we proved above, k(1) � k(2). If k(1) < k(2), Proposition 1 directly
implies that p̂(1) < pmk(1)+1

� pmk(2)
� p̂(2). If k(1) = k(2) = k, then on the interval

[1; 2], p̂() solves the equation

kP
i=1
f(p̂()� c)q0i(p̂()) + qi(p̂())g+ 

nP
i=k+1

f(p̂()� c)q0i(p̂()) + qi(p̂())g = 0: (7.3)

Let us de�ne the function �i (x) = (x� c) qi (x) for x > 0. Then Equation (7:3) can be

rewritten as
kP
i=1
�0i(p̂()) + 

nP
i=k+1

�0i(p̂()) = 0:

Di¤erentiating with respect to  over the interval [1; 2], we get
Pk
i=1 �

00
i (p̂())p̂

0() +


Pn
i=k+1 �

00
i (p̂())p̂

0() +
Pn
i=k+1 �

0
i(p̂()) = 0. As �00i (p̂

0()) < 0 (by Assumption 2) and
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Pn
i=k+1 �

0
i(p̂()) is strictly positive (follows from Proposition 1), we must have p̂0() > 0:

Hence p̂ is an increasing function of .

Derivation of equation (4.6 ):
Proof. For t 2 (j�1; j), p̂(t) solves

d

dp
[
j�1P
i=1
(p� c)qi(p) + t

nP
i=j
(p� c)qi(p)] jp=p̂(t)= 0;

or,
j�1P
i=1
f(p̂(t)� c)q0i(p̂(t)) + qi(p̂(t))g+ t

nP
i=j
f(p̂(t)� c)q0i(p̂(t)) + qi(p̂(t))g = 0

Di¤erentiating with respect to t;

j�1P
i=1

�
(p̂(t)� c)q00i (p̂(t))p̂0(t) + 2q0i(p̂(t))(p̂0(t)

	
+t

nP
i=j

�
(p̂(t)� c)q00i (p̂(t))p̂0(t) + 2q0i(p̂(t))p̂0(t)

	
+

nP
i=j
f(p̂(t)� c)q0i(p̂(t)) + qi(p̂(t))g = 0;

or,

2p̂0(t)[
j�1P
i=1
q0i(p̂(t)) + t

nP
i=j
q0i(p̂(t))]

= �(p̂(t)� c)p̂0(t)[
j�1P
i=1
q00i (p̂(t)) + t

nP
i=j
q00i (p̂(t))] (7.4)

�
nP
i=j
f(p̂(t)� c)q0i(p̂(t) + qi(p̂(t)g

Q(t) = Aggregate demand at the equilibrium price vector of OPt

=
j�1P
i=1
qi(p̂(t)) + t

nP
i=j
qi(p̂(t)) + (1� t)

nP
i=j
qi(p

m
i )

dQ

dt
=
j�1P
i=1
q0i (p̂(t)) p̂

0(t) + t
nP
i=j
q0i (p̂(t)) p̂

0(t) +
nP
i=j
fqi(p̂(t))� qi(pmi )g

= �1
2
(p̂(t)� c)p̂0(t)[

j�1P
i=1
q00i (p̂(t)) + t

nP
i=j
q00i (p̂(t))]

�1
2

nP
i=j
f(p̂(t)� c)q0i(p̂(t)) + qi(p̂(t))g+

nP
i=j
fqi(p̂(t))� qi(pmi )g

Derivation of equation (4.8 ):
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Proof.

W (t) =
j�1P
i=1

(Z 1

p̂(t)
qi(v)dv + (p̂(t)� c)qi (p̂ (t))

)

+
nP
i=j

"
t

(Z 1

p̂(t)
qi(v)dv + (p̂(t)� c)qi (p̂ (t))

)
+ (1� t)

(Z 1

pmi

qi(v)dv + (p
m
i � c)qi (pmi )

)#

=
j�1P
i=1

(Z 1

p̂(t)
qi(v)dv + (p̂(t)� c)qi (p̂ (t))

)

+t
nP
i=j

(Z pmi

p̂(t)
qi(v)dv + (p̂(t)� c)qi (p̂ (t))� (pmi � c)qi (pmi )

)
+a term independent of t

dW

dt
=

j�1P
i=1

�
�qi (p̂ (t)) p̂0 (t) + qi (p̂ (t)) p̂0 (t) + (p̂ (t)� c)q0i (p̂ (t)) p̂0 (t)

	
+t

nP
i=j
f�qi (p̂ (t)) p̂0 (t) + qi (p̂ (t)) p̂0 (t) + (p̂ (t)� c)q0i (p̂ (t)) p̂0 (t)g

+
nP
i=j
f
Z pmi

p̂(t)
qi(v)dv + (p̂(t)� c)qi (p̂ (t))� (pmi � c)qi (pmi )g

=
j�1P
i=1
(p̂ (t)� c)q0i (p̂ (t)) p̂0 (t) + t

nP
i=j
(p̂ (t)� c)q0i (p̂ (t)) p̂0 (t)

+
nP
i=j
f
Z pmi

p̂(t)
qi(v)dv + (p̂(t)� c)fqi(p̂ (t))� qi(pmi )g � (pmi � p̂(t))qi (pmi )g

=
j�1P
i=1
(p̂ (t)� c)q0i (p̂ (t)) p̂0 (t) + t

nP
i=j
(p̂ (t)� c)q0i (p̂ (t)) p̂0 (t)

+
nP
i=j
(p̂ (t)� c) fqi(p̂ (t))� qi(pmi )g+

nP
i=j
f
Z pmi

p̂(t)
fqi(v)� qi (pmi )g dv

= (p̂ (t)� c)[
j�1P
i=1
q0i (p̂ (t)) p̂

0 (t) + t
nP
i=j
q0i (p̂ (t)) p̂

0 (t) +
nP
i=j
fqi(p̂ (t))� qi(pmi )g]

+
nP
i=j
f
Z pmi

p̂(t)
fqi(v)� qi (pmi )g dv

by (4.7)

= (p̂ (t)� c)dQ
dt
+

nP
i=j
f
Z pmi

p̂(t)
fqi(v)� qi (pmi )g dv

Derivation of equation (4.19):

39



Proof. Applying the argument, which we used to derive (4.14), to the constructed optimiza-
tion problem (4.16), we see that for any � 2 (� j�1; � j), p̂(�) solves

d

dp
[
j�1P
i=1
(p� c)fqi(p) + (1� �)mig+

nP
i=1
(p� c)�mi] = 0;

or,
d

dp

"
(p� c)

(
j�1P
i=1
(qi(p) +mi) +

nP
i=j
�mi

)#
= 0:

Hence,

j�1P
i=1
(p̂(�)� c)q0i(p̂(�)) +

"
j�1P
i=1
qi(p̂(�)) +

j�1P
i=1
mi +

nP
i=j
�mi

#
= 0

Di¤erentiating with respect to � ;

j�1P
i=1
f(p̂(�)� c)q00i (p̂(�)) p̂0(�) + 2q0i (p̂(�)) p̂0(�)g+

nP
i=j
mi = 0;

or; 2
j�1P
i=1
q0i (p̂(�)) p̂

0(�) = �
nP
i=j
mi �

j�1P
i=1
(p̂(�)� c)q00i (p̂(�)) p̂0(�) (7.5)

For � 2 (� j�1; � j), p�i (�); i = j; : : : ; n; solves

d

dp
[(p� c)fqi(p) + (1� �)mig] = 0;

or; (p� c)q0i(p) + qi(p) + (1� �)mi = 0:

Hence,

(p�i (�)� c)q0i(p�i (�)) + qi(p�i (�)) + (1� �)mi = 0:

Di¤erentiating with respect to � ;

(p�i (�)� c)q00i (p�i (�)) p�0i (�) + 2q0i (p�i (�)) p�0i (�)�mi = 0;

or; 2q0i (p
�
i (�)) p

�0
i (�) = mi � (p�i (�)� c)q00i (p�i (�)) p�0i (�) (7.6)
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Q(�) = Aggregate demand at the equilibrium price vector of OP�

= (1� )
"
j�1P
i=1
qi(p̂(�)) +

nP
i=j
qi(p

�
i (�)) +

nP
i=1
mi

#
dQ

d�
= (1� )

"
j�1P
i=1
q0i (p̂(�)) p̂

0(�) +
nP
i=j
q0i (p

�
i (�)) p

�0
i (�)

#

= �1
2
(1� )

"
nP
i=j
mi +

j�1P
i=1
(p̂(�)� c)q00i (p̂(�)) p̂0(�)

#

+
1

2
(1� )

"
nP
i=j
mi �

nP
i=j
(p�i (�)� c)q00i (p�i (�)) p�0i (�)

#

= �1
2
(1� )

"
j�1P
i=1
(p̂(�)� c)q00i (p̂(�)) p̂0(�)

#

�1
2
(1� )

"
nP
i=j
(p�i (�)� c)q00i (p�i (�)) p�0i (�)

#

Derivation of equation (4:21):
Proof.

dW

dt
=

d

dt
(1� )

" Pn
i=1

�
�M � c

�
mi +

Pj�1
i=1f(p̂(�)� c)qi(p̂(�)) +

R1
p̂(�) qi(v)dvg

+
Pn
i=jf(p�i (�)� c)qi(p�i (�)) +

R1
p�i (�)

qi(v)dvg

#

= (1� )
"
d

dt

j�1P
i=1

(
(p̂(�)� c)qi(p̂(�)) +

Z 1

p̂(�)
qi(v)dv

)#

+(1� )
"
d

dt

nP
i=j
f(p�i (�)� c)qi(p�i (�)) +

Z 1

p�i (�)
qi(v)dvg

#
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= (1� )
"
j�1P
i=1

�
(p̂(�)� c)q0i(p̂(�))p̂0(�) + qi (p̂(�)) p̂0(�)� qi (p̂(�)) p̂0(�)

	#

+(1� )
"
nP
i=j

�
(p�i (�)� c)q0i(p�i (�))p�0i (�) + qi(p�i (�))p�0i (�)� qi(p�i (�))p�0i (�)

	#

= (1� )
"
j�1P
i=1
(p̂(�)� c)q0i(p̂(�))p̂0(�) +

nP
i=j
(p�i (�)� c)q0i(p�i (�))p�0i (�)

#

= (1� )
" Pj�1

i=1 (p̂(�)� c)q0i(p̂(�))p̂0(�) +
Pn
i=j(p̂(�)� c)q0i(p�i (�))p�0i (�)

�
Pn
i=j(p̂(�)� c)q0i(p�i (�))p�0i (�) +

Pn
i=j(p

�
i (�)� c)q0i(p�i (�))p�0i (�)

#

= (1� )
" Pj�1

i=1 (p̂(�)� c)q0i(p̂(�))p̂0(�) +
Pn
i=j(p̂(�)� c)q0i(p�i (�))p�0i (�)

+
Pn
i=j(p

�
i (�)� p̂(�))q0i(p�i (�))p�0i (�)

#

= (p̂(�)� c)dQ
d�

+ (1� )
"
nP
i=j
(p�i (�)� p̂(�))q0i(p�i (�))p�0i (�)

#
.

Proof of Lemma 3. Note that d
dpi
pq;� is strictly positive when price equals marginal cost

in every market.

d

dpi
pq;�

��
p=(c;c;:::;c) = (1� �) d

dpi
pq
��
p=(c;c;:::;c)

= (1� �)
qi (c) + (c� pq

��
p=(c;c;:::;c) )q

0
i (c)Pn

j=1 qj(c)

= (1� �) qi (c)Pn
j=1 qj(c)

since pq
��
p=(c;c;:::;c) = c

> 0 for i = 1; 2; : : : ; n.

Therefore, (5.2) evaluated at (c; c; : : : ; c) is strictly positive. Under Assumptions 2 and 3,

problem (5.1) is globally concave, thus, (5.2) strictly positive at (c; c; : : : ; c) implies c < p̂i

for i = 1; 2; : : : ; n.

Proof of Lemma 4. Since pmi > c for all i = 1; 2; : : : ; n, we have pq
���p=(pm1 ;pm2 ;:::;pmn ) >

c. Since q0i (p
m
i ) < 0 (if q0i (p

m
i ) = 0 then pmi could not be pro�t maximizing, and so, by

Assumption 2, could not satisfy the �rst order condition de�ning pmi ), this implies qi (p
m
i ) +

(pmi �pq
���p=(pm1 ;pm2 ;:::;pmn ) )q0i (pmi ) > qi (pmi )+(pmi � c)q0i (pmi ) = 0 for i = 1; 2; : : : ; n. Therefore,

d

dpi
pq

���p=(pm1 ;pm2 ;:::;pmn ) = qi (p
m
i ) + (p

m
i � pq

���p=(pm1 ;pm2 ;:::;pmn ) )q0i (pmi )Pn
j=1 qj(p

m
j )

> 0 for i = 1; 2; : : : ; n.

Proof of Lemma 5. For given i 2 f1; 2; : : : ; ng and p�i = (p1; : : : pi�1; pi+1; : : : ; pn) 2
(c;1)n�1, de�ne ~pi(p�i) � maxfr : d

dpi
pq > 0 for all pi 2 (c; r)g. If d

dpi
pq > 0 for all pi > c,
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de�ne ~pi(p�i) � 1. Observe that

d

dpi
pq
��
p=(c;p�i) =

qi (c) + (c� pq
��
p=(c;p�i) )q

0
i (c)

qi (c) +
Pn
j=1;j 6=i qj(pj)

and d
dpi
pq
��
p=(c;p�i) is strictly positive since, for p�i 2 (c;1)

n�1, pq (c; p�i) is strictly greater

than c. As d
dpi
pq is continuous, either there exists a �rst r > c such that d

dpi
pq
��
p=(r;p�i) = 0

(and so ~pi(p�i) = r) or ~pi(p�i) =1. Thus, ~pi(p�i) is well de�ned.
Recall that p̂ is the solution of (5.1). By Lemma 3, p̂i > c for every i. Since d

dpi
pq;� =

(1 � �) ddpi pq > 0 for all pi 2 (c; ~pi(p�i)), to prove the result it is enough to show that

p̂i < ~pi(p̂�i) for each i. If ~pi(p̂�i) =1, then we are done. Therefore, assume that ~pi(p̂�i) is
�nite. Then, by de�nition of ~pi and continuity of d

dpi
pq;�, d

dpi
pq;� = 0 at ~pi(p̂�i). Denoting

the left-hand side of equation (5.2) by Fi (pi; p�i), this yields

Fi (~pi(p̂�i); p̂�i) = (1� )[(~pi(p̂�i)� c)q0i(~pi(p̂�i)) + qi(~pi(p̂�i))].

As p̂�i > c and ~pi(p̂�i) > c, we have pq (~pi(p̂�i); p̂�i) > c. Therefore,

Fi (~pi(p̂�i); p̂�i) = (1� )[(~pi(p̂�i)� c)q0i(~pi(p̂�i)) + qi(~pi(p̂�i))] (7.7)

< (1� )[(~pi(p̂�i)� pq (~pi(p̂�i); p̂�i))q0i(~pi(p̂�i))
+qi(~pi(p̂�i))].

Since d
dpi
pq;� = 0 at ~pi(p̂�i), ~pi(p̂�i) satis�es

(~pi(p̂�i)� pq (~pi(p̂�i); p̂�i))q0i(~pi(p̂�i)) + qi(~pi(p̂�i)) = 0,

and, from this and (7.7),

Fi (~pi(p̂�i); p̂�i) < 0.

Since p̂i satis�es (5.2), Fi (p̂i; p̂�i) = 0. Strict concavity of the pro�t function under APP

then implies p̂i < ~pi(p̂�i).

Proof of Proposition 9. The optimal price p̂ (�) = (p̂1 (�) ; p̂2 (�) ; : : : ; p̂n (�)) under APP

with discount parameter � solves the �rst order conditions in (5.2). Let Gi (�; p) denote the

left-hand side of (5.2) as a function of the discount � and the price vector p = (p1; p2; : : : ; pn)

for i = 1; 2; : : : ; n. Fix 0 � �1 < �2 < 1. We know Gi (�1; p̂ (�1)) = Gi (�2; p̂ (�2)) = 0 for
i = 1; 2; : : : ; n. Computing Gi (�; p) at (�1; p̂ (�2)), we �nd that

Gi (�1; p̂ (�2)) = (1� )[(p̂i (�2)� c)q0i(p̂i (�2)) + qi(p̂i (�2))]+ (7.8)

(
d

dpi
p̂ (�2)q;�1)[

nP
j=1
fqj(p̂ (�2)q;�1) + (p̂ (�2)q;�1 � c)q

0
j(p̂ (�2)q;�1)g].
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Since Gi (�2; p̂ (�2)) = 0, we have

(1� )[(p̂i (�2)� c)q0i(p̂i (�2)) + qi(p̂i (�2))] = (7.9)

�( d
dpi
p̂ (�2)q;�2)[

nP
j=1
fqj(p̂ (�2)q;�2) + (p̂ (�2)q;�2 � c)q

0
j(p̂ (�2)q;�2)g].

Therefore, (7.8) can be rewritten as

Gi (�1; p̂ (�2)) = (
d

dpi
p̂ (�2)q;�1)[

nP
j=1
fqj(p̂ (�2)q;�1) + (p̂ (�2)q;�1 � c)q

0
j(p̂ (�2)q;�1)g] (7.10)

�( d
dpi
p̂ (�2)q;�2)[

nP
j=1
fqj(p̂ (�2)q;�2) + (p̂ (�2)q;�2 � c)q

0
j(p̂ (�2)q;�2)g].

Furthermore, d
dpi
p̂ (�2)q;�i = (1� �i)

d
dpi
p̂ (�2)q. Hence,

Gi (�1; p̂ (�2)) = (
d

dpi
p̂ (�2)q)

266664
(1� �1)

" Pn
j=1fqj(p̂ (�2)q;�1)

+(p̂ (�2)q;�1 � c)q0j(p̂ (�2)q;�1)g

#

�(1� �2)
" Pn

j=1fqj(p̂ (�2)q;�2)
+(p̂ (�2)q;�2 � c)q

0
j(p̂ (�2)q;�2)g

#
377775

We now show that Gi (�1; p̂ (�2)) < 0 if �2 < ��. By Lemma 5, d
dpi
p̂ (�2)q � 0. Therefore,

Gi (�1; p̂ (�2)) < 0 if and only if24 (1� �1)
hPn

j=1

n
qj(p̂ (�2)q;�1) + (p̂ (�2)q;�1 � c)q

0
j(p̂ (�2)q;�1)

oi
�(1� �2)

hPn
j=1

n
qj(p̂ (�2)q;�2) + (p̂ (�2)q;�2 � c)q

0
j(p̂ (�2)q;�2)

oi 35 < 0
If �2 < ��, then, by Corollary 1, prices decrease under APP and, by Proposition 7,

nP
j=1

n
qj(p̂ (�2)q;�2) + (p̂ (�2)q;�2 � c)q

0
j(p̂ (�2)q;�2)

o
< 0:

Since �1 < �2, p̂ (�2)q;�1 > p̂ (�2)q;�2 and,
Pn
j=1fqj(k) + (k � c)q0j(k)g strictly decreasing in

k (by Assumption 2),

(1� �1)
nP
j=1

n
qj(p̂ (�2)q;�1) + (p̂ (�2)q;�1 � c)q

0
j(p̂ (�2)q;�1)

o
< (1� �2)

nP
j=1

n
qj(p̂ (�2)q;�2) + (p̂ (�2)q;�2 � c)q

0
j(p̂ (�2)q;�2)

o
.

Therefore �2 < �� implies Gi (�1; p̂ (�2)) < 0. This is useful because under Assumptions 2

and 3, the APP problem with discount parameter �1 is globally concave in prices. Thus,

Gi (�1; p̂ (�2)) < 0 implies p̂i (�1) < p̂i (�2) and prices rise with � under APP in the region

� < ��.
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Derivation of equation (5:3):

Proof.

Q (t) = (1� t)
nP
i=1
qi(p̂i (t)) + t

nP
i=1
qi(p̂q;� (t))

dQ

dt
=

"
�
Pn
i=1 qi (p̂i (t)) + (1� t)

Pn
i=1 q

0
i (p̂i (t)) p̂

0
i (t)

+
Pn
i=1 qi (p̂q;� (t)) + t

Pn
i=1 q

0
i (p̂q;� (t))

�
d
dt p̂q;� (t)

� #

=

�
nP
i=1
fqi (p̂q;� (t))� qi (p̂i (t))g

�
+

�
(1� t)

nP
i=1
fq0i (p̂i (t)) p̂0i (t)

�
+

�
t

�
d

dt
p̂q;� (t)

�
nP
i=1
q0i (p̂q;� (t))

�
: (7.11)

Derivation of equation (5:4):

Proof.

W (t) = (1� t)
nP
i=1

(
(p̂i (t)� c)qi(p̂i (t)) +

Z 1

p̂i(t)
qi(v)dv

)

+t
nP
i=1

(
(p̂q;� (t)� c)qi(p̂q;� (t)) +

Z 1

p̂q;�(t)
qi(v)dv

)

dW

dt
= (1� t)

nP
i=1

(
(p̂i (t)� c)q0i (p̂i (t)) p̂0i (t) + qi (p̂i (t)) p̂0i (t)

�qi (p̂i (t)) p̂0i (t)

)

�
nP
i=1

(
(p̂i (t)� c)qi(p̂i (t)) +

Z 1

p̂i(t)
qi(v)dv

)

+t
nP
i=1

(
(p̂q;� (t)� c)q0i(p̂q;� (t))

�
d
dt p̂q;� (t)

�
+ qi(p̂q;� (t))

�
d
dt p̂q;� (t)

�
�qi(p̂q;� (t))

�
d
dt p̂q;� (t)

� )

+
nP
i=1

(
(p̂q;� (t)� c)qi(p̂q;� (t)) +

Z 1

p̂q;�(t)
qi(v)dv

)

= (1� t)
nP
i=1
(p̂i (t)� c)q0i (p̂i (t)) p̂0i (t)

�
nP
i=1

(
(p̂i (t)� c)qi(p̂i (t)) +

Z 1

p̂i(t)
qi(v)dv

)

+t
nP
i=1
(p̂q;� (t)� c)q0i(p̂q;� (t))

�
d

dt
p̂q;� (t)

�
+

nP
i=1

(
(p̂q;� (t)� c)qi(p̂q;� (t)) +

Z 1

p̂q;�(t)
qi(v)dv

)
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= (1� t)
nP
i=1
(p̂i (t)� c)q0i (p̂i (t)) p̂0i (t)

+t
nP
i=1
(p̂q;� (t)� c)q0i(p̂q;� (t))

�
d

dt
p̂q;� (t)

�
+

nP
i=1

Z p̂i(t)

p̂q;�(t)
qi(v)dv +

nP
i=1
(p̂q;� (t)� c)qi(p̂q;� (t))�

nP
i=1
(p̂i (t)� c)qi(p̂i (t)):

Subtracting (p̂q;� (t)� c)dQdt , we get

dW

dt
� (p̂q;� (t)� c)

dQ

dt

= (1� t)
nP
i=1
(p̂i (t)� c)q0i (p̂i (t)) p̂0i (t) + t

nP
i=1
(p̂q;� (t)� c)q0i(p̂q;� (t))

�
d

dt
p̂q;� (t)

�
+

nP
i=1

Z p̂i(t)

p̂q;�(t)
qi(v)dv +

nP
i=1
(p̂q;� (t)� c)qi(p̂q;� (t))�

nP
i=1
(p̂i (t)� c)qi(p̂i (t))

�(p̂q;� (t)� c)
�
nP
i=1
fqi (p̂q;� (t))� qi (p̂i (t))g

�
�(p̂q;� (t)� c)

�
(1� t)

nP
i=1
fq0i (p̂i (t)) p̂0i (t)

�
�
�
t

�
d

dt
p̂q;� (t)

�
nP
i=1
(p̂q;� (t)� c)q0i (p̂q;� (t))

�

= (1� t)
nP
i=1
(p̂i (t)� p̂q;� (t))q0i (p̂i (t)) p̂0i (t)

�
nP
i=1
(p̂i (t)� p̂q;� (t))qi(p̂i (t)) +

nP
i=1

Z p̂i(t)

p̂q;�(t)
qi(v)dv

=
nP
i=1

Z p̂i(t)

p̂q;�(t)
fqi(v)� qi(p̂i (t))g dv � (1� t)

nP
i=1
(p̂q;� (t)� p̂i (t))q0i (p̂i (t)) p̂0i (t)

The following lemma, useful for proving Proposition 11, says that under APP, discounted

quantity-weighted average price is increasing in the price in each market.

Lemma 6 Suppose Assumptions 1, 2 and 4 hold. At the solution of (5.5), d
dpi
pq;� is positive

for all i.

Proof. Similar to the proof of Lemma 5 and therefore omitted.
Proof of Proposition 11. The optimal price under APP with discount parameter �,

denoted p̂ (�) = (p̂1 (�) ; p̂2 (�) ; : : : ; p̂n (�)), satis�es the �rst order conditions in (5.7). Let

Gi (�; p) denote the left-hand side of (5.7) as a function of the discount � and the price vector
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p = (p1; p2; : : : ; pn) for i = 1; 2; : : : ; n. Fix 0 � �1 < �2 � 1. We know Gi (�1; p̂ (�1)) =

Gi (�2; p̂ (�2)) = 0 for i = 1; 2; : : : ; n. Computing Gi (�; p) at (�1; p̂ (�2)), we �nd that

Gi (�1; p̂ (�2)) = [(p̂i (�2)� c)q0i(p̂i (�2)) + qi(p̂i (�2))] + (
d

dpi
p̂ (�2)q;�1)

nP
j=1

mj . (7.12)

Since Gi (�2; p̂ (�2)) = 0, we have

[(p̂i (�2)� c)q0i(p̂i (�2)) + qi(p̂i (�2))] = �(
d

dpi
p̂ (�2)q;�2)

nP
j=1

mj .

Therefore, (7.12) can be rewritten as

Gi (�1; p̂ (�2)) =

�
d

dpi
p̂ (�2)q;�1 �

d

dpi
p̂ (�2)q;�2

�
nP
j=1

mj . (7.13)

Furthermore, d
dpi
p̂ (�2)q;�k = (1� �k)

d
dpi
p̂ (�2)q. Hence,

Gi (�1; p̂ (�2)) =
d

dpi
p̂ (�2)q [(1� �1)� (1� �2)]

nP
j=1

mj

= (�2 � �1)
d

dpi
p̂ (�2)q

nP
j=1

mj .

If �2 < 1, by Lemma 6, d
dpi
p̂ (�2)q;�2 > 0, d

dpi
p̂ (�2)q =

1
1��2

�
d
dpi
p̂ (�2)q;�2

�
> 0, and

therefore,

Gi (�1; p̂ (�2)) > 0. Similarly, if �2 = 1, d
dpi
p̂ (�2)q;�2 = 0 and Gi (�1; p̂ (�2)) =�

d
dpi
p̂ (�2)q;�1

�Pn
j=1mj > 0. Under Assumptions 2 and 4, the APP problem with discount

parameter �1 is globally concave in prices. Thus, Gi (�1; p̂ (�2)) > 0 implies p̂i (�1) > p̂i (�2)

and prices fall with �.
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