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Abstract

We develop an aggregative games approach to study oligopolistic price competition

with multiproduct firms. We introduce a new class of demand systems, derived from

discrete/continuous choice, and nesting CES and logit demand systems. The associated

pricing game with multiproduct firms is aggregative and a firm’s optimal price vector

can be summarized by a uni-dimensional sufficient statistic, the ι-markup. We prove

existence of equilibrium using a nested fixed-point argument, and provide conditions for

equilibrium uniqueness. In equilibrium, firms may choose not to offer some products.

We analyze the pricing distortions and provide monotone comparative statics. Under

CES and logit demands, another aggregation property obtains: All relevant information

for determining a firm’s performance and competitive impact is contained in that firm’s

uni-dimensional type. Finally, we re-visit classic questions in static and dynamic merger

analysis, and study the impact of a trade liberalization on the inter- and intra-firm size

distributions, productivity and welfare.

1 Introduction

Analyzing the behavior of multiproduct firms in oligopolistic markets appears to be of a first-

order importance. Multiproduct firms are endemic and play an important role in the economy.

Even when defining products quite broadly at the NAICS 5-digit level, multiproduct firms

account for 91% of total output and 41% of the total number of firms (Bernard, Redding,
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and Schott, 2010). Similarly, many markets are characterized by oligopolistic competition.

Even at the 5-digit industry level, concentration ratios are fairly high: For instance, in U.S.

manufacturing, the average NAICS 5-digit industry has a four-firm concentration ratio of

35% (Source: Census of U.S. Manufacturing, 2002).1 The ubiquitousness of multiproduct

firms and oligopoly is reflected in the modern empirical IO literature, where oligopolistic

price competition with multiproduct firms abounds (e.g., Berry, 1994; Berry, Levinsohn, and

Pakes, 1995; Nevo, 2001).

In contrast to single-product firms, a multiproduct firm must choose not only how ag-

gressive it wants to be in the market place but also how to vary its markups across products

within its portfolio. In contrast to monopolistically competitive firms, an oligopolistic mul-

tiproduct firm must take self-cannibalization into account, both when setting its markups

and when deciding which products to offer. Multiproduct-firm oligopoly therefore gives rise

to a number of important questions: What determines the within-firm markup structure,

between-firm markup differences, and the industry-wide markup level? What explains firms’

scope in oligopoly? Along which dimensions are markups and product offerings distorted

by oligopolistic behavior? Due to the technical difficulties discussed below, these questions

have been under-researched in the existing literature. In this paper, we develop an aggrega-

tive games approach to circumvent the technical difficulties and address these and related

questions. We make several contributions.

We introduce a new class of (integrable) quasi-linear demand systems, derived from a

discrete/continuous choice model of consumer demand, where each consumer first chooses

which product to purchase, and then how much of that product to consume. This class nests

standard constant elasticity of substitution (CES) and multinomial logit (MNL) demand

systems as special cases. As demand satisfies the Independence of Irrelevant Alternatives

(IIA) axiom, consumer surplus depends only on an aggregator that is additively separable in

prices.

We use this class of demand systems to analyze oligopolistic price competition between

multiproduct firms with arbitrary firm and product heterogeneity. The associated pricing

game has two important properties. First, it is aggregative, and the aggregator is the same

as the one for consumer surplus. Second, a firm’s optimal price vector is such that, for every

product in that firm’s portfolio, the Lerner index multiplied by a product-level elasticity

measure is equal to a firm-level sufficient statistic, called the ι-markup. That ι-markup pins

down the price level of the firm.2 We can therefore think of the firm’s maximization problem

as one of choosing the right ι-markup.

These two properties allow us to prove existence of a pricing equilibrium under weak con-

1The prevalence of multiproduct-firms and oligopolistic markets would be larger if one were to define
products and industries more narrowly, as is usually done in industrial organization. The focus of this paper
will be on such narrowly defined industries in which there are substantial demand-side linkages between all
products.

2With CES (resp. MNL) demands, this implies that the firm charges the same relative (resp. absolute)
markup over all its products. Our class of demand systems allows us to generate heterogeneous relative and
absolute markups within a firm’s set of products.
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ditions using a nested fixed point argument. This approach circumvents problems that arise

when attempting to apply off-the-shelf equilibrium existence theorems, such as the failure of

quasi-concavity, (log-)supermodularity and upper semi-continuity of the profit functions. It

also gives rise to an efficient algorithm for computing equilibrium, and allows us to derive

sufficient conditions for equilibrium uniqueness.

The aggregative structure of the game and the constant ι-markup property allow us to

decompose the welfare distortions from oligopolistic competition between multiproduct firms

as follows. First, since firms are setting positive markups, the industry delivers too little

consumer surplus. Second, consumer surplus is not delivered efficiently: Although a social

planner would like to set the same ι-markup on all the products in the industry, equilibrium

ι-markups typically differ across firms. This means that some firms are inefficiently large,

while others are inefficiently small. Perhaps surprisingly, there are no within-firm pricing

distortions, in the sense that a firm’s equilibrium prices maximize social welfare subject to

the constraint that that firm’s contribution to consumer surplus is held fixed at its equilibrium

value.

We also study the determinants of firm scope. Despite the absence of product-specific

fixed costs, firms do not necessarily sell all their products in equilibrium. The intuition is

that a multiproduct oligopolist has to worry about self-cannibalization effects when setting its

prices and when deciding which products to supply. It therefore has incentives to withdraw

some of its weaker products so as to channel consumers toward its more profitable products.

Despite our game not being supermodular, we are able to rank equilibria from the con-

sumers’ and firms’ viewpoints, and to perform comparative statics on the set of equilibria.

We explore the impact of entry, trade liberalization, and productivity and quality shocks on

industry conduct and performance. Among other results, we find that a shock that makes the

industry more competitive (such as a trade liberalization or the entry of new competitors)

induces firms to broaden their scope in equilibrium. This is in stark contrast with existing

results in the international trade literature on multiproduct firms, which we further discuss

in Section 1.1. Intuitively, as the industry becomes more competitive, a firm starts worrying

more about consumers purchasing its rivals’ products, and less about cannibalizing its own

sales. That firm therefore has incentives to introduce “fighting brands” (Johnson and Myatt,

2003) to protect its market share.

In the last part of the paper, we specialize the model to the cases of CES and MNL

demands. We show that an additional aggregation property, called type aggregation, ob-

tains: All relevant information for determining a firm’s performance and competitive impact

is contained in that firm’s uni-dimensional type. This property allows us to obtain additional

predictions (e.g., about the impact of productivity and quality shocks on social welfare) that

are unavailable in the general case. We provide two sets of applications of our framework

with CES and MNL demands. First, we revisit classical questions in static and dynamic

merger analysis. These issues have been addressed in the literature using the single-product

homogeneous-goods Cournot oligopoly model, which is a well-known example of an aggrega-

tive game (see Farrell and Shapiro, 1990; Nocke and Whinston, 2010). The aggregative
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structure of our game and the type aggregation property allow us to generalize the insights

of that earlier literature to settings with multiproduct firms, price competition and horizon-

tally differentiated products. Second, we study the impact of a unilateral trade liberalization

on the inter- and intra-firm size distributions, average industry-level productivity, and wel-

fare.

Road map. In the remainder of this section, we provide a short review of the related

literature. In Section 2, we analyze discrete/continuous consumer choice and derive a new

class of demand systems. In Section 3, we describe the multiproduct-firm pricing game. This

is followed, in Section 4, by the equilibrium analysis. We prove existence of equilibrium under

mild conditions and uniqueness of equilibrium under stronger conditions. We characterize

the equilibrium pricing structure as well as firms’ scope, provide a welfare analysis, and

perform monotone comparative statics. In Section 5, we specialize to the cases of CES and

MNL demands and show that the type aggregation property obtains. In Section 6, we study

applications to static and dynamic merger analysis and to the impact of international trade.

Finally, we conclude in Section 7.

1.1 Related Literature

Our paper contributes to the relatively small literature on multiproduct-firm oligopoly pricing

with horizontally differentiated products. One strand of that literature focuses on proving

equilibrium existence and uniqueness in multiproduct-firm oligopoly pricing games with firm

and product heterogeneity and demand systems derived from discrete/continuous choice.

Importantly, Caplin and Nalebuff (1991)’s powerful existence theorem for pricing games with

single-product firms, the proof of which relies on establishing quasi-concavity of a firm’s

profit function in own price, does not extend to the case of multiproduct firms. The reason

is that, even with standard MNL demand, a multiproduct firm’s profit function often fails

to be quasi-concave (Spady, 1984; Hanson and Martin, 1996). For this reason, the literature

has focused on special cases of discrete/continuous choice demand systems, such as MNL

demand (Spady, 1984; Konovalov and Sándor, 2010), CES demand (Konovalov and Sándor,

2010), and nested logit demand where each firm owns a nest of products (Gallego and Wang,

2014). Our aggregative games techniques provide a unified approach to address existence

and uniqueness issues in pricing games with discrete/continuous choice demand systems.

More applied papers make stronger functional forms and/or symmetry assumptions, and

study firms’ product range decisions in oligopoly. Anderson and de Palma (1992, 2006)

analyze the equilibrium (resp. welfare-maximizing) number of firms and number of products

per firm in a model with discrete/continuous choice demands, symmetric products and firms,

and free entry. Shaked and Sutton (1990) and Dobson and Waterson (1996) develop linear-

demand models to analyze product-range decisions. The tools developed in the present paper

allow us to do away with the symmetry and linearity assumptions made in these earlier
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papers.3

More recently, multiproduct firms have received much attention from international trade

researchers. A central question in that literature is how multiproduct firms react to trade

liberalization by adjusting their product range and product mix. This question is usually ad-

dressed in models of monopolistic competition, under either CES demand (Bernard, Redding,

and Schott, 2010, 2011; Nocke and Yeaple, 2014) or linear demand (Dhingra, 2013; Mayer,

Melitz, and Ottaviano, 2014). An exception is Eckel and Neary (2010) who study (identical)

multiproduct firms in a Cournot model with linear demand.4 A common finding in these

papers is that firms react to a trade liberalization by refocusing on their core competencies,

i.e., by shrinking their product ranges.5 In models with CES demand and product-specific

fixed costs, this is due to the fact that more intense competition reduces variable profits

on all products, and therefore makes it harder to cover fixed costs. In models with linear

demand, more intense competition chokes out the demand for products sold at a high price.

By contrast, we find that self-cannibalization effects matter relatively less when competition

is more intense, which implies that firms respond to trade liberalization by broadening their

product ranges.

The concept of aggregative games was introduced by Selten (1970). In such games, a

player’s payoff depends only on that player’s actions and on an aggregate common to all

players. In games with additive aggregation, each player has a fitting-in correspondence, and

the set of pure-strategy Nash equilibria corresponds to the set of fixed points of the aggre-

gate fitting-in correspondence.6 McManus (1962, 1964) and Selten (1970) use the aggregate

fitting-in correspondence to establish existence of a Nash equilibrium in a homogeneous-goods

Cournot model. Szidarovszky and Yakowitz (1977), Novshek (1985) and Kukushkin (1994)

refine this approach further.7 Our proof of equilibrium existence and our characterization of

the set of equilibria also rely on the aggregate fitting-in correspondence. Corchon (1994) and

Acemoglu and Jensen (2013) show that aggregative games also deliver powerful monotone

comparative statics results, in the spirit of Milgrom and Roberts (1994) and Milgrom and

Shannon (1994). We perform such monotone comparative statics in Section 4.3. In a recent

paper, Anderson, Erkal, and Piccinin (2013) adopt an aggregative games approach to study

pricing games similar to ours, but restrict attention to single-product firms. They are mainly

interested in long-run comparative statics with free entry and exit.

3Another strand of literature studies price and quantity competition between multiproduct firms selling
vertically differentiated products. See, among others, Champsaur and Rochet (1989), and Johnson and Myatt
(2003, 2006).

4Eckel, Iacovone, Javorcik, and Neary (2015) extend their framework to heterogeneous firms.
5In Nocke and Yeaple (2014), the prediction depends on whether the firm sells only domestically or not.
6See Section 4.1 for more details. The term “fitting-in correspondence” was coined by Selten (1973). This

concept appears under different names in the literature.
7The aggregate fitting-in correspondence is not well-defined when aggregation is not additive (Cornes and

Hartley, 2012). Dubey, Haimanko, and Zapechelnyuk (2006) and Jensen (2010) show that games with non-
additive aggregation and monotone best replies have a pseudo potential or a best-reply potential (depending
on the notion of monotonicity employed). This allows them to establish equilibrium existence. In Section 4.4,
we show that our multiproduct-firm pricing game has an ordinal potential (Monderer and Shapley, 1996).
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The fact that a firm optimally sets the same absolute markup (possibly adjusted by a

price-sensitivity parameter) over all its products when demand is of the MNL type, and

the same relative markup over all its products when demand is of the CES type, was al-

ready pointed out by Anderson, de Palma, and Thisse (1992), Konovalov and Sándor (2010),

and Gallego and Wang (2014). The common ι-markup property, discussed above, gener-

alizes these findings to the whole class of demand systems that can be derived from dis-

crete/continuous choice, and allows us to simplify the firm’s pricing problem considerably.

Similar in spirit, Armstrong and Vickers (2016) reduce the dimensionality of a multiproduct

monopolist’s quantity-setting problem by confining attention to demand systems that have

the property that consumer surplus is homothetic in quantities. They show that the multi-

product monopolist optimally scales down the welfare-maximizing vector of quantities by a

common multiplicative factor.8

2 Discrete/Continuous Consumer Choice

We consider a demand model in which consumers make discrete/continuous choices: Each

consumer first decides which product to purchase, and then, how much of this product to

consume. This approach captures Novshek and Sonnenschein (1979)’s idea that price-induced

demand changes can be decomposed into two effects: An intensive margin effect (consumers

purchase less of the product whose price was raised), and an extensive margin effect (some

consumers stop purchasing the commodity whose price increased).9,10 Discrete/continuous

choice models of consumer demand have been used by empirical researchers to estimate de-

mand for electric appliances (Dubin and McFadden, 1984), soft drinks (Chan, 2006), and

painkillers (Björnerstedt and Verboven, 2016). In Smith (2004), consumers first choose a

supermarket, and then how much to spend at that supermarket based on the price index at

that store. In addition to giving rise to tractable multiproduct-firm pricing games, the dis-

crete/continuous approach will also turn out to be useful to interpret some of the comparative

statics results derived in Section 4.

We formalize discrete/continuous choice as follows. There is a population of consumers

with quasi-linear preferences. Each consumer chooses a single product from a finite and non-

empty set of productsN and the quantity of that product; he spends the rest of his income on

the outside good (or Hicksian composite commodity), the price of which is normalized to one.

Conditional on selecting product i, the consumer receives indirect utility y+vi(pi)+εi, where

pi is the price of product i, y is the consumer’s income, and εi is a taste shock. By Roy’s

identity, the consumer purchases −v′i(pi) units of good i. We call −v′i(pi) the conditional

8Their class of demand systems does not nest ours (e.g., it does no include CES-like demand with het-
erogeneous price elasticity parameters) nor does ours nest theirs (e.g., ours does not include linear demand).
Armstrong and Vickers (2016) also extend Bergstrom and Varian (1985) to establish equilibrium existence
in a Cournot oligopoly model with identical multiproduct firms.

9Income effects are absent in our quasi-linear world.
10See also Hanemann (1984).
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demand for product i. At the product-choice stage, the consumer selects product i only if

∀j ∈ N , y + vk(pk) + εk ≥ y + vj(pj) + εj.

We assume that the components of vector (εj)j∈N are identically and independently drawn

from a type-1 extreme value distribution. By Holman and Marley’s theorem, product i is

therefore chosen with probability

Pi(p) = Pr

(
vi(pi) + εi = max

j∈N
(vj(pj) + εj)

)
=

evi(pi)∑
j∈N evj(pj)

=
hi(pi)∑
j∈N hj(pj)

,

where hj ≡ evj for every j. It follows that expected demand for product k is given by

Pk(p)qk(pk) =
evk(pk)∑
j∈N evj(pj)

(−v′k(pk)) =
−h′k(pk)∑
j∈N hj(pj)

.

In the following, we use collection of functions (hj)j∈N (rather than (vj)j∈N ) as primitives.

We assume that all the h functions are C3 from R++ to R++, strictly decreasing, and log-

convex. The assumption that hj is non-increasing and log-convex is necessary and sufficient

for vj to be an indirect subutility function (Nocke and Schutz, 2016b). The assumption that

hj is strictly decreasing means that the demand for product j never vanishes.

To sum up, the demand system generated by the discrete/continuous choice model (hj)j∈N
(when normalizing market size to one) is:

Dk

(
(pj)j∈N

)
=

−h′k(pk)∑
j∈N hj(pj)

, ∀k ∈ N , ∀ (pj)j∈N ∈ RN++. (1)

The conditional demand for good k is −d log hk/dpk = −h′k/hk. Product k is chosen with

probability hk/
∑

j hj.

Our class of demand systems nests standard MNL (if hj(pj) = e
aj−pj
λ for all j ∈ N , where

aj ∈ R and λ > 0 are parameters) and CES demands (if hj(pj) = ajp
1−σ
j , where aj > 0

and σ > 1 are parameters) as special cases. The fact that CES demands can be derived

from discrete/continuous choice was already pointed out by Anderson, de Palma, and Thisse

(1987) in a slightly different framework without an outside good. As seen in equation (1), the

class of demand systems that are derivable from discrete/continuous choice is much wider

than CES and MNL demands. Notice also that, by virtue of the i.i.d. type-1 extreme value

distribution assumption, all these demand systems have the IIA property. That property will

allow us to greatly simplify the multiproduct-firm pricing problem in Section 4.

The consumer’s expected utility can be computed using standard formulas (see, e.g.,
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Anderson, de Palma, and Thisse, 1992):

E
(
y + max

j∈N
vj(pj)

)
= y + log

(∑
j∈N

evj(pj)

)
= y + log

(∑
j∈N

hj(pj)

)
. (2)

Therefore, consumer surplus is aggregative, in that it only depends on the value of the

aggregator H ≡
∑

j∈N hj(pj).

Representative consumer approach. While much of the empirical industrial organiza-

tion literature has adopted discrete choice models as a way of deriving consumer demand,

other strands of literature, such as the international trade literature, mainly use a representa-

tive consumer approach.11 We show that demand system (1) is quasi-linearly integrable, i.e.,

it can be obtained from the maximization of the utility function of a representative consumer

with quasi-linear preferences:12

Proposition 1. Let D be the demand system generated by discrete/continuous choice model

(hj)j∈N . D is quasi-linearly integrable. Moreover, v is an indirect subutility function for D

if and only if there exists a constant α ∈ R such that v((pj)j∈N ) = α + log
∑

j∈N hj(pj).

Proof. See Online Appendix I.

Hence, any demand system that can be derived from discrete/continuous choice can also

be derived from quasi-linear utility maximization. The second part of the proposition says

that the expected utility of a consumer engaging in discrete/continuous choice and the indi-

rect utility of the associated representative consumer coincide (up to an additive constant,).

The results we will derive on consumer welfare therefore do not depend on the way the demand

system has been generated. Whether we use discrete/continuous choice or a representative

consumer approach, all that matters is the value of aggregator H.

Consumer heterogeneity. While the discrete/continuous consumer choice model allows

for some type of consumer heterogeneity (different consumers receive different taste shocks

and may therefore select different products), it does have the property that all consumers who

select the same product choose to purchase the same quantity. However, the model can easily

be adapted to accommodate consumer heterogeneity in the quantity purchased of the same

11See however Fajgelbaum, Grossman, and Helpman (2011), Handbury (2013) and Fally and Faber (2016)
for recent examples of international trade papers deriving demand from (special cases of) discrete/continuous
choice.

12Quasi-linear integrability and indirect subutility functions are defined in Nocke and Schutz (2016b),
Definitions 3 and 4. In Online Appendix I, we prove a more general result: We derive necessary and sufficient
conditions for demand system

Dk

(
(pj)j∈N

)
=

gk(pk)∑
j∈N hj(pj)

, ∀k ∈ N , ∀ (pj)j∈N ∈ RN++

to be quasi-linearly integrable.
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product. In particular, suppose that the indirect subutility derived from choosing product

j is vj(pj, tj), where tj ∈ R is the consumer’s “type” for product j, drawn from probability

distribution Gj(·). The realized value of tj is observed by the consumer only after he has

chosen product j. Let vj(pj) =
∫
vj(pj, tj)dGj(tj) be the expected indirect utility derived from

product j. Then, product i is chosen with probability exp vi(pi)/(
∑

j exp vj(pj)). Under some

technical conditions (which allow us to differentiate under the integral sign), the consumer’s

expected conditional demand for product j is:∫
− ∂

∂pj
vj(pj, tj)dGj(tj) = − ∂

∂pj

∫
vj(pj, tj)dGj(tj) = −v′j(pj).

Therefore, if we define hj(pj) = exp(vj(pj)) for every j, then the expected (unconditional)

demand for product i is still given by equation (1). Differentiating once more under the

integral sign, we also see that vj(·) is decreasing and convex if vj(·, tj) is decreasing and convex

for every tj. Therefore, discrete/continuous choice with consumer heterogeneity gives rise to

the same class of demand systems as discrete/continuous choice without heterogeneity.13

3 The Multiproduct-Firm Pricing Game

In this section, we describe the multiproduct-firm pricing game. The pricing game consists

of three elements: (hj)j∈N is the demand system defined in the previous section; F , the set

of firms, is a partition of N such that |F| ≥ 2;14 (cj)j∈N ∈ RN++ is a profile of marginal

costs. (In the following, we adopt the discrete/continuous choice interpretation of demand

system (hj)j∈N but the reader should keep in mind that (hj)j∈N may equally well have been

generated by utility maximization of a representative consumer.) The profit of firm f ∈ F
is defined as follows:15

Πf (p) =
∑
k∈f
pk<∞

(pk − ck)
−h′k(pk)∑

j∈N
pj<∞

hj(pj) +
∑
j∈N
pj=∞

lim
∞
hj
, ∀p ∈ (0,∞]N . (3)

Note that we are allowing firms to set infinite prices, which essentially compactifies firms’

action sets. We will later see that this compactification ensures that each firm’s maximization

problem has a solution (provided that rival firms are not pricing all their products at infinity).

The assumption we are making here is that, if pk =∞, then the firm simply does not supply

product k, and therefore does not earn any profit on this product. In the following, we write

13If the consumer observes his vector of types before choosing a variety, then the implied demand system
becomes a mixture of equation (1). We are not able to handle such mixtures of demand systems, because they
no longer give rise to an aggregative game. This implies in particular that our approach cannot accommodate
random coefficient logit demand systems.

14That is, each product in N is offered by exactly one firm.
15Throughout the paper, we adopt the convention that the sum of an empty collection of real numbers is

equal to zero. Note that, since hj is monotone, lim∞ hj exists for every j.
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hj(∞) instead of lim∞ hj. We say that product j is active if pj < ∞. We discuss infinite

prices in greater detail at the end of this section.

We study the normal-form game in which firms set their prices simultaneously, and payoff

functions are given by equation (3). A pure-strategy Nash equilibrium of that normal-form

game is called a pricing equilibrium.

Outside option. Since
⋃
f∈F f = N , our definition of a pricing game does not seem to

allow for an exogenously priced outside option.16 However, such an outside option is easy

to incorporate. Let (hj)j∈N be a discrete/continuous choice model of consumer demand.

Partition N into two sets: Ñ , the set of products sold by oligopoly players, and N 0, the

set of products sold at exogenous prices (pj)j∈N 0 . Let H0 =
∑

j∈N 0 hj(pj) > 0 be the

value of the outside option. We can now define another discrete/continuous choice model

(h̃j)j∈Ñ as follows: For every j ∈ Ñ , h̃j = hj + H0

|Ñ | .
17 Note that this transformation affects

neither consumer surplus nor expected demand. Therefore, the price competition game with

discrete/continuous choice model (hj)j∈N and exogenous prices (pj)j∈N 0 is equivalent to the

price competition game with discrete/continuous choice model (h̃j)j∈Ñ and no outside option.

More on infinite prices. We first argue that the idea that product k is simply not supplied

when pk =∞ is consistent with the discrete/continuous choice interpretation of the demand

system. In the discrete/continuous choice model, a consumer receives a type-1 extreme value

draw εk for product k even when pk =∞. Three cases can arise when the price is infinite: (i)

The conditional demand is positive (lim∞−h′k/hk > 0), in which case the choice probability

must be equal to zero (lim∞ hk = 0). (ii) The choice probability is positive (lim∞ hk > 0), in

which case the conditional demand must be equal to zero (lim∞−h′k/hk = 0). (iii) Both the

conditional demand and the choice probability are equal to zero.18 The term
∑

j:pj=∞ lim∞ hj
appears in the denominator of Πf to allow for case (ii). In all three cases, the consumer does

not consume a positive quantity of the good when the price is infinite, which is consistent

with the interpretation that the product is simply not available.

An alternative way of allowing for infinite prices would be to define the profit function

for finite prices first, and then extend it by continuity to price vectors that have infinite

components. In the proof of Lemma B in the Appendix, we show that, if price vector

p ∈ (0,∞]N has a least one finite component, then limp Πf coincides with the value of Πf (p)

defined in equation (3). There is, however, an important exception. If pj = ∞ for every j,

16An exogenously priced outside option should not be confused with the outside good. For example, in
the market for automobiles, public transport may represent the outside option whereas the outside good
represents the expenditure on other goods.

17It is straightforward to check that h̃j is strictly decreasing and log-convex for every j.
18To see this, suppose that lim∞−h′/h = l > 0 (the limit exists, since h is log-convex), where we have

dropped the product subscript to ease notation. There exists x0 > 0 such that −h′(x)/h(x) > l/2 for all

x ≥ x0. Integrating this inequality, we see that − log
(
h(x)
h(x0)

)
> l

2 (x−x0) for all x > x0. Taking exponentials

on both side, and letting x go to infinity, we obtain that lim∞ h = 0. Conversely, lim∞ h > 0 implies that
lim∞−h′/h = 0.
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then limp Πf does not necessarily exist. For instance, with CES or MNL demands, firms’

profits do not have a limit when all prices go to infinity.

4 Equilibrium Analysis

In this section, we provide an equilibrium analysis of the multiproduct-firm pricing game. In

the first part, we adopt an aggregative games approach to prove existence of equilibrium. In

the second part, we investigate how firm behavior is affected by changes in the aggregator.

In the third part, we study the equilibrium properties, both from a positive and normative

point of view, and comparative statics. In the fourth part, we discuss extensions and provide

a cookbook for applied work. Finally, we provide conditions under which the equilibrium is

unique.

4.1 An Aggregative Games Approach to Equilibrium Existence

There are three main difficulties associated with the equilibrium existence problem. First,

Πf is not necessarily quasi-concave in (pj)j∈f .
19 Second, Πf is not necessarily upper semi-

continuous in (pj)j∈f .
20,21 Third, if f is a multiproduct firm, then Πf is neither supermodular

nor log-supermodular in (pj)j∈f .
22 The first two difficulties imply that standard existence

theorems for compact games (such as Nash or Glicksberg’s theorems) based on Kakutani’s

fixed-point theorem cannot be applied. The last two difficulties imply that existence theorems

based on supermodularity theory and Tarski’s fixed-point theorem (see Milgrom and Roberts,

1990; Vives, 1990, 2000; Topkis, 1998) have no bite. The second (and, to some extent, the

third) difficulty prevents us from using Jensen (2010)’s existence theorem for aggregative

games with monotone best replies.

The idea behind our existence proof is to reduce the dimensionality of the problem in two

ways. First, we show that a firm’s optimal price vector can be fully summarized by a uni-

dimensional sufficient statistic, which is pinned down by a single equation in one unknown.

Second, the pricing game is aggregative (see Selten, 1970), in that the profit of a firm depends

only on its own profile of prices and the uni-dimensional sufficient statistic H =
∑

j∈N hj(pj).

In the following, we present a semi-formal sketch of our existence proof. We refer the

reader to Appendix A for details. In this sketch, we introduce the key concepts of ι-markup,

pricing function, fitting-in function and aggregate fitting-in function, which will prove useful

19Spady (1984) and Hanson and Martin (1996) provide examples of multiproduct-firm pricing games with
MNL demand in which quasi-concavity fails.

20To see this, suppose that demand is CES, and that firm f = {k} is a single-product firm. If firm f ’s
rivals are setting infinite prices for all their products, then Πf = (σ − 1)(pk − ck)/pk for every pk > 0. It
follows that Πf goes to σ − 1 as pk goes to infinity. This is strictly greater than 0, which is the profit firm f
receives when it sets pk =∞. Therefore, Πf is not upper semi-continuous in pk.

21If profit functions had been defined over (0,∞)N instead of (0,∞]N , then payoff functions would be
upper semi-continuous, but the lack of compactness would become an issue.

22See Online Appendix II.2.
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to describe the equilibria of our pricing game, and to understand our comparative statics

results.

Fix a pricing game ((hj)j∈N ,F , (cj)j∈N ). For the sake of expositional simplicity, suppose

that first-order conditions are sufficient for optimality. Ignoring the possibility of infinite

prices for the time being, the first-order conditions for each firm’s profit maximization prob-

lem hold at price vector p ∈ RN++ if and only if for every f ∈ F and k ∈ f ,

∂πf

∂pk
=
−h′k(pk)

H

(
1− pk − ck

pk
pk
−h′′k(pk)
−h′k(pk)

+
∑
j∈f

(pj − cj)
−h′j(pj)
H

)
= 0, (4)

where H =
∑

j∈N hj(pj) is the aggregator. Let ιk(pk) = pk
−h′′k(pk)

−h′k(pk)
. Then, the profile of prices

p is a pricing equilibrium if and only if

pk − ck
pk

ιk(pk) = 1 +
∑
j∈f

(pj − cj)
−h′j(pj)
H

, ∀f ∈ F , ∀k ∈ f, (5)

and H =
∑
j∈N

hj(pj).

We learn two facts from equation (5). First, for a given f ∈ F , the right-hand side of

equation (5) is independent of the identity of k ∈ f . It follows that, in any Nash equilibrium,

for any f ∈ F , and for all k, l ∈ f ,

pk − ck
pk

ιk(pk) =
pl − cl
pl

ιl(pl).

Put differently, there exists a scalar µf , which we call firm f ’s ι-markup, such that pk−ck
pk

ιk(pk) =

µf for every k ∈ f . We say that firm f ’s profile of prices, (pk)k∈f satisfies the common ι-

markup property. Second, we see from equation (5) that µf = 1 + Πf (p). Put differently,

firm f ’s equilibrium profit is equal to the value of its ι-markup minus one.23

The constant ι-markup property can be interpreted as follows. Consider a hypothetical

single-product firm selling product k. Suppose that this firm behaves in a monopolistically

competitive way, in the sense that it does not internalize the impact of its price on aggregator

H. Firm k therefore faces demand −h′k(pk)/H and, since it takes H as given, believes

that the price elasticity of demand for its product is equal to the elasticity of −h′k(pk),
which is precisely ιk(pk). Therefore, firm k prices according to the inverse elasticity rule:
pk−ck
pk

= 1
ιk(pk)

. In our model, firm f internalizes its impact on the aggregator level as well as

self-cannibalization effects. It therefore prices in a less aggressive way, according to modified

inverse elasticity rule pk−ck
pk

= µf

ιk(pk)
, with µf > 1. Put differently, firm f sets the same price

that a firm would set under monopolistic competition, if that firm believed that the price

23Recall that market size has been normalized to unity. Without this normalization, firm f ’s equilibrium
profit is µf − 1 times market size.
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elasticity of demand is equal to ιk(pk)/µ
f , instead of ιk(pk). What is remarkable is that the

ι-markup µf , which summarizes the impact of firm f ’s behavior on H, is firm-specific, rather

than product-specific.

Next, we use ι-markups to reduce the dimensionality of firms’ profit maximization prob-

lems. Note first that equation (5) can be rewritten as follows: For every f ∈ F ,

µf = 1 +
1

H

∑
j∈f

pj − cj
pj

pj
h′′j (pj)

−h′j(pj)︸ ︷︷ ︸
=ιj(pj)︸ ︷︷ ︸

=µf

(h′j(pj))
2

h′′j (pj)︸ ︷︷ ︸
≡γj(pj)

.

Defining γj ≡ (h′j)
2/h′′j , and rearranging, we obtain:

µf

(
1− 1

H

∑
j∈f

γj(pj)

)
= 1. (6)

Suppose that function pk 7→ pk−ck
pk

ιk(pk) is one-to-one for every k ∈ N , and denote

its inverse function by rk(·). We call rk the pricing function for product k. Then, using

equation (6), firm f ’s pricing strategy can be fully described by a uni-dimensional variable,

µf , such that

µf

(
1− 1

H

∑
j∈f

γj(rj(µ
f ))

)
= 1. (7)

Suppose that equation (7) has a unique solution in µf , denoted mf (H). We call mf firm

f ’s fitting-in function. Then, the equilibrium existence problem boils down to finding an H

such that

H =
∑
f∈F

∑
j∈f

hj
(
rj
(
mf (H)

))
︸ ︷︷ ︸

≡Γ(H)

.

In the parlance of aggregative games, Γ is the aggregate fitting-in function. The equilibrium

existence problem reduces to finding a fixed point of that function. As we will see later

on, the aggregative games approach is also useful to establish equilibrium uniqueness: The

pricing game has a unique equilibrium if the following index condition is satisfied: Γ′(H) < 1

whenever Γ(H) = H.

This informal exposition leaves a number of questions open. Are first-order conditions

sufficient for optimality? Can infinite prices be accommodated? Is function pk 7→ pk−ck
pk

ιk(pk)

one-to-one for every k? Are fitting-in functions well-defined? Does the aggregate fitting-in

function have a fixed point? We need one assumption to answer all these questions in the

affirmative.

Assumption 1. For every j ∈ N and pj > 0, ι′j(pj) ≥ 0 whenever ιj(pj) > 1.

13



Theorem 1. Suppose that the demand system (hj)j∈N satisfies Assumption 1. Then, the

pricing game ((hj)j∈N ,F , (cj)j∈N ) has a pricing equilibrium for every F and (cj)j∈N .

The set of equilibrium aggregator levels coincides with the set of fixed points of the aggregate

fitting-in function Γ. If H∗ is an equilibrium aggregator level, then, in the associated equilib-

rium, consumer surplus is given by logH∗, firm f ∈ F earns profit mf (H∗)− 1, and product

k ∈ f is priced at rk(m
f (H∗)).

Proof. See Appendix A.

Broadly speaking, Assumption 1 says that for every product j, ιj, the price elasticity of

the monopolistic competition demand for product j, should be non-decreasing in pj. This

condition is sometimes called Marshall’s second law of demand. It clearly holds with CES

and MNL demands, where ιj(pj) is equal to σ and pj/λ, respectively. We discuss how it can

be relaxed in Section 4.4. In the following, we denote by Hι the set of C3, strictly decreasing

and log-convex functions from R++ to R++ such that Assumption 1 holds.

4.2 Properties of Fitting-in and Pricing Functions

In this section, we study the properties of the product-level pricing function rk and the firm-

level fitting-in function mf , and discuss how these properties shape the behavior of firm f .24

These functions turn out to be convenient for deriving and interpreting comparative statics

in Section 4.3.

For every product k ∈ N , denote µ̄k = lim∞ ιk, and let pmck be the unique solution of

equation pk−ck
pk

ιk(pk) = 1. Note that pmck is the price at which product k would be sold under

monopolistic competition. µ̄k is the highest ι-markup that product k can support.

Proposition 2 (Pricing function). rk is continuous and strictly increasing on (1, µ̄k).

Moreover, lim1 rk = pmck , limµ̄k rk =∞, and rk(µ
f ) =∞ for every µf ≥ µ̄k.

In words, the price of product k increases when ι-markup µf increases. If µf approaches

unity (the monopolistic competition ι-markup), then pk approaches pmck (the monopolistic

competition price). If µf is above µ̄k, then ιk(pk)/µ
f , the adjusted price elasticity of demand

under monopolistic competition, is strictly lower than unity for every pk. Therefore, firm f

sets an infinite price for product k, i.e., it does not supply product k.

Next, we turn our attention to firm-level fitting-in function mf . For every firm f , let

µ̄f = maxj∈f µ̄j denote the highest ι-markup that firm f can sustain.

Proposition 3 (Fitting-in function). mf is continuous and strictly decreasing on (0,∞).

Moreover, lim0m
f = µ̄f , and lim∞m

f = 1.

As competition intensifies (H increases), firm f reacts by lowering its ι-markup. As the

industry approaches the monopolistic competition limit (H → ∞), mf tends to 1, the ι-

markup under monopolistic competition. Combining Propositions 2 and 3, we see that, as

24These properties are rigorously established in Appendix A.
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competition intensifies, firm f lowers the prices of all its products. An immediate consequence

is that the aggregate fitting-in function Γ is strictly increasing.

Propositions 2 and 3 also tell us how firm f ’s product range varies with the intensity of

competition. To fix ideas, let f = {1, 2, . . . , N f}, and assume that products are ranked as

follows: µ̄1 > µ̄2 > . . . > µ̄Nf . When competition is very soft (H close to 0), mf (H) is close

to µ̄1, and strictly higher than µ̄2. Therefore, only product 1 is supplied. As H increases,

mf (H) decreases, and eventually crosses µ̄2, so that product 2 starts being supplied as well.

When H approaches the monopolistic competition limit, mf (H) is strictly lower than µ̄Nf ,

and firm f therefore sells all of its products. To summarize, the model predicts that a firm

tends to sell more products when it operates in a more competitive environment.

The intuition is easiest to grasp in the case where firm f sells CES products with het-

erogeneous σ’s: For every j ∈ f , hj(pj) = ajp
1−σj
j . Then, ιj(pj) = σj for every j, and

σ1 > σ2 > . . . > σNf . In the discrete/continuous choice interpretation of the demand sys-

tem, the conditional demand for product j is given by −d log hj(pj)/dpj = (σj − 1)/pj. The

conditional profit made on product j is therefore (σj−1)
pj−cj
pj

. The supremum of that condi-

tional profit is σj − 1. If competition is soft, then firm f has little to worry about consumers

substituting away from its products. Firm f cares first and foremost about selling product 1,

which is its most profitable product. It therefore sets a high price for product 1, earns a profit

close to σ1−1, and shuts down its other, less profitable, products, to prevent consumers from

purchasing them. In other words, when competition is soft, firm f is mostly concerned about

self-cannibalization effects, and therefore has an incentive to withdraw relatively unprofitable

products.

On the other hand, as competition intensifies, self-cannibalization effects become less

important, and firm f worries more about consumers switching to other firms’ products.

The firm therefore has an incentive to flood the market with its products so as to increase

the probability that one of its products ends up being chosen by consumers.

4.3 Properties of Equilibria and Comparative Statics

Markups. Our class of demand systems can generate rich patterns of equilibrium markups

within a firm’s product portfolio. To see this, let us first consider the special case of CES

products with common σ (i.e., hj(pj) = ajp
1−σ
j for all j ∈ N ). In this case, ιj = σ for

all j, and the common ι-markup property implies that, in equilibrium,
pj−cj
pj

= µf

σ
for all

j ∈ f . Therefore, firm f sets the same Lerner index for all the products in its portfolio,

and thus charges higher absolute markups on products that it produces less efficiently (since

pj − cj = µf

σ−µf cj is increasing in cj).

These markup patterns are not robust to changes in the demand system. Suppose for

instance that all products are still CES products, but with potentially heterogeneous σ’s

(i.e., hj(pj) = ajp
1−σj
j for all j ∈ N ). Then, in equilibrium,

pj−cj
pj

= µf

σj
, and firm f no longer

sets the same Lerner index over all its products (unless all these products share the same

σ). Similarly, it does not necessarily charge higher absolute markups on high marginal cost
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products.

The same point could be made about the other special case in which all products are

MNL with common λ’s (hj(pj) = exp
(aj−pj

λ

)
for all j ∈ N ). In this case, in equilibrium, a

multiproduct firm charges the same absolute markup over all its products (since ιj(pj) = pj/λ

for all j), and sets a lower Lerner index on high marginal cost products. Again, this can be

overturned by allowing the λ’s to differ across products.25

It is straightforward to construct fully parametric demand systems that give rise to a richer

pattern of within-firm markups than either CES or MNL.26 More generally, the pattern of

markups within a firm’s product portfolio depends on demand-side conditions, as captured

by functions (ιj)j∈f , and on supply-side considerations ((cj)j∈f ).

Comparing equilibria. If we know that H∗ is an equilibrium aggregator level, then we can

compute consumer surplus (given by logH∗), the profit of firm f ∈ F (given by mf (H∗)− 1)

and the price of product k ∈ f (given by rk(m
f (H∗)). Moreover, Propositions 2 and 3 imply

that if there are multiple equilibria, then these equilibria can be Pareto-ranked among firms,

with this ranking being the inverse of consumers’ ranking of equilibria:

Proposition 4. Suppose that there are two pricing equilibria with aggregators H∗1 and H∗2 >

H∗1 , respectively. Then, each firm f ∈ F makes a strictly larger profit in the first equilibrium

(with aggregator H∗1 ), whereas consumers’ indirect utility is higher in the second equilibrium

(with aggregator H∗2 ).

In addition, the set of equilibrium aggregator levels has a maximal and a minimal element.

Proof. See Online Appendix IX.1.

Welfare analysis. Next, we analyze the welfare distortions arising from multiproduct-firm

oligopoly pricing.

An immediate observation is that firms’ pricing is constrained efficient in the following

sense: Firm f ’s equilibrium prices (rk(m
f (H∗)))k∈f maximize social welfare subject to the

constraint that the firm’s contribution to the aggregator, Hf , is held fixed at its equilibrium

value. The reason is that consumer surplus and rivals’ profits are held fixed by the constraint,

but firm f ’s prices maximize its profit by definition.

25Björnerstedt and Verboven (2016) analyze a merger in the Swedish market for painkillers, and find that
a CES demand specification (or, in the authors’ own words, a constant expenditure demand specification)
with random coefficients gives rise to more plausible markup predictions than an MNL demand specification
with random coefficients.

26Consider, for example, the following family of h functions: For every λ > 0, φ ∈ [0, 1] and p > 0,

hφ,λ(p) =

{
exp

(
−λp

φ−1+φ2

φ

)
if φ > 0,

p−λ if φ = 0.

It is easy to check that hφ,λ converges pointwise to h0,λ (i.e., CES) when φ goes to zero, and to MNL when
φ goes to 1, and that hφ,λ ∈ Hι for every φ, λ.
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As there are no within-firm pricing distortions, this leaves us with two types of distortions.

The first distortion comes from the fact that, under oligopoly, firms set positive markups.

This implies that H∗, the equilibrium aggregator level, is strictly lower than the aggregator

level under perfect competition (
∑

j∈N hj(cj)). The second distortion is due to the fact that,

conditional on aggregator level H∗, some firms are contributing too much to H∗, while some

others are contributing too little. This is easily seen by maximizing social welfare subject to

the constraint that consumer surplus is equal to logH∗:27

max
p

∑
k∈N

(pk − ck)
−h′k(pk)∑
j∈N hj(pj)

s.t. log
∑
j∈N

hj(pj) = logH∗.

The first-order condition for product i can be written as follows:28

pi − ci
pi

ιi(pi) = 1− Λ +
∑
k∈N

(pk − ck)
−h′k(pk)
H∗

, (8)

where Λ is the Lagrange multiplier associated with the consumer surplus constraint. Since

the right-hand side of equation (8) does not depend on i, it follows that the profile of prices

(pk)k∈N satisfies the common ι-markup property. Let µ∗ be the optimal ι-markup. Then,

the profile of |N | first-order conditions boils down to the following optimality condition:

µ∗

(
1− 1

H∗

∑
j∈N

γj(rj(µ
∗))

)
= 1− Λ. (9)

This means that pricing equilibrium H∗ is constrained efficient if and only if mf (H∗) =

mg(H∗) for every f, g ∈ F . This condition is unlikely to hold in general.29 When it does not

hold, some firms set their ι-markups above µ∗ and end up producing too little, while some

other firms set their ι-markups below µ∗ and therefore produce too much.30 Put differently,

social welfare can be increased by raising Hf for some firm f while reducing Hg for some

other firm g such that Hf + Hg remains constant. Whether a given firm contributes too

much or too little to the aggregator can be assessed by comparing equations (7) and (9).

Comparative statics. Although our pricing game is not supermodular, we can exploit its

aggregative structure to perform comparative statics on the set of equilibria. The approach

is similar to to the one in Corchon (1994) and Acemoglu and Jensen (2013), and can be

27We drop the consumer surplus term in the social welfare expression, since the constraint implies that
that term is a constant.

28Infinite prices can be handled by defining generalized first-order conditions, as we do in Appendix A.
29For instance, with CES or MNL demands, this condition holds if and only if all firms are of the same

type. See Section 5.1.
30If all firms set their ι-markups above µ∗ (resp. below µ∗), then the consumer surplus constraint is

violated.
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summarized as follows:31 Suppose that the value of a parameter changes; study how this

change affects firms’ pricing and fitting-in functions, and hence, the aggregate fitting-in

function; analyze how the associated shift in the aggregate fitting-in function affects the

set of equilibrium aggregator levels; finally, use pricing and fitting-in functions to translate

these changes in aggregator levels into changes in markups, prices, profits, and sets of active

products.

Outside option. We introduce an outside option H0 > 0, and ask how an increase in H0

affects the set of equilibria:

Proposition 5. Suppose that H0 increases. Then, in both the equilibrium with the smallest

and largest value of the aggregator H, this induces (i) a decrease in the profit of all firms,

(ii) a decrease in the prices of all goods, (iii) an increase in consumer surplus, and (iv) an

expansion of the set of active products.

Proof. See Online Appendix IX.2.

As the outside option improves, the aggregate fitting-in function shifts upward. Since that

function is strictly increasing, it follows that the lowest and highest equilibrium aggregator

levels increase. The rest of the proposition follows from the monotonicity properties of the

pricing and fitting-in functions (Propositions 2 and 3).

In an international trade context with a competitive (or monopolistically competitive)

fringe of importers, parameter H0 can be interpreted as the consumer surplus derived from

foreign varieties. Trade liberalization then corresponds to an increase in H0. According to

Proposition 5, trade liberalization lowers prices and markups, and raises consumer surplus.

Perhaps more surprisingly, trade liberalization induces import-competing firms to broaden

their product portfolios. As discussed in the introduction, this is in contrast to Eckel and

Neary (2010), Bernard, Redding, and Schott (2010, 2011), and Mayer, Melitz, and Ottaviano

(2014), who develop models in which firms tend to refocus on their core competencies after

trade liberalization.32 The intuition behind our product portfolio expansion result was al-

ready hinted at in Section 4.2. After trade liberalization, the industry is more competitive.

Import-competing firms therefore worry more about losing consumers to their rivals than

about cannibalizing their own products’ sales. This leads them to introduce more products,

in order to increase the likelihood that one of these products will be purchased.

Note that by abstracting from product-level fixed costs, we have shut down a countervail-

ing effect:33 The increase in H induced by a trade liberalization makes it harder to cover the

31Acemoglu and Jensen (2013) make a number of assumptions (compactness, pseudo-concavity and upper
semi-continuity) which do not hold in our framework. This prevents us from applying their results off the
shelf.

32Bernard, Redding, and Schott (2011) provide empirical support for their prediction. However, they define
products at a rather aggregate 5-digit SIC level at which the self-cannibalization effects highlighted here are
arguably absent.

33This effect is emphasized by Bernard, Redding, and Schott (2011) in a model of monopolistic competition
with CES demand.
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product-level fixed cost, thus providing firms with an incentive to drop products. A downside

of introducing such fixed costs is that they would give rise to multiplicity of equilibria and/or

discontinuities in firms’ fitting-in functions.

Entry. Similar techniques can be used to study the impact of entry. Suppose that firm f 0 ∈ F
is initially inactive, i.e., pj =∞ for every j ∈ f 0. Solving pricing game ((hj)j∈N\f0 ,F\{f 0},
(cj)j∈N\f0) with outside option H0 =

∑
j∈f0 hj(∞) gives us the set of pre-entry equilibrium

aggregator levels. The set of post-entry equilibrium aggregator levels can be obtained by

solving pricing game ((hj)j∈N ,F , (cj)j∈N ) with outside option 0. We prove the following

proposition:

Proposition 6. Suppose that a new firm enters. Then, in both the equilibrium with the

smallest and largest value of the aggregator H, this induces (i) a decrease in the profit of

all incumbent firms, (ii) a decrease in the prices of all goods, (iii) an increase in consumer

surplus, and (iv) an expansion of the set of active products.

Proof. The result is proven in the same way as Proposition 5. After entry, function Γ(·)
shifts upward.

Using the terminology of Johnson and Myatt (2003), the entry of a competitor induces

incumbent firms to introduce “fighting brands” to preserve their market shares.34

Productivity and quality. Productivity and quality shocks have more ambiguous effects.

Suppose that ck, the marginal cost of product k owned by firm f , increases. Then, mf ,

firm f ’s fitting-in function shifts downward. Intuitively, product k has now become less

profitable, and firm f therefore has less incentives to divert sales toward that product. It

therefore lowers the prices of its other products, and, hence, its ι-markup. Despite the fact

that µf goes down, pk = rk(m
f (H)) goes up due to the direct impact of the increase in ck.

Therefore, firm f ’s contribution to the aggregator (
∑

j∈f hj(rj(m
f (H)))) may go up or down,

depending on whether the decrease in hk is offset by the increase in hj (j 6= k). This means

that the aggregate fitting-in function may shift upward or downward.35

Consider first the perhaps more intuitive case in which Γ shifts downward (as it does

under CES and MNL demands; see Proposition 11). Then, by monotonicity of Γ, the high-

est and lowest equilibrium aggregator levels decrease, which lowers consumer surplus. By

Proposition 2, firm f ’s rivals increase their ι-markups. Therefore, by Proposition 3, they

end up earning higher profit, charging higher prices, and supplying fewer products. Whether

firm f ends up decreasing its ι-markup (and hence, making lower profit and supplying more

products) is unclear, since the direct effect of the increase in ck may be dominated by the

indirect effect of the decrease in H.
34In Johnson and Myatt (2003)’s Cournot model with vertically differentiated products, fighting brands

can emerge only if marginal revenue does not decrease everywhere. Under the more standard assumption of
decreasing marginal revenue, an incumbent firm always reacts to entry by pruning its product line. In our
framework with horizontal product differentiation, fighting brands are the rule rather than the exception.

35In principle, it could be that Γ(H) shifts upward at H, and downward at H ′ 6= H. To simplify the
exposition, we confine attention to the simple cases in which Γ shifts upward (resp. downward) everywhere.
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If, instead, Γ shifts upward (see Online Appendix IX.3 for an example where this happens),

then consumers end up benefiting from the marginal cost increase, while firm f ’s rivals make

less profit, set lower prices, and supply more products. As for firm f , the direct effect of the

increase in ck is now reinforced by the indirect effect of the increase in H. Therefore, firm f

charges a lower ι-markup, makes less profit, and supplies more products.

We can augment our discrete/continuous choice model of demand by introducing quality

as follows. The discrete continuous choice model is now (ajhj)j∈N , where, for every j, hj
satisfies all the assumptions we have made so far, and aj is a strictly positive scalar, which we

call product j’s quality. The idea is that an increase in ak raises the probability that product

k is chosen (akhk/(
∑

j ajhj)), but does not affect the conditional demand for product k

(d log(ajhj)/dpj = d log hj/dpj). This is consistent with the way in which product quality

or vertical product characteristics are usually introduced in CES or MNL demand systems.

It is then easy to show that quality shocks also have ambiguous effects on consumer surplus

and firms’ profits, because an increase in ak does not necessarily imply an upward shift in

the aggregate fitting-in function.

4.4 Discussion

Relaxing Assumption 1. Our aggregative games approach is based on first-order condi-

tions. In Online Appendix III, we show that Assumption 1 is the weakest assumption under

which an approach based on first-order conditions is valid, in the following sense. We show

that set Hι is the largest set such that for every pricing game ((hj)j∈N ,F , (cj)j∈N ) such that

hj ∈ Hι for every j, first-order conditions are sufficient for global optimality for every firm

f . We formalize and prove this statement in Online Appendix III.

Assumption 1 can be relaxed if we follow instead a potential games approach (Slade, 1994;

Monderer and Shapley, 1996). In Nocke and Schutz (2016a), we show that function

P (p) =

∏
f∈F

∑
j∈f (pj − cj)(−h′j(pj))∑

j∈N hj(pj)

is an ordinal potential for our pricing game. The idea is that, starting from a profile of

prices, if firm f deviates, then firm f ’s profit increases if and only if the value of the potential

function increases. Without putting any restrictions on the discrete/continuous choice model

(hj)j∈N (except that the h functions are positive, C1, strictly decreasing and log-convex), we

show that function P has a global maximizer. This implies that the pricing game has an

equilibrium.

While this more general existence result is useful, the downside of the potential games

approach is that it does not allow us to completely characterize the set of equilibria. This

implies in particular that we cannot extend the comparative statics and characterization

results derived in Section 4.3
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Aggregative games and demand systems. We have shown that a demand system

that is derivable from discrete/continuous choice gives rise to aggregative pricing games. A

natural question is whether this property extends to a wider class of demand systems. In

Online Appendix IV, we show that, if there are at least three products, then the smooth

and Slutsky-symmetric demand system D gives rise to an aggregative pricing game (with

additive aggregation) for every firm partition F if and only if there exist smooth functions

(gi)i∈N , (hi)i∈N and Ψ such that36

Di(p) = −g′i(pi)− h′i(pi)Ψ′
(∑
j∈N

hj(pj)

)
, ∀i ∈ N , ∀p >> 0. (10)

This result generalizes Anderson, Erkal, and Piccinin (2013)’s Propositions 4 and 5. Any

pricing game based on demand system (10) has the property that a firm’s payoff only depends

on its prices and on the value of aggregator H =
∑

j hj(pj). Moreover, we show that these

pricing games also satisfy a generalized version of the common-ι markup property.

Demand system (1) is a special case of (10), where g′i = 0 for every i, and Ψ(H) =

logH. Another special case of demand system (10), which demand specification (1) can not

accommodate, is linear demand (if hj, g
′
j and Ψ′ are all affine functions).

Demand system (10) can be viewed as the sum of a monopoly component (−g′i(pi)) and

an IIA component (Ψ′(
∑

j hj(pj))). Integrating equation (10) yields the associated indirect

subutility function:

V (p) =
∑
j∈N

gj(pj) + Ψ

(∑
j∈N

hj(pj)

)
.

Note that aggregator H is a sufficient statistic for consumer surplus if and only if the

monopoly component of demand is equal to zero for every product. If the demand sys-

tem does not have the IIA property, then consumer surplus depends both on aggregator H

and on aggregator G =
∑

j gj(pj).

One of the appeals of demand system (1) is its discrete/continuous choice foundation. A

natural question is whether demand system (10) can be derived in a similar way. We argue

that a subset of this class of demand systems can indeed be derived from a generalized version

of discrete/continuous choice, which we now describe.

For each product i, there is a mass of captive consumers, whose total demand is given

by −g′i(pi). Other consumers are not captive, and engage in sequential discrete/continuous

choice. Non-captive consumers first decide whether they wish to consume an unpriced option

or one of the products in set N . If a non-captive consumer chooses the unpriced option, then

he receives indirect utility ε, which is a random variable drawn from cumulative distribution

function F . If instead he chooses the product set, then he observes a vector of i.i.d. type-1

extreme value taste shocks (εj)j∈N , chooses the product i that maximizes log hj(pj) + εj,

and consumes −h′i/hi(pi) units of this product. As shown in Section 2, the inclusive value of

36Recall that Slutsky symmetry is necessary for quasi-linear integrability.
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product set N is equal to log
∑

j hj(pj). Therefore, the mass of non-captive consumers that

choose the product set is given by F (log
∑

j hj(pj)). Putting everything together, we obtain

the expected demand for product i:

Di(p) = −g′i(pi)−
h′i(pi)

hi(pi)

hi(pi)∑
j∈N hj(pj)

F

(
log
∑
j∈N

hj(pj)

)
,

= −g′i(pi)− h′i(pi)
F
(

log
∑

j∈N hj(pj)
)

∑
j∈N hj(pj)

.

We can conclude: Demand system (10) can be derived from generalized discrete/continuous

choice (as described above) if and only if H 7→ HΨ′(H) is non-decreasing (so that F (V ) =

expVΨ′(expV ) is indeed a cumulative distribution function), and for every i ∈ N , gi is

non-increasing and convex (so that gi is indeed an indirect subutility function), and hi is

strictly positive, non-increasing and log-convex (so that log hi is indeed an indirect subutility

function).

A cookbook for applied work. One way of finding a function h that is consistent with

discrete/continuous choice and satisfies Assumption 1 is to start with a function h that

is positive, decreasing and log-convex, and to check that the associated ι function is non-

decreasing whenever it is strictly greater than 1. This is tedious, because nothing guarantees

that ι will have the right monotonicity property. Another possibility is to start with a

function ι that is non-decreasing, to integrate a second-order differential equation to obtain

a function h, and to adjust constants of integration to ensure that h is positive, decreasing

and log-convex. The following proposition states that such constants of integration exist:

Proposition 7. Let ι̃ : R++ −→ R++ be a C1 function such that ι̃ is non-decreasing,

lim0+ ι̃ > 0, and ι̃(x) > 1 for some x > 0. For every (α, β) ∈ R2
++, let

hα,β(x) = α

(
β −

∫ x

1

exp

(
−
∫ t

1

ι̃(u)

u
du

)
dt

)
.

Then, there exists β > 0 such that, for every strictly decreasing and log-convex function h,

the elasticity of h′ is equal to ι̃ if and only if h = hα,β for some α > 0 and β ≥ β.

Proof. See Online Appendix V.

The appeal of Proposition 7 is that it allows us to use (ιj)j∈N as a primitive, instead of

(hj)j∈N . This is useful, because markup patterns are governed by the ι functions.

Non-linear pricing. We have assumed throughout that firms compete in linear prices.

We now show that our methodology can also be usefully applied to study non-linear pricing.

To this end, suppose that firms can charge two-part tariffs: For every j ∈ N , pj (resp.
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Fj) denotes the variable (resp. fixed) part of the two-part tariff contract for product j. In

equilibrium, firms find it optimal to set all variable parts equal to marginal cost, and compete

on the fixed parts. Intuitively, if firm f sets pj 6= cj for some j ∈ f , then it is profitable for

this firm to deviate to pj = cj, and to adjust the fixed part in such a way that product j

is chosen with the same probability as before. Since this deviation raises the joint surplus

of the consumer and the firm (the consumer purchases the efficient quantity), and since the

consumer receives the same expected surplus as before (otherwise, the choice probabilities

would not be the same as before), this deviation is indeed profitable.

When all firms set variable parts equal to marginal costs, the consumer’s indirect utility

conditional on choosing product j (net of the taste shock and income) is log hj(cj)−Fj, and

his conditional demand for product j is −h′j(cj)/hj(cj). Therefore, the profit of firm f is

given by:

Πf =
∑
k∈f

(
Fk − ck

−h′k(ck)
hk(ck)

)
hk(ck) e−Fk∑
j∈N hj(cj) e−Fj

.

These are the payoff functions of pricing game ((h̃j)j∈N ,F , (c̃j)j∈N ) with linear tariffs, where,

for every j ∈ N , h̃j(Fj) = hj(cj) exp(−Fj), and c̃j = cj(−h′j(cj))/hj(cj). Put differently, the

pricing game with two-part tariffs is formally equivalent to a pricing game with MNL demands

and linear pricing. We know that the MNL pricing game has an equilibrium, and in fact, we

will soon show that this equilibrium is unique.

An immediate observation is that all available products always end up being sold under

non-linear pricing, whereas, as discussed before, this is not necessarily the case under linear

pricing. This comes from the fact that the non-linear pricing game is equivalent to a linear

pricing game with MNL demands. Since MNL products are such that µ̄j = ∞ (recall that

ι̃j(Fj) = Fj), such products are always supplied. The intuition is that a firm is better able

to extract additive taste shock εj under non-linear pricing than it is under linear pricing.

Quantity competition. The techniques developed in this paper can also be used to solve

quantity competition games with differentiated products and multiproduct firms. In the

following, we briefly describe how our aggregative games approach can be adapted, and refer

the reader to Online Appendix VI for more details. Suppose that the inverse demand for

product i can be written as Pi(xi, H) = h′i(xi)/H, where H =
∑

j∈N hj(xj) is the aggregator,

and xj is the output of product j. Taking first-order conditions, it is possible to show that

an additive form of the constant ι-markup property must hold in equilibrium: For every firm

f , there exists µf such that Pk−ck
Pk

+ ιk(xk) = µf for all k ∈ f , where ιk is still the elasticity of

h′k. Inverting the ι-markup equation yields an output function χk(µ
f , H) for every product

k.37 We can then use ι-markup µf to reduce firm f ’s profile of first-order conditions to a

37An important difference with the price competition case is that output function χk depends on both µf

and H, whereas pricing function rk only depends on µf . This makes the analysis somewhat more complicated.
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unique equation

µf =
1

H

∑
j∈f

χj(µ
f , H)h′j(χj(µ

f , H)),

which uniquely pins down firm f ’s fitting-in function, mf (H). Combining output and fitting-

in functions allows us to define the aggregate fitting-in function:

Γ(H) =
∑
f∈F

∑
j∈f

hj
(
χj(m

f (H), H)
)
.

We then derive conditions under which first-order conditions are sufficient for optimality,

and Γ has a unique fixed point. Under these conditions, there is a unique equilibrium. These

conditions hold, e.g., under CES demand.

4.5 Equilibrium Uniqueness

We now turn our attention to the question of equilibrium uniqueness. The idea is to derive

conditions under which Γ′(H) < 1 whenever Γ(H) = H,38 which ensures that there is exactly

one value of H such that Γ(H) = H. To avoid non-differentiability issues (mf may fail to

be differentiable at values of H at which firm f drops a product), we assume that, for every

f ∈ F and j ∈ f , µ̄f = µ̄j. This ensures that all products are always sold at finite prices

and that Γ(·) is C1. We also introduce the following notation: For all j ∈ N , ρj ≡ hj/γj,

θj ≡ h′j/γ
′
j, and p

j
= inf{pj > 0 : ιj(pj) > 1}.39

We can now state our uniqueness theorem:

Theorem 2. Assume that Assumption 1 holds and that µ̄f = µ̄j for every f ∈ F and j ∈ f .

Suppose that, for every firm f ∈ F , at least one of the following conditions holds:

(a) minj∈f infpj>pj ρj(pj) ≥ maxj∈f suppj>pj
θj(pj).

(b) µ̄f ≤ µ∗(' 2.78), and for every j ∈ f , lim∞ hj = 0 and ρj is non-decreasing on

(p
j
,∞).40

(c) There exist a function hf ∈ Hι and a marginal cost level cf > 0 such that hj = hf and

cj = cf for all j ∈ f . In addition, ρf is non-decreasing on (p,∞).

Then, the pricing game has a unique equilibrium.

38Another possibility would be to follow an index approach and compute the sign of the determinant of
the Jacobian of the first-order conditions map. In Online Appendix VII.8, we show that this approach is
equivalent to ours.

39By Lemma III in Online Appendix II.1, p
j

is well-defined.
40Condition lim∞ hj = 0 can be weakened. See Propositions III and IV, and Corollaries I and II in Online

Appendix VII.5.
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Proof. The theorem is proven in two steps. We first show that the uniqueness condition –

Γ′(H) < 1 whenever Γ(H) = H – can be rewritten as |F| independent firm-level conditions.

In the second step, we show that each of conditions (a), (b) and (c) is sufficient for the

firm-level condition. See Online Appendix VII for details.

Discussion. We first discuss the condition that ρj is non-decreasing on (p
j
,∞). Consider

a discrete/continuous choice model of demand in which only product j and outside option

H0 > 0 are available. Then, the expected demand for product j is given by: Dj(pj, H
0) =

−h′j(pj)/(hj(pj) + H0). It is easy to show that function pj ∈ (p
j
,∞) 7→ 1/Dj(pj, H

0) is

convex if and only if ρj is non-decreasing on (p
j
,∞).41 Caplin and Nalebuff (1991) argue

that this convexity condition is “just about as weak as possible” (see the paragraph after

their Proposition 3, p. 38). They show that, under this condition, single-product firms’ profit

functions are quasi-concave in own prices. In their framework, equilibrium existence then

follows from Kakutani’s fixed-point theorem.

We find that, although this convexity condition is not needed to obtain equilibrium ex-

istence, it guarantees equilibrium uniqueness, provided that some additional restrictions,

contained in conditions (a), (b) and (c), are satisfied. Note that condition (a) is indeed

a stronger version of the assumption that ρj is non-decreasing. This is because ρj is non-

decreasing on (p
j
,∞) if and only if ρj ≥ θj on the same interval.42 Condition (a) imposes

that the highest possible value of θj (j ∈ f) be smaller than the lowest possible value of ρj
(j ∈ f), which is indeed stronger.

Finally, note that if f = {j} and ρj is non-decreasing on (p
j
,∞), then condition (c)

trivially holds. It is therefore easier to ensure equilibrium uniqueness for single-product firms

than for multiproduct firms.

Examples. In the following, we provide examples of demand systems that satisfy (or do

not satisfy) our uniqueness conditions. A priori, condition (a) seems tedious to check if the

firm under consideration has heterogeneous products. The following proposition shows that

a certain type of product heterogeneity can be easily handled, and provides a cookbook for

applied work:

Proposition 8. Let h ∈ Hι such that supp>p θ(p) ≤ infp>p ρ(x). Let f be a finite and

non-empty set, and, for every j ∈ f , (αj, βj, δj, εj) ∈ R2
++ × R2

+. For every j ∈ f , define

hj(pj) = αjh(βjpj + δj) + εj, ∀pj > 0.

Then, for all j ∈ f , hj ∈ Hι. Moreover, maxj∈f suppj>pj
θj(pj) ≤ minj∈f infpj>pj ρj(pj).

Proof. See Online Appendix VII.6.

41See Lemma VII in Online Appendix VII.1.
42To see this, note that (log ρj)

′ =
−γ′

j

hj
(ρj−θj), and that γ′j < 0 by Lemma III-(d) in Online Appendix II.1.
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Proposition 8 can be applied as follows. Let h(p) = e−p for all p > 0. We already know

that h ∈ Hι. In addition, ρ(p) = θ(p) = 1 for all p > 0. By Proposition 8, if firm f is such

that for all j ∈ f , there exist λj > 0 and aj ∈ R such that hj(pj) = e
aj−pj
λj for all pj > 0

(i.e., firm f only has MNL products), then condition (a) in Theorem 2 holds for firm f . This

implies in particular that a multiproduct-firm pricing game with MNL demand has a unique

equilibrium.

Similarly, let h(p) = p1−σ for all p > 0 (σ > 1). Again, we already know that h ∈ Hι.

In addition, ρ(p) = θ(p) = σ/(σ − 1). Therefore, if firm f is such that for all j ∈ f , there

exist aj, bj, dj > 0 such that hj(pj) = aj (bjpj + dj)
1−σ for all pj > 0, then condition (a) in

Theorem 2 holds for firm f . In particular, a pricing game with CES demand has a unique

equilibrium.43

Some functions satisfy condition (b), but not condition (a). Consider the following func-

tion: h(x) = 1
log(1+ex)

. It is easy to show that h ∈ Hι, ρ is non-increasing, and µ̄ = 2(< 2.78).

Therefore, condition (b) holds. However, condition sup θ(x) ≤ inf ρ(x) is not satisfied.

It is easy to construct a multi-product firm that satisfies none of our uniqueness conditions.

For instance, let f = {1, 2}, h1(p1) = p1−σ1
1 and h2(p2) = p1−σ2

2 , where σ1 6= σ2. Then,

µ̄1 6= µ̄2, so Theorem 2 does not apply. It is also possible to find single-product firms for

which Theorem 2 has no bite.44

Equilibrium uniqueness when marginal costs are high or the outside option is

attractive enough. As discussed above, Theorem 2 is not powerful enough to guarantee

equilibrium uniqueness for every pricing game. In the following, we show that, for a given

discrete/continuous choice model of consumer demand (hj)j∈N and a given partition of the

set of products F , pricing game ((hj)j∈N ,F , (cj)j∈N ) has a unique equilibrium, provided that

firms are sufficiently inefficient and that consumers have access to an outside option. We no

longer assume that µ̄j = µ̄f for every f ∈ F and j ∈ f .

Proposition 9. Let ((hj)j∈N ,F , (cj)j∈N ) be a pricing game such that hj ∈ Hι for every j.

Then,

• For every H0 > 0, there exists c > 0 such that pricing game ((hj)j∈N ,F , (cj)j∈N ) with

outside option H0 has a unique equilibrium whenever (cj)j∈N ∈ [c,∞)N and H0 ≥ H0.

• For every c > 0, there exists H0 ≥ 0 such that pricing game ((hj)j∈N ,F , (cj)j∈N ) with

outside option H0 has a unique equilibrium whenever (cj)j∈N ∈ [c,∞)N and H0 ≥ H0.

Proof. See Online Appendix VII.7.

Intuitively, when the products in N are relatively unattractive compared to the outside

option (either because marginal costs are high, or because the outside option delivers high

43Other candidates for the base h include h(x) = exp (e−x), h(x) = 1 + 1
1+e1+x , h(x) = 1 + 1

cosh(2+x) , etc.
44Consider, for instance, the family of functions hφ,λ ∈ Hι introduced in footnote 26. It is easy to show

that ρφ,λ(·) is strictly decreasing whenever φ ∈ (0, 1). Therefore, none of our uniqueness conditions hold.
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consumer surplus), the firms have low market shares, and, hence, little market power. The

firms therefore set ι-markups close to those they would set under monopolistic competition,

and react relatively little to changes in their rivals’ behavior.

5 Type Aggregation: CES and MNL Demands

In this section, we analyze multiproduct-firm pricing when demand is either CES or MNL.

In the first part, we show that another aggregation property, called type aggregation, obtains:

Even though firms may differ in multiple dimensions (number of products, qualities and

marginal costs), all the information relevant for determining a firm’s fitting-in function can

be summarized by its uni-dimensional “type.” This type-aggregation property allows us to

derive clear-cut comparative statics. In the second part, we provide an efficient computational

algorithm for applied work.

5.1 Multiproduct-Firm Oligopoly with CES and MNL Demands

We study a multiproduct-firm pricing game with CES demand (resp. MNL demand) and

heterogeneous qualities and productivities. In the CES case, let hk(pk) = akp
1−σ
k for every

k ∈ N , where ak > 0 is the quality of product k, and σ > 1 is the elasticity of substitution.

In the MNL case, let hk(pk) = exp
(
ak−pk
λ

)
for every k ∈ N , where ak ∈ R is the quality of

product k, and λ > 0 is a price sensitivity parameter. We have already shown in Section 4.5

that any pricing game based on (hj)j∈N has a unique equilibrium.

Firm f ’s fitting-in function is pinned down by equation (7), which involves functions γk
and rk. With CES demand, γk(pk) = σ−1

σ
akp

1−σ
k and ιk = σ. Therefore, for every µf ∈ [1, σ),

rk(µ
f ) = ck/(1− µf/σ). Equation (7) can then be rewritten as follows:

µf

1− 1

H

∑
k∈f

σ − 1

σ
ak

(
ck

1− µf

σ

)1−σ
 = 1. (11)

With MNL demand, γk(pk) = hk(pk), and ιk(pk) = pk/λ. Therefore, rk(µ
f ) = λµf + ck.

This allows us to rewrite equation (7) as follows:

µf

(
1− 1

H

∑
k∈f

exp

(
ak − ck − λµf

λ

))
= 1. (12)

Let T f =
∑

k∈f akc
1−σ
k in the CES case, and T f =

∑
k∈f exp

(
ak−ck
λ

)
in the MNL case.

Note that T f would be equal to firm f ’s contribution to the aggregator H (and thus to

consumer surplus) if that firm were to price competitively (i.e., set pk = ck for all k ∈ f). We

call T f firm f ’s type. We will see that all the relevant information about firm f ’s performance

and competitive impact is summarized by its type. In Section 6.3, we will argue that T f
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also provides an appealing measure of firm-level productivity. Using the definition of T f ,

equations (11) and (12) can be simplified as follows:

(CES) µf =
1

1− σ−1
σ

T f

H

(
1− µf

σ

)σ−1 , (13)

(MNL) µf =
1

1− T f

H
e−µf

. (14)

Equation (13) (resp. (14)) implicitly defines a function m(T f/H). Firm f ’s fitting-in function

is simply H 7→ m(T f/H). An immediate implication is that firms f and g have the same

type (T f = T g) if and only if they have the same fitting-in function.

Note that (for fixed T f ) the CES markup equation converges pointwise to the MNL

markup equation as σ goes to infinity. A pricing game with MNL demand can therefore be

viewed as a limiting case of pricing games with CES demand.

Next, we claim, that if firms f and g have the same type, then their contributions to the

aggregator are the same. We introduce the following notation. Under CES demand, for a

given aggregator level H, sk = akp
1−σ
k /H is the market share (in value) of product k. Under

MNL demand, market shares are defined in volume: sk = e
ak−pk
λ /H. Firm f ’s market share

is
∑

k∈f sk. Note that

(CES) sf =
∑
k∈f

akrk(µ
f )1−σ

H
=
∑
k∈f

akc
1−σ
k

(
1− µf

σ

)σ−1

H
=
T f

H

1−
m
(
T f

H

)
σ

σ−1

≡ S

(
T f

H

)
,

(MNL) sf =
∑
k∈f

e
ak−rk(µ

f )

λ

H
=
∑
k∈f

e
ak−ck
λ
−µf

H
=
T f

H
e
−m

(
Tf

H

)
≡ S

(
T f

H

)
.

Firm f ’s market share function is H 7→ S(T f/H). Therefore, firms f and g share the same

market share function if and only if T f = T g. Put differently, firm f and g’s contributions

to the aggregator are identical if and only if they have the same type. Note also that, as σ

tends to infinity, the definition of market shares in the CES case converges pointwise to the

one in the MNL case.

Recall that H is an equilibrium aggregator level if and only if Γ(H)/H = 1. Note that

Γ(H)

H
=

1

H

∑
f∈F

∑
k∈f

hk(rk(m
f (H))) =

∑
f∈F

∑
k∈f

sk =
∑
f∈F

S

(
T f

H

)
. (15)

In words, H is an equilibrium aggregator level if and only if market shares add up to 1.

Finally, recall that firm f ’s equilibrium profit is equal to its equilibrium ι-markup minus

one: Πf = m(T f/H)− 1 ≡ π(T f/H).

We summarize these findings in the following proposition:
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Proposition 10. Consider a pricing game with CES or MNL demands. If firm f is replaced

by firm g such that T g = T f , then the equilibrium value of the aggregator is unaffected, and

firm g ends up charging the same markup, earning the same profit, and commanding the

same market share as firm f .

Under CES and MNL demands, firms’ types are aggregative as well. Firms f and g may

differ widely in terms of product portfolios, productivity and product qualities, but if their

types are the same, then they share the same fitting-in functions. This implies that, no matter

what the competitive environment is, these two firms will always set the same ι-markup (and

therefore make the same profit) and command the same market share. Interestingly, given

a multiproduct firm f , there always exists an “equivalent” single-product firm. To see this,

fix T f > 0, and define firm f̂ as a firm selling only one product with quality â = T f (resp.

â = λ log T f + 1) in the CES (resp. MNL) case and marginal cost ĉ = 1. Then, T f = T f̂ ,

and firms f and f̂ are therefore equivalent in the sense of Proposition 10.

We also obtain the following comparative statics:

Proposition 11. In a pricing game with CES or MNL demands,

(i) m′, S ′, π′ > 0.

(ii) For every firm f , dH∗

dT f
, dµf∗

dT f
, dsf∗

dT f
, dπf∗

dT f
> 0, where the superscript ∗ indicates equilib-

rium values, and d/dT f is the total derivative with respect to T f (taking into account

the impact of T f on the equilibrium aggregator level).

(iii) For every g 6= f , dµg∗

dT f
, dsg∗

dT f
, dπg∗

dT f
< 0.

(iv) For every firm f , dW ∗

dT f
> 0, where W ∗ is equilibrium social welfare.

Proof. See Online Appendix VIII.2 .

Part (i) says that a firm charges a higher markup, commands a larger market share,

and makes a larger profit if it has more products, if it is more productive, if it sells higher-

quality products (higher T f ), or if it operates in a less competitive environment (lower H).

Recall from the discussion in Section 4 that, in general, a reduction in marginal cost ck or an

increase in quality ak of firm f ’s product k ∈ f may not necessarily induce an increase in firm

f ’s contribution to the aggregator, Hf , thus making the effect on rivals’ profits ambiguous;

moreover, if it does, the competitive response by rivals (which involves a reduction in their

prices) makes the overall effect on firm f ’s profit ambiguous. Parts (ii) and (iii) of Proposition

11 show that when demand is either of the CES or MNL forms, then clear-cut predictions

obtain: If firm f ’s type increases, then consumers benefit whereas firm f ’s markup, market

share and profit increase, to the detriment of its rivals.

The impact of an increase in T f on social welfare can be decomposed into three effects.

First, firm f becomes more efficient (because its marginal costs decrease, or its qualities

improve, or its scope expands). Second, the equilibrium aggregator level rises. Third, market
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shares are reallocated toward firm f . The first two effects are clearly positive. As discussed

in Section 4.3, the third effect is positive if firm f was initially producing too little, and

negative otherwise. Part (iv) of the proposition shows that the market shares reallocation

effect is never strong enough to offset the first two effects, so that an increase in T f always

raises social welfare. This is in contrast to standard results in homogeneous-goods Cournot

models (Lahiri and Ono, 1988; Zhao, 2001), or in models of price or quantity competition

with differentiated products and linear demand (Wang and Zhao, 2007), where a reduction

in a firm’s marginal cost lowers social welfare if that firm initially has a low market share.45

5.2 Computational Algorithm for Applied Work

Numerically solving for the equilibrium of a multiproduct-firm pricing game in an industry

with many firms and products can be a daunting task with standard methods, due to the

high dimensionality of the problem. Exploiting the aggregative structure of the pricing game

allows us to reduce this dimensionality tremendously: Instead of solving a system of |N | non-

linear equations in |N | unknowns, we only need to look for an H > 0 such that Γ(H) = H.

Of course, there usually will not be a closed-form expression for Γ(·), so we still need to

compute this function numerically. But Γ(H) is simple to compute as well, since all we need

to do is solve for |F| separate equations, each with one unknown. Below, we describe how

this general approach can be implemented to solve a multiproduct-firm pricing game with

CES or MNL demands.

The algorithm uses two nested loops. The inner loop computes Γ(H) for a given H. The

outer loop iterates on H. We start by describing the inner loop. Fix some H > 0. We first

need to compute µf = mf (T f/H) for every f . We have shown that µf solves equation (13)

in the CES case, and equation (14) in the MNL case. These equations can be rewritten as

follows:

0 = ψf (µf ) ≡

µ
f

(
1− σ−1

σ
T f

H

(
1− µf

σ

)σ−1
)
− 1 (CES),

µf
(

1− T f

H
e−µ

f
)
− 1 (MNL).

(16)

We solve equation (16) numerically using the Newton-Raphson method with analytical deriva-

tives. The usual problem with the Newton-Raphson method is that it may fail to converge if

starting values are not good enough. This is potentially a major issue, because the value of

Γ(H) used by the outer loop would then be incorrect. The following starting values guarantee

convergence:

µf0 =

max
(

1, σ
(

1−
(
H
T f

) 1
σ−1

))
(CES),

max
(

1, log T f

H

)
(MNL).

In fact, the Newton-Raphson method converges extremely fast (usually less than 5 steps).

Notice, in addition, that this method can easily be vectorized by stacking up the µfs in a

45Wang and Zhao (2007) claim that, with MNL demand, a reduction in a (single-product) firm’s marginal
cost can raise social welfare. Proposition 11 shows that this statement is incorrect.
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vector. Having computed µf for every firm f , we can calculate Γ(H) (see equation (15)).

The outer loop iterates on H to solve equation Γ(H)/H − 1 = 0. This can be done

by using standard derivative-based methods. The Jacobian can be computed analytically:
d
dH

Γ(H)
H

= −
∑

f∈F
T f

H2S
′
(
T f

H

)
, where46

T f

H
S ′
(
T f

H

)
=


µf−1

σ−1
σ
µf
(

1+(σ−1)(µf−1) µf

σ−µf

) (CES),

µf−1

µf(1+µf (µf−1))
(MNL).

We use the value of H that would prevail under monopolistic competition as starting value

(H0 =
∑

f∈F T
f
(
1− 1

σ

)σ−1
under CES demand, H0 =

∑
f∈F T

f e−1 under MNL demand),

and we always obtain convergence (usually in about 10 steps).47

6 Applications to Merger Analysis and International

Trade

In this section, we apply the aggregative games approach to analyze static and dynamic

merger policy, and to study the effect of trade liberalization on the inter- and intra-firm

size distributions, average industry-level productivity, and welfare. Throughout, we assume

that demand is either of the CES or MNL forms so that the type aggregation property (see

Section 5.1) holds.

Much of the existing literature on merger analysis, including Farrell and Shapiro (1990)

and Nocke and Whinston (2010), relies on the homogeneous-goods Cournot model. In the

first part of this section, we provide a necessary and sufficient condition for a merger to

increase consumer surplus (resp. social welfare), and a sufficient condition for a merger to

have a positive external effect, thereby extending the classic results of Farrell and Shapiro

(1990) to the case of price competition between multiproduct firms. In the second part,

we extend Nocke and Whinston (2010) by showing that a myopic merger approval policy

is dynamically optimal if the goal is to maximize discounted consumer surplus. For both

our static and dynamic merger analysis, the type aggregation property turns out to be very

useful. In principle, merger-specific synergies could take many forms: Some of the marginal

costs of the merged firms’ may go down (while those of others may go up); some of the

products’ qualities may improve (while others may degrade); the merged entity may offer

new products (while possibly withdrawing others). The type aggregation property implies

that we do not need to impose any restrictions as all relevant information can be summarized

in the merged firm’s post-merger type.

In our trade application, we show that a (unilateral) trade liberalization will magnify

46We derive these formulas in Online Appendix VIII.1.
47In Breinlich, Nocke, and Schutz (2015), we use this algorithm to calibrate an international trade model

with two countries, 160 manufacturing industries, CES demand and oligopolistic competition.
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relative market share differences between domestic firms, and leave the intra-firm distribution

of market shares unchanged.48 Different predictions obtain for both the inter- and intra-firm

sales distributions in the MNL case. A unilateral trade liberalization shifts relative sales

toward firms with high market shares and high average costs, and within each firm toward

high-cost products. We also propose a new measure of firm-level productivity that allows

us to deal with the fact that firms are heterogeneous in terms of scope, and product-level

marginal costs and qualities. We find that a trade liberalization raises average industry-level

productivity by reallocating market shares toward more productive firms. Finally, we provide

sufficient conditions for a unilateral trade liberalization to raise (or lower) domestic welfare.

6.1 Static Merger Analysis

Partition the set of firms, set F , into I (the insiders) and O (the outsiders), and suppose that

the insiders merge. Let H∗ (resp., Ĥ∗) denote the equilibrium value of the aggregator before

(resp., after) the merger. As consumer surplus is increasing in the value of that aggregator,

we say that the merger is CS-increasing (resp., CS-decreasing) if Ĥ∗ > H∗ (resp., Ĥ∗ < H∗);

it is CS-neutral if Ĥ∗ = H∗. Similarly, we say that a merger is W-increasing if it raises social

welfare, etc. Let TM denote the merged firm’s post-merger type, which takes into account

any possible merger-specific (in-)efficiencies in scope, marginal costs, and qualities.

Consumer surplus and social welfare effects. The following proposition provides nec-

essary and sufficient conditions for a merger to be CS-increasing (resp. W-increasing):

Proposition 12. There exist two cutoffs T̂M , T̃M > 0 such that merger M is

• CS-neutral if TM = T̂M , CS-increasing if TM > T̂M , and CS-decreasing if TM < T̂M ;

• W-neutral if TM = T̃M , W-increasing if TM > T̃M , and W-decreasing if TM < T̃M .

Moreover, T̂M > max
(
T̃M ,

∑
f∈I T

f
)

. If M is CS-nondecreasing, it is profitable in that it

raises the joint profit of the merger partners.

Proof. See Online Appendix X.1.

Inequality T̂M >
∑

f∈I T
f means that, for a merger to be CS-nondecreasing, the merger

has to involve synergies, as in Williamson (1968) and Farrell and Shapiro (1990). To see

why a CS-nondecreasing merger is profitable, consider first a CS-neutral merger. As such a

merger involves synergies and does not change the equilibrium value of the aggegator, it must

be profitable. By part (ii) of Proposition 11, merger M is even more profitable if it is CS-

increasing rather than CS-neutral since it involves larger synergies.49 In contrast to Farrell

48Recall that market shares are defined in value under CES demand and in volume under MNL demand.
49The insight that CS-nondecreasing mergers are profitable was first obtained by Nocke and Whinston

(2010) in the context of the homogeneous-goods Cournot model.
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and Shapiro (1990), we are also able to exploit the monotonicity of social welfare in firms’

types to establish the existence of a cutoff type T̃M such that the merger is W-increasing

if and only if TM > T̃M . Inequality T̂M > T̃M follows immediately from the fact that a

CS-neutral merger is profitable.50

External effects. The aggregative structure of our pricing game allows us to extend Farrell

and Shapiro (1990)’s analysis of the external effects of a merger. To the extent that a merger

is proposed by the merger partners only if it is in their joint interest to do so, a positive

external effect is a sufficient (“safe harbor”) condition for the merger to raise social welfare.

The idea behind focusing on the external effect is that the profitability of a merger depends

on the magnitude of internal cost savings, and that these are hard to assess for an antitrust

authority.

The external effect of the merger, defined as the sum of its impact on consumer surplus

and outsiders’ profits, is given by (recall that π(·) = m(·)− 1):

log Ĥ∗ − logH∗ +
∑
f∈O

(
m

(
T f

Ĥ∗

)
−m

(
T f

H∗

))
= −

∫ Ĥ∗

H∗

η(H)

H
dH,

where

η(H) ≡ −1 +
∑
f∈O

T f

H
m′
(
T f

H

)
.

Hence, as in Farrell and Shapiro (1990), the merger can be thought of as a sequence of

infinitesimal mergers dH, where, along the sequence, the value of the aggregator changes

progressively from H∗ to Ĥ∗. The sign of the external effect of an infinitesimal CS-decreasing

(resp. CS-increasing) merger is thus given by η(H) (resp. −η(H)). In the following, we focus

on CS-decreasing mergers to fix ideas.

An infinitesimal CS-decreasing merger dH < 0 reduces consumer surplus by dH/H, which

corresponds to the first term in the definition of η. It also increases the profit of every outsider

f ∈ O by dH/H times (T f/H)m′(T f/H). Defining φα(S(T f/H)) ≡ (T f/H)m′(T f/H) with

α = (σ−1)/σ in the CES case and α = 1 in the MNL case, we show in Online Appendix X.2

that this profit change can be rewritten as:

φα(s) =
αs(1− s)

(1− αs)(1− s+ αs2)
, ∀s ∈ (0, 1).

50Whether or not T̃M >
∑
f∈I T

f is unclear. On the one hand, a merger that does not involve synergies
lowers the equilibrium aggregator level. On the other hand, it reallocates market shares toward the outsiders,
which can raise social welfare if the outsiders are initially producing too little.
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Hence, the external effect of an infinitesimal CS-decreasing merger is given by

η(H)
dH

H
=

(
−1 +

∑
f∈O

φα(sf )

)
dH

H
.

Computing the external effect of an infinitesimal merger therefore only requires knowledge

of the outsiders’ market shares and of the value of the demand-side parameter α.

To go further, we study the behavior of function φα(·):

Proposition 13. There exists ᾱ(' 0.82) such that:

(i) If α ≤ ᾱ, then the external effect of any CS-decreasing merger is negative.

(ii) If α > ᾱ, then there exist CS-decreasing mergers that have positive external effects, and

CS-increasing mergers that have negative external effects.

Moreover, if α > ᾱ, then there exist thresholds s∗(α) ∈ (0, 1] and ŝ(α) ∈ (0, 1) such that:

(iii) s 7→ φα(s) is strictly increasing on (0, s∗(α)) and strictly decreasing on (s∗(α), 1).51

(iv) s 7→ φα(s) is strictly convex on (0, ŝ(α)) and strictly concave on (ŝ(α), 1).52

Proof. See Online Appendix X.2.

Part (i) of the proposition implies that, if α < ᾱ (i.e., demand is of the CES form and

σ < σ̄ ' 5.53), then the positive effect of the CS-decreasing merger on outsiders’ profits is

always outweighed by the negative effect on consumer surplus, implying a negative external

effect.

Next, suppose that α > ᾱ (i.e., demand is either of the MNL form or of the CES form with

σ > σ̄). Then, by part (ii) of the proposition, there exist CS-decreasing mergers that have

positive (resp. negative) external effects. Parts (iii) and (iv) provide conditions under which

the external effect of an infinitesimal CS-decreasing merger is more likely to be positive. To

understand these conditions, note that the decrease in H has two effects on an outsider’s

profit. First, holding fixed outsiders’ markups, it increases the profit of each outsider f by

Πf × |dH/H|. Hence, the “direct” effect on outsiders’ joint profit is proportional to their

joint profit. Second, outsiders respond by increasing their markups.

To grasp the intuition for parts (iii) and (iv), it is useful to focus on the first, direct effect.

By part (iii), the merger is more likely to have a positive external effect if the outsiders have

high market shares (provided no outsider has a market share above s∗(α)). The intuition

is that if outsiders command larger market shares, they make larger profits, and therefore

benefit more from the direct effect of the reduction in H. By part (iv), the merger is more

likely to have a positive external effect if the outsiders’ market shares are more concentrated

51In the MNL case, s∗(α) = 1; in the CES case, numerically, we find that s∗(α) ≥ 0.68 for every α.
52Numerically, we find that ŝ(α) ≥ 0.28 for every α.
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(provided no outsider has a market share above ŝ(α)).53 The intuition is that if outsiders’

market shares are more concentrated, their joint profit is larger, implying that they jointly

benefit more from the direct effect of the reduction in H.54

Part (iv) implies that relying on the pre-merger Herfindahl-Hirschman index (HHI) to

evaluate the social desirability of a merger can be misguided. To see this, consider two indus-

tries, and suppose that the vector of insiders’ market shares is the same in both industries.

Suppose also that outsiders’ market shares are more concentrated in the first industry than

in the second. Then, the first industry’s HHI is higher than the second’s. However, the

merger in the first industry is more likely to have a positive external effect than the one in

the second industry.

The external effect of the non-infinitesimal CS-decreasing merger M is the integral of the

external effects of the infinitesimal mergers along the path from H∗ to Ĥ∗ < H∗. If products

are relatively poor substitutes (α < ᾱ), then, by part (i) of Proposition 13, merger M has

a negative external effect. Suppose instead that products are relatively good substitutes

(α > ᾱ). As the merger is CS-decreasing by assumption, outsiders’ market shares increase

along the sequence of infinitesimal mergers from H∗ to Ĥ∗. Hence, if η(H∗) > 0 (i.e.,

at the pre-merger aggregator level, an infinitesimal CS-decreasing merger has a positive

external effect), then, by part (iii) of Proposition 13, η(H) remains positive along the sequence

(provided no outsider reaches a market share larger than s∗), and so the external effect of

the merger is positive. But to check whether η(H∗) > 0 involves using only the outsiders’

pre-merger market shares.

6.2 Dynamic Merger Analysis

In many industries, mergers are not isolated events. Evaluating a proposed merger on the

basis of current market conditions therefore appears inappropriate. However, future market

conditions are affected by today’s decision on the proposed merger, for two reasons. First,

today’s decision changes the welfare effects of potential future mergers and therefore the set of

mergers that will be approved in the future. Second, today’s decision changes the profitability

of potential future mergers and therefore the set of mergers that will be proposed in the future.

For the case of Cournot competition with homogeneous goods, Nocke and Whinston

(2010) show that this problem has a surprisingly simple solution when the authority’s ob-

jective is to maximize discounted consumer surplus: A myopic merger approval policy that

approves a proposed merger today if and only if it does not lower current consumer sur-

53We say that the profile of market shares s′ is more concentrated than the profile s if the cumulative
distribution function of s′ second-order stochastically dominates that of s. See Online Appendix X.2.

54The reason why this intuition may not hold if some of the outsiders are too large is the result of the
second, indirect effect. Holding H fixed, the induced increase in an outsider’s markup decreases its profit.
This holds since oligopolistic markups are always above those of monopolistically competitive firms that
perceive H as fixed, so any further increase must reduce profit for a fixed H. The qualifiers in parts (iii)
and (iv) arise because the effect of a given increase in the markup is heterogeneous across outsiders, as is the
extent of the induced markup increase.
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plus (completely ignoring the possibility of future mergers) is dynamically optimal.55 They

consider a T -period model in which merger opportunities arise stochastically over time and,

in each period, firms with a feasible but not-yet-approved merger have to decide whether to

propose it and the antitrust authority has to decide which of the proposed mergers to approve

(if any). In addition to Cournot competition, the two key assumptions are: First, the set of

potential mergers is disjoint (i.e., no firm can be party to more than one potential merger).

Second, rejected mergers can be proposed again in the future (i.e., merger opportunities do

not disappear).

As we show in Online Appendix X.4, the optimality result carries over to the case of

price competition between multiproduct firms when demand takes either the CES or MNL

forms. The optimality result comes in two parts. First, assuming that all feasible and

not-yet-approved mergers are proposed in every period, a myopic merger approval policy is

dynamically optimal in that it maximizes the discounted sum of consumer surplus. Second, if

the antitrust authority adopts a myopic merger approval policy, then in any subgame-perfect

equilibrium, every merger that the authority would want to approve in the dynamically

optimal solution will be proposed.

The key observation for the first part of the optimality result is the following:

Proposition 14. For any merger M , the post-merger cutoff type T̂M is decreasing in the

pre-merger value H∗ of the aggregator.

Proof. See Online Appendix X.3.

The intuition is straightforward: An increase in the aggregator reduces the market share

of the merger partners and thereby the market power effect of the merger. The proposition

implies a certain sign-preserving complementarity in the consumer surplus effects of mergers.

Suppose mergers M1 and M2 are both CS-nondecreasing in isolation (i.e., given the pre-

merger aggregator H∗). Then, each merger Mi remains CS-nondecreasing after the other

merger M−i has been implemented. Conversely, suppose both mergers are CS-decreasing

in isolation. Then, each remains CS-decreasing after the other one has been implemented.

The proposition also implies that a CS-decreasing merger M2 may become CS-nondecreasing

once a CS-increasing merger M1 has been implemented; if so, M1 remains CS-increasing

conditional on M2 taking place.56

The complementarity result implies that if the antitrust authority approves only mergers

that are CS-nondecreasing at the time of approval, then it will never have ex-post regret

about previously approved mergers as these will always remain CS-nondecreasing given the

set of approved mergers. In conjunction with the assumption that merger opportunities do

55Dynamic optimality obtains in a strong sense: The antitrust authority could not improve upon this
outcome even if it had perfect foresight about future merger possibilities (which, by assumption, it does not)
nor if it could undo previously approved mergers (which, by assumption, it cannot).

56To see this, note that if M1 is implemented before M2, then consumer surplus increases at each step.
Hence, conditional on implementing M2 (which, by assumption, decreases consumer surplus), M1 must
increase consumer surplus.
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not disappear, the complementarity also implies that the authority will never have ex-post

regret about having blocked mergers that were CS-decreasing at the time of the decision since

these mergers can (and will) be proposed and approved once they become CS-nondecreasing.

Turning to the second part of the optimality result, Proposition 12 implies that any CS-

nondecreasing merger M is profitable at the time of its approval. Moreover, if the authority

adopts a CS-based merger approval policy, the merger remains CS-nondecreasing and there-

fore profitable given the set of other mergers that will be approved along the equilibrium path.

Surprisingly, a CS-nondecreasing merger M remains profitable even if it induces (directly or

indirectly) the implementation of additional mergers, all of which are CS-nondecreasing at

the time of their approval (and therefore reduce the profit of the merged entity M).57 As a

result, a CS-based myopic merger approval policy solves the moral hazard problem arising

from the fact that the authority can approve only mergers that are proposed in the first place:

In any equilibrium, any merger that the authority would like to approve will be proposed.

6.3 Trade Analysis

We now apply our framework to study classic questions in international trade. As discussed

in Section 1.1, existing papers with multiproduct firms have studied the impact of trade

mostly in the context of monopolistic competition with either CES or linear demands, and

specific assumptions on how marginal costs are allowed to vary within firms. We have already

seen in Section 4.3 that our model’s predictions on firm scope differ markedly from those in

the existing literature. As we will show below, our model also provides novel predictions on

the effects of a unilateral trade liberalization on the inter- and intra-firm size distributions,

average productivity, and welfare.

As argued in Section 4, a trade liberalization that improves the access of foreign firms

to the domestic market can be thought of as an increase in the value of the outside option,

H0. By Proposition 5, the increase in the value of H0 in turn leads to an increase in the

equilibrium value of the aggregator, H, thereby benefiting consumers but hurting domestic

firms.

Inter-firm size distribution. As we show in Online Appendix X.5, the ratio of market

shares between domestic firm f and a smaller domestic firm g of type T g < T f , S(T f/H)/S(T g/H),

is increasing in H. That is, a trade liberalization leads to a smaller fractional decrease in

the market share of a larger than a smaller domestic firm, and thereby magnifies relative size

differences. To put this result into perspective, consider the case of monopolistic competition,

where firms take H as given. As demand is inversely proportional to H, a trade liberalization

would, in that case, not affect prices and would thus have no impact on the market share

ratio of two domestic firms. In contrast, under oligopolistic competition, firms reduce their

markups in response to the increased competition from abroad. But a small oligopolistic

firm (small T ) will not reduce its markup much as it cannot affect H much; as a result, its

57A merger proposal can only increase, not decrease the set of other mergers that will be implemented.
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fractional reduction in market share is almost as large as the fractional increase in H, and

therefore larger than that of a large firm (large T ).

Recall from Section 5 that firm f ’s market share S(T f/H) is measured in value (i.e.,

sales) in the case of CES demand, and in volume (i.e., output) in the case of MNL demand.

As sales data are often more readily available than output data, in the following we also

derive the effect of a trade liberalization on the domestic sales distribution in the MNL case.

In that case, firm f ’s sales share depends not only on f ’s type T f (and the aggregator H)

but also on its (output-weighted) average cost c̄f :

Salesf =
1

H

(∑
j∈f

pj exp
aj − pj
λ

)
=
T f

H
e−µ

f (
λµf + c̄f

)
,

where

c̄f ≡
∑
k∈f

 e
ak−ck
λ
−µf∑

j∈f e
aj−cj
λ
−µf

 ck =
∑
k∈f

 e
ak−ck
λ∑

j∈f e
aj−cj
λ

 ck.

As a result, the effect of a trade liberalization on the domestic inter-firm sales distribution is

more subtle than in the CES case. As shown in Online Appendix X.5, there exists a function

φ, decreasing in both arguments, such that a trade liberalization shifts sales from firm g

toward firm f if and only if φ(T f , c̄f ) < φ(T g, c̄g). In particular, if (i) T f > T g and c̄f = c̄g

or (ii) T f = T g and c̄f > c̄g, firm f has larger sales than firm g, and a trade liberalization

will magnify this size difference. But note that in case (ii) more sales are shifted toward the

firm with the higher average cost.

Intra-firm size distribution. In Online Appendix X.5, we show that the ratio of market

shares between any two products j ∈ f and k ∈ f offered by the same domestic firm f ,

sj/sk, is independent of the equilibrium value of the aggregator H. That is, the intra-firm

distribution of market shares is invariant to the degree of international trade integration.

This follows from two observations. First, the common ι-markup property implies a common

relative markup under CES demand and a common absolute markup under MNL demand.

While different firms reduce their markups to different degrees in response to the trade

liberalization, each firm reduces all its prices by the same fraction (CES) or the same absolute

amount (MNL). Second, all products have the same (constant) price elasticity of revenue

(CES) or the same (constant) price semi-elasticity of demand (MNL).

Under MNL demand, a different picture emerges for the intra-firm sales distribution.

As each firm reduces all its prices by the same absolute amount, a trade liberalization in-

duces a shift in relative sales toward products with higher marginal costs: If cj > ck, then

(pjsj)/(pksk) increases with an increase in H.

Firm-level productivity. The effects of a trade liberalization on industry-level produc-

tivity is a key question in the field of international trade. To address this question, we first
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define productivity at the firm level. As marginal costs and qualities are allowed to vary

across products within the same firm and as firms may differ in the number of products they

offer, such a firm-level definition is not obvious. Below, we provide two arguments suggesting

that a monotonic transform of the firm’s type T f , ϕf ≡ ϕ(T f ) for some strictly increasing

function ϕ, is the theoretically correct measure of productivity.

The composite commodity approach. Suppose the representative consumer has CES prefer-

ences. Define the firm-level composite commodity Qf ≡
(∑

j∈f a
1
σ
j q

σ−1
σ

j

) σ
σ−1

and the associ-

ated price index P f ≡
(∑

j∈f ajp
1−σ
j

) 1
1−σ

for every firm f . It is well known that the demand

system can then equivalently be derived through two-stage budgeting, where the consumer

first decides on (Qf )f∈F , and then on (qj)j∈f for every f . For this composite commodity

approach, firm f ’s productivity is equal to the inverse of the firm’s (constant) unit cost of

producing the composite commodity Qf , which can be computed as (T f )
1

σ−1 . Equivalently,

it is equal to the ratio of firm f ’s sales over costs, with sales being deflated by the firm-level

price index P f . Unfortunately, such composite commodities are unavailable for the MNL

case.

The indirect utility approach. Suppose the consumer makes choices in two steps. He first

chooses a firm, and then a product in that firm’s “nest.” After having chosen firm f , the

consumer observes a vector of i.i.d. Gumbel taste shocks and chooses the product that delivers

the largest indirect utility. The inclusive value of nest f is then given by V f ≡ log
∑

j∈f hj(pj).

Suppose firm f is tasked to deliver the inclusive value in a profit-maximizing way (i.e.,

conditional on the consumer choosing its products’ nest). It is straightforward to show that

the resulting prices satisfy the common ι-markup property, and that a firm with a higher T f

delivers any inclusive value V f in a more efficient way.

Industry-level productivity. We define domestic industry-level productivity Φ as the

market-share-weighted average firm-level productivity:

Φ ≡
∑
f∈F

(
sf∑
g∈F s

g

)
ϕf .

The reason for using market shares as weights is that, under both CES and MNL demands,

these market shares are equal to firm-level choice probabilities in the discrete/continuous

choice model.

We now consider the effect of a (unilateral) trade liberalization on Φ. An immediate

observation is that firm-level productivities remain unchanged.58 However, as a trade liberal-

ization increases the relative market shares of high-productivity firms, it induces an increase

58Recall that, in the CES case, productivity can be measured by the ratio of firm-level sales over costs,
with sales being deflated by the firm-level CES price index. Without access to the ideal firm-level price index,
it would appear that a trade-liberalization does affect firm-level productivity. The same applies to the MNL
case, for which ideal firm-level price indices do not even exist theoretically.
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in the average industry-level productivity Φ. This is shown formally in Online Appendix X.5.

Welfare effects. By increasing the equilibrium value of the aggregator H, a unilateral

trade liberalization benefits domestic consumers. As shown above, it also raises the average

industry-level productivity of domestic firms. The underlying shift in market shares from

less productive to more productive domestic firms reduces the relative markup distortions

discussed in Section 4.3. The downside of a unilateral trade liberalization is that it increases

the market share of foreign firms (the outside option).

The overall effect on domestic welfare, defined as the sum of consumer surplus and the

profit of domestic firms, is identical to the external effect of a CS-increasing merger. From our

analysis in Section 6.1, we obtain the following. First, if σ < σ̄ under CES demand, then a

unilateral trade liberalization always increases domestic welfare. Second, under MNL demand

or if σ > σ̄ under CES demand, a small unilateral trade liberalization is more likely to have a

positive domestic welfare effect if (i) the joint market share of domestic firms is smaller, and

if (ii) the domestic industry is less concentrated. In contrast, under monopolistic competition

with CES or MNL demands (see Online Appendix X.5) or linear demand (see Mayer, Melitz,

and Ottaviano, 2014), a unilateral trade liberalization would have an unambiguously positive

effect on domestic welfare (for a fixed set of firms).

7 Conclusion

The main contribution of this paper consists in developing a tractable approach to multiproduct-

firm oligopoly. The aggregative structure of the game and the common ι-markup property

deliver simple, yet powerful existence, uniqueness and characterization results. Our approach

gives rise to a computationally efficient algorithm, and to a simple decomposition of the wel-

fare distortions in multiproduct-firm oligopoly. Monotone comparative statics results allow us

to make predictions on how markups and firm scope vary with the competitive environment.

Under CES and MNL demands, for which type aggregation obtains, we provide appli-

cations to classic questions in static and dynamic merger analysis, and to the effects of a

trade liberalization. Specifically, we derive necessary and sufficient conditions for a merger

to increase consumer surplus and social welfare; we analyze the external effect of a merger;

we show the dynamic optimality of a myopic merger approval policy; and we study the effects

of a trade liberalization on the inter- and intra-firm size distributions, industry-level average

productivity, and domestic welfare.

Another contribution of the paper consists in providing a complete characterization of

the class of demand systems that can be derived from discrete/continuous choice with i.i.d.

Gumbel taste shocks. In recent empirical work, Björnerstedt and Verboven (2016) use (ran-

dom coefficient) CES demand rather than the ubiquitous (random coefficient) MNL demand

because of its different implications for markup behavior. Our paper demonstrates that

richer patterns of markups can be obtained by using conditional demand specifications that
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go beyond the special cases of CES and MNL.

Our paper suggests a number of exciting avenues for future research. In Section 4.4,

we have provided a complete characterization of the class of demand systems that give rise

to an aggregative game with additive aggregation. The next step in this direction involves

obtaining a similar characterization for the case of non-additive aggregation. This is equiv-

alent to characterizing the set of demand systems that satisfy generalized separability in

the sense of Pollak (1972) with quasi-linear preferences. In Section 4.4, we have also shown

that our multiproduct-firm pricing game has an ordinal potential. Conversely, it would be

interesting to analyze which properties of the demand system give rise to a potential game.59

In Section 2, we have characterized the class of demand systems that can be derived from

discrete/continuous choice with i.i.d. Gumbel taste shocks. An open question is what can

be said when the distributional assumption on taste shocks is relaxed.60

A Proof of Theorem 1

Let ((hj)j∈N ,F , (cj)j∈N ) be a pricing game satisfying Assumption 1. The following lemma

ensures that each firm sets at least one finite price in any equilibrium.

Lemma A. In any Nash equilibrium (p∗j)j∈N , for every firm f ∈ F , there exists k ∈ f such

that p∗k <∞.

Proof. This follows from profit function (3): If firm f sets p∗j = ∞ for all j ∈ f , then it

makes zero profit; if instead it sets pk ∈ (ck,∞) for some k ∈ f , then its profit is strictly

positive.

Next, we show that first-order conditions (appropriately generalized to handle infinite

prices) are necessary and sufficient for global optimality. To this end, fix a firm f ∈ F and a

price vector for firm f ’s rivals (pj)j∈N\{f}, and denote H0 =
∑

j∈N\{f} hj(pj). Suppose that

at least one of the prices set by firm f ’s rivals is finite, and define

Πf ((pj)j∈f , H
0) =

∑
k∈f
pk<∞

(pk − ck)
−h′k(pk)∑

j∈f hj(pj) +H0
. (17)

Note that Πf ((pj)j∈f , H
0) is the profit of firm f when it sets price vector (pj)j∈f and its rivals

set price vector (pj)j∈N\{f}. We study the following maximization problem:

max
(pj)j∈f∈(0,∞]f

Πf
(
(pj)j∈f , H

0
)
. (18)

We prove the following lemma:

59In Nocke and Schutz (2016a), we make some headway in this direction.
60In the same spirit, Anderson, de Palma, and Thisse (1989) and Armstrong and Vickers (2015) analyze

the class of demand systems that can be derived from pure discrete choice.
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Lemma B. Maximization problem (18) has a solution. Moreover, if (pj)j∈f solves maxi-

mization problem (18), then pj ≥ cj for all j ∈ f , and pk <∞ for some k ∈ f .

Proof. The observation that firm f sets a least one finite price follows from the argument in

the proof of Lemma A. Next, we show that firm f does not set any price below marginal

costs. Let (pj)j∈f >> 0. Suppose that pk < ck for some k in f , and let p̃j ≡ max(cj, pj)

for every j in f . When firm f deviates from (pj)j∈f to (p̃j)j∈f , it stops making losses on

products j such that pj < cj, and it raises the demand for products j such that pj ≥ cj.

Therefore, Πf ((pj)j∈f , H
0) < Πf ((p̃j)j∈f , H

0), and (pj)j∈f is not a solution of maximization

problem (18).

Next, we show that maximization problem (18) has a solution. Assume without loss of

generality that f = {1, . . . , n}. For every k ∈ f and xk ∈ [0, 1], define

φk(xk) =

{
ck + xk

1−xk
if xk < 1,

∞ if xk = 1.

Note that lim1 φ = φ(1) =∞. For every x ∈ [0, 1]n, define φ(x) = (φ1(x1), . . . , φn(xn)). φ is

a bijection from [0, 1]n to
∏n

k=1[ck,∞]. Finally, let

Ψ(x) = Πf
(
φ(x), H0

)
, ∀x ∈ [0, 1]n.

Since φ is a bijection, maximization problem maxx∈[0,1]n Ψ(x) has a solution if and only if

maximization problem (18) has a solution. All we need to do now is show that Ψ is continuous

on [0, 1]n.

Clearly, Ψ is continuous at every point x such that xk < 1 for every 1 ≤ k ≤ n. Next, let

x such that xk = 1 for some 1 ≤ k ≤ n. To fix ideas, suppose that xk = 1 for all 1 ≤ k ≤ K,

and that xk < 1 for all K + 1 ≤ k ≤ n, where K ≥ 1. Then,

lim
x̃→x

Ψ(x̃) = lim
x̃→x

n∑
k=1

(φk(x̃k)− ck)
−h′k (φk(x̃k))∑n

j=1 hj (φj(x̃j)) +H0
,

=

∑n
k=1 limx̃k→xk (φk(x̃k)− ck) (−h′k (φk(x̃k)))∑n

j=1 limx̃j→xj hj (φj(x̃j)) +H0
,

=
0 +

∑n
k=K+1 (φk(xk)− ck) (−h′k (φk(xk)))∑K

j=1 hj (∞) +
∑n

j=K+1 hj (φj(pj)) +H0
,

= Ψ(x),

where the third line follows by Lemma III-(a) in Online Appendix II.1. Therefore, Ψ is

continuous. Combining this with the fact that [0, 1]n is compact implies that maximization

problem maxx∈[0,1]n Ψ(x) has a solution.

The next step is to solve the firm’s maximization problem using first-order conditions.

The problem is that the profit function is not necessarily differentiable at infinite prices, so
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we will need to generalize the definition of first-order conditions to account for that. Note

first that, if all products in f ′ ( f are priced at infinity, then profit function Πf (., H0) is still

C2 in (pj)j∈f\f ′ ∈ Rf\f ′
++ , as can be seen by inspecting profit function (17). Next, we slightly

abuse notation, by denoting
(
pk, (pj)j∈f\{k}

)
the price vector with k-th component pk, and

with other components given by (pj)j∈f\{k}. We generalize first-order conditions as follows:

Definition A. We say that the generalized first-order conditions of maximization prob-

lem (18) hold at price vector (p̃j)j∈f ∈ (0,∞]f if for every k ∈ N ,

(a) ∂Πf

∂pk
((p̃j)j∈f , H

0) = 0 whenever p̃k <∞, and

(b) Πf ((p̃j)j∈f , H
0) ≥ Πf

((
pk, (p̃j)j∈f\{k}

)
, H0

)
for every pk ∈ R++ whenever p̃k =∞.

It is obvious that generalized first-order conditions are necessary for optimality:

Lemma C. If (pj)j∈f ∈ (0,∞]f solves maximization problem (18), then the generalized

first-order conditions are satisfied at price profile (pj)j∈f .

Next, we want to show that, if the generalized first-order conditions hold at a price

vector, then this price vector satisfies a generalized version of the common ι-markup property

introduced in Section 4.1. To define this generalized common ι-markup property, we first need

to establish a few facts about functions νk : pk 7→ pk−ck
pk

ιk(pk). Let pmck be the unique solution

of equation νk(pk) = 1. Product k would be priced at pmck under monopolistic competition.

We prove the following lemma:

Lemma D. For every k ∈ f , function νk is a strictly increasing C1-diffeomorphism from

(pmck ,∞) to (1, µ̄k). Denote its inverse function by rk. Then, for all µf ∈ (0, µ̄k),

r′k(µ
f ) =

γk
(
rk(µ

f )
)

µf (−γ′k (rk(µf )))− (µf − 1) (−h′k (rk(µf )))
> 0. (19)

Moreover, for every µf ∈ (1, µ̄k), rk(µ
f ) is the unique solution of equation νk(pk) = µf on

interval (0,∞).

Proof. We first argue that pmck is well-defined. To see this, note that νk is continuous and,

by Lemma III in Online Appendix II.1, νk(pk) < 1 for every pk < max(p
k
, ck) (where p

k
is

defined in Lemma III), lim∞ νk = µ̄k > 1, and νk is strictly increasing on (max(p
k
, ck),∞).

Therefore, pmck is well-defined, and pmck > max(p
k
, ck).

Since pmck > max(p
k
, ck), it follows from by Lemma III-(b) in Online Appendix II.1 that

function ιk is non-decreasing on (pmck ,∞), and that ν ′k(pk) > 0 for every pk > pmck . By

the inverse function theorem, νk is a C1-diffeomorphism from (pmck ,∞) to νk ((pmck ,∞)), and

r′k(µ
f ) = 1/ν ′k(rk(µ

f )). Note that

ν ′k(pk) =

(
−(pk − ck)h′k(pk)

γk(pk)

)′
=
−h′k − (pk − ck)h′k + γ′k(pk − ck)

h′k
γk

γk
=

(νk − 1)h′k − νkγ′k
γk

.
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This proves equation (19). Since νk is strictly increasing,

νk ((pmck ,∞)) =

(
lim
pmck

νk, lim∞
νk

)
= (1, µ̄k).

Finally, let µf ∈ (1, µ̄k) and pk > 0 such that νk(pk) = µf . Then, ιk(pk) > 1, and, by

Lemma III-(b) in Online Appendix II.1, pk > p
k
. Since νk is strictly increasing on interval

(p
k
,∞), we can conclude that pk is unique, and that pk = rk(µ

f ).

We extend functions νk and rk by continuity as follows: νk(∞) = µ̄k, rk(1) = pmck , and

rk(µ
f ) = ∞ for every µf ≥ µ̄k. We can now generalize the common ι-markup property to

price vectors with infinite components:

Definition B. We say that price vector (pj)j∈f ∈ (0,∞]f satisfies the common ι-markup

property if there exists a scalar µf ≥ 1, called the ι-markup, such that pk = rk(µ
f ) for every

k ∈ f .

For every k ∈ N , extend γk by continuity at infinity: γk(∞) = 0 (see Lemma III-(e)

in Online Appendix II.1). The following lemma allows us to simplify first-order conditions

considerably:

Lemma E. Suppose that the generalized first-order conditions for maximization problem (18)

hold at price vector (pj)j∈f ∈ (0,∞]f . Then, (pj)j∈f satisfies the common ι-markup property.

The corresponding ι-markup, µf , solves the following equation on interval (1,∞):

µf = 1 + µf
∑

j∈f γj
(
rj(µ

f )
)∑

j∈f hj (rj(µf )) +H0
. (20)

In addition, Πf ((pj)j∈f , H
0) = µf − 1.

Proof. Assume without loss of generality that f = {1, . . . , n}, and let f ′ = {k ∈ f : pk <∞}.
Clearly, f ′ 6= ∅, because if this set were empty, then the firm could obtain a strictly positive

profit by pricing, say, product 1, at some finite price p1 > c1, which would violate condition (b)

in Definition A. Assume without loss of generality that f ′ = {1, . . . , K}, where 1 ≤ K ≤ n.

Then, following the same reasoning as in Section 4.1, we obtain the existence of a µf > 1

such that

µf = 1 + µf
∑K

k=1 γk
(
rk(µ

f )
)∑K

j=1 hj (rj(µf )) +
∑n

j=K+1 hj(∞) +H0
, (21)

and, for every 1 ≤ k ≤ K, pk = rk(µ
f ). Moreover, Πf ((pj)j∈f , H

0) = µf − 1.

Next, we claim that, for every j ≥ K+1, rj
(
µf
)

=∞, or, equivalently, µ̄j ≤ µf . Assume

for a contradiction, that, for some j ≥ K+1, µ̄j > µf . To fix ideas, assume that this j is equal

to K + 1. Let Π̃f (x) and D̃K+1(x) be the profit of firm f and the demand for product K + 1

at price vector (p1, . . . , pK , x,∞, . . . ,∞). Note that Π̃f (x) tends to Πf ((pj)j∈f , H
0) = µf − 1
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as x goes to infinity (see the proof of Lemma B). Using the expression of marginal profit

given in equation (4), we see that, for every x ∈ R++,

Π̃f ′(x) = D̃K+1(x)

(
1− νK+1 (x) +

∑K
j=1(pj − cj)

(
−h′j(pj)

)
+ (x− cK+1)h′K+1 (x)∑K

j=1 hj(pj) + hK+1(x) +
∑n

j=K+2 hj(∞) +H0

)
,

= D̃K+1(x)

1− νK+1 (x)︸ ︷︷ ︸
−→
x→∞

µ̄K+1

+ Π̃f (x)︸ ︷︷ ︸
−→
x→∞

µf−1

 .

Since, by assumption, µ̄K+1 > µf , this implies that

∂Πf

∂pK+1

(
(p1, . . . , pK , x,∞, . . . ,∞) , H0

)
is strictly negative when x is high enough. Therefore, there exists p̃K+1 ∈ R++ such that

Πf
(
(p1, . . . , pK , p̃K+1,∞, . . . ,∞) , H0

)
> Πf

(
(p1, . . . , pK ,∞, . . . ,∞) , H0

)
,

which contradicts condition (b) in Definition A.

Therefore, rj
(
µf
)

=∞ for all j ≥ K+ 1, and equations (20) and (21) are equivalent.

All we need to do now is study equation (20):

Lemma F. Equation (20) has a unique solution on interval (1,∞).

Proof. Assume without loss of generality that f = {1, . . . , n} and µ̄1 ≤ µ̄2 ≤ . . . µ̄n. Let

S = {µ̄j}1≤j≤n. Set S contains K ≤ n distinct elements: µ̂1 < µ̂2 < . . . < µ̂K . We define the

following function:

φ : µf ∈ (1,∞) 7→ (µf − 1)

(
n∑
j=1

hj
(
rj(µ

f )
)

+H0

)
− µf

n∑
j=1

γj
(
rj(µ

f )
)
.

Note that µf solves equation (20) if and only if φ(µf ) = 0. φ is continuous, and

lim
1+

φ = −
n∑
j=1

γj
(
pmcj
)
< 0.

Next, we show that φ(µf ) is positive for µf high enough. Assume first that µ̂K <∞. Then,

for all µf ≥ µ̂K , φ(µf ) = (µf − 1)H0 > 0. If instead µ̂K =∞, then, for every µf ,

φ(µf ) ≥ (µf − 1)H0 −
∑
j∈f

γj(rj(µ
f )) −→

µf→∞
∞,
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where the inequality follows from log-convexity (hj ≥ γj),
61 and the limit follows from the

fact that γj(∞) = 0 (see Lemma III-(e) in Online Appendix II.1). It follows from the

intermediate value theorem that φ has a zero. Moreover, all the zeros of φ are contained in

interval (1, µ̂K).

Next, we claim that φ is strictly increasing. To see this, we partition interval (1, µ̂K) into

sub-intervals (1, µ̂1), (µ̂1, µ̂2), . . . , (µ̂K−1, µ̂K). Pick one of these sub-intervals, call it (a, b),

and let i be the smallest j ∈ {1, . . . , n} such that µ̄j = b. Then, for all µf ∈ (a, b),

φ(µf ) = (µf − 1)

(
i−1∑
j=1

hj(∞) +
n∑
j=i

hj
(
rj(µ

f )
)

+H0

)
− µf

n∑
j=i

γj
(
rj(µ

f )
)
,

and, by Lemma D, φ is C1 on (a, b). φ′(µf ) is given by (we omit the arguments of functions

to save space):

φ′(µf ) = H0 +
i−1∑
j=1

hj(∞) +
n∑
j=i

(hj − γj) + (µf − 1)

(
n∑
j=i

r′jh
′
j

)
− µf

(
n∑
j=i

r′jγ
′
j

)
,

= H0 +
i−1∑
j=1

hj(∞) +
n∑
j=i

(hj − γj) +
n∑
j=i

r′j
(
µf (−γ′j)− (µf − 1)(−h′j)

)︸ ︷︷ ︸
=γj by Lemma D

,

= H0 +
n∑
j=1

hj > 0.

Therefore, φ is strictly increasing on intervals (1, µ̂1), (µ̂1, µ̂2), . . . , (µ̂K−1, µ̂K). By continuity,

it follows that φ is strictly increasing on (1, µ̂K). Therefore, equation (20) has a unique

solution.

Combining Lemmas B–F allows us to conclude the analysis of maximization problem (18):

Lemma G. Maximization problem (18) has a unique solution. The generalized first-order

conditions associated with this maximization problem are necessary and sufficient for global

optimality. The optimal price vector (which contains at least one finite component) satisfies

the common ι-markup property, and the corresponding ι-markup, µf∗, is the unique solution

of equation (20). The maximized value of the objective function is µf∗ − 1.

Proof. Let (p∗j)j∈f be a solution of maximization problem (18). By Lemma B, such a (p∗j)j∈f
exists and p∗k <∞ for some k ∈ f . By Lemmas C, (p∗j)j∈f satisfies the generalized first-order

conditions. Therefore, by Lemma E, (p∗j)j∈f satisfies the common ι-markup property, and

the corresponding µf solves equation (20). By Lemma F, this equation has a unique solution,

which we denote µf∗. Therefore, (p∗j)j∈f =
(
rj(µ

f∗)
)
j∈f , and maximization problem (18) has

61(log hj)
′′ =

h′′
j hj−(h

′
j)

2

h2
j

=
h′′
j

h2
j

(
hj −

(h′
j)

2

h′′
j

)
=

h′′
j

h2
j

(hj − γj) ≥ 0.
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a unique solution. The fact that the maximized value of the objective function is µf∗ − 1

follows immediately from Lemma E.

Conversely, assume that the generalized first-order conditions hold at price vector (p̃j)j∈f .

Then, by Lemmas E and F, (p̃j)j∈f =
(
rj(µ

f∗)
)
j∈f = (p∗j)j∈f . It follows that generalized first-

order conditions are sufficient for global optimality.

We now turn our attention to the equilibrium existence problem. Price vector p ∈ (0,∞]N

is a Nash equilibrium if and only if, for every f ∈ F , (pj)j∈f maximizes Πf
(
·,
∑

j∈N\{f} hj(pj)
)

.

From Lemma A, each firm sets at least one finite price in any Nash equilibrium. Therefore,∑
j∈N\{f} hj(pj) > 0 for every f , and we can apply Lemma G: There exists a pricing equi-

librium if and only if there exists a profile of ι-markups
(
µf
)
f∈F ∈ (1,∞)F such that

µf = 1 + µf
∑

j∈f γj
(
rj(µ

f )
)∑

g∈F
∑

j∈g hj (rj(µg))
, ∀f ∈ F .

This is, in turn, equivalent to finding an aggregator level H > 0 and a profile of ι-markups(
µf
)
f∈F ∈ (1,∞)F such that H =

∑
g∈F

∑
j∈g hj (rj(µ

g)) and for all f ∈ F ,

µf = 1 + µf
∑

j∈f γj
(
rj(µ

f )
)

H
. (22)

Our approach to equilibrium existence consists in showing that this nested fixed point prob-

lem has a solution. We start by studying the inner fixed point problem:

Lemma H. For every f ∈ F , for every H > 0, equation (22) has a unique solution in µf

on interval (1,∞). Denote this solution by mf (H).

Function mf (.) is continuous, strictly decreasing, and satisfies lim∞m
f = 1 and lim0+ m

f =

µ̄f .

Proof. µf solves equation (22) if and only if

ψ(µf , H) ≡ µf

(
1−

∑
j∈f γj

(
rj(µ

f )
)

H

)
= 1.

Note that ψ is continuous on (1,∞)×R++. In addition, if µ̄f <∞, then ψ(µ̄f , H) = µf > 1

for all µf ≥ µ̄f . Therefore, equation (22) does not have a solution on [µ̄f ,∞).

Next, note that ψ(1, H) = 1 −
∑
j∈f γj(pmcj )

H
< 1. Suppose there exists µf > 1 such that∑

j∈f γj
(
rj(µ

f )
)
≥ H. Then, since γj is decreasing and rj is increasing (see Lemmas D

and III-(d)),
∑

j∈f γj
(
rj(µ

f ′)
)
≥ H for all µf ′ ≤ µf . Define

µf (H) = sup

{
µf ∈ (1,∞) :

∑
j∈f

γj
(
rj(µ

f )
)
≥ H

}
,
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and note that µf (H) < µ̄f , since
∑

j∈f γj
(
rj(µ

f )
)

goes to zero as µf goes to µ̄f . For all

µf ≤ µf (H), ψ(µf , H) < 1.

Therefore, equation (22) does not have solutions outside interval (µf (H), µ̄f ) (define

µf (H) = 1 if
∑

j∈f γj
(
rj(µ

f )
)
< H for all µf > 1). In addition, ψ

(
µf (H), H

)
< 1 and

limµ̄f ψ > 1. By the intermediate value theorem, equation (22) has a solution on interval

(µf (H), µ̄f ). Since ψ is strictly increasing in µf on that interval (see Lemmas III-(d) and D),

the solution is unique. This establishes the existence and uniqueness of mf (H). In addition,

since ψ is strictly increasing in µf and H, mf is strictly decreasing in H.

Let H > 0. Assume for a contradiction that mf is not continuous at H. There exists

ε0 > 0 and (Hn)n∈N ∈ RN
++ such that Hn −→

n→∞
H and

∣∣mf (Hn)−mf (H)
∣∣ > ε0 for every

n ≥ 0. Let 0 < η < H. Then, for high enough n, Hn ∈ [H−η,H+η]. By monotonicity of mf ,

it follows that mf (Hn) ∈
[
mf (H + η) ,mf (H − η)

]
. Therefore,

(
mf (Hn)

)
n≥0

is bounded,

and we can extract a convergent subsequence: There exists ξ : N −→ N strictly increasing

and µf ∈ (1, µ̄f ) such that mf
(
Hξ(n)

)
−→
n→∞

µf . Since mf (Hn) is bounded away from mf (H),

it follows that µf 6= mf (H). By definition of mf , for every n ≥ 0, ψ
(
mf
(
Hξ(n)

)
, Hξ(n)

)
= 1.

Since ψ is continuous, we can take limits, and obtain that ψ(µf , H) = 1. By uniqueness, it

follows that µf = mf (H), which is a contradiction. Therefore, mf is continuous.

We can now take care of the outer fixed-point problem, which, by Lemma H consists in

finding an H > 0 such that Ω(H) = 1, where Ω(H) ≡
∑

f∈F
∑

k∈f hk(rk(m
f (H)))/H. The

following lemma guarantees that the outer fixed-point problem has a solution:

Lemma I. There exists H∗ > 0 such that Ω(H∗) = 1.

Proof. By Lemmas D and H, Ω is continuous on R++. In addition, when H goes to ∞, the

numerator of Ω goes to
∑

f∈F
∑

k∈f hk (pmck ), which is finite. Therefore, lim∞Ω = 0. If we

show that Ω is strictly greater than 1 in the neighborhood of 0+, then we can apply the

intermediate value theorem to obtain the existence of H∗.

Assume first that there exists j ∈ N such that lim∞ hj = l > 0. Since hj is decreasing,

hj(x) ≥ l for all x > 0. Let f ∈ F such that j ∈ f . Then, for all H > 0,

Ω(H) ≥
hj
(
rj
(
mf (H)

))
H

≥ l

H
−→
H→0+

∞.

Therefore, lim0+ Ω =∞ > 1.

Next, assume that lim∞ hk = 0 for all k ∈ N . For every f ∈ F , we define threshold

Hf ′ > 0 as follows. If µ̄k = µ̄f for all k ∈ f , then let Hf ′ = 1. If µ̄k < µ̄f for some k ∈ f ,

then, since lim0+ m
f = µ̄f , there exists Ĥf > 0 such that mf (H) > max({µ̄k}k∈f\{µ̄f})

whenever H < Ĥf . In this case, let Hf ′ ≡ Ĥf . Having done that for every f ∈ F , let

H ′ = minf∈F H
f ′. Then, for every H ∈ (0, H ′),

Ω(H) =
1

H

∑
f∈F

∑
j∈f : µ̄j=µ̄f

hj
(
rj
(
mf (H)

))
.
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We partition the set of firms into two sets: F ′ and F ′′, where F ′ =
{
f ∈ F : µ̄f =∞

}
,

and F ′′ = F\F ′.
Let f ∈ F ′′. Then, by Lemma III-(f) in Online Appendix II.1, lim∞ ρk = µ̄f

µ̄f−1
for

every k ∈ f such that µ̄k = µ̄f . In addition, by Lemmas D and H, for every k ∈ f ,

rk
(
mf (H)

)
−→
H→0+

∞. Therefore, there exists Hf ′′ > 0 such that

ρk
(
rk
(
mf (H)

))
≥ µ̄f

µ̄f − 1

(
1− 1

2|F|

)
, ∀H < Hf ′′, ∀k ∈ f s.t. µ̄k = µ̄f .

Let H ′′ = minf∈F ′′ H
f ′′ (or any strictly positive real number if F ′′ is empty), and H =

min (H ′, H ′′). For every H < H,

Ω(H) =
1

H

∑
f∈F ′

∑
k∈f
µ̄k=µ̄f

hk
(
rk
(
mf (H)

))
+
∑
f∈F ′′

∑
k∈f
µ̄k=µ̄f

hk
(
rk
(
mf (H)

)) ,

≥ 1

H

∑
f∈F ′

∑
k∈f
µ̄k=µ̄f

γk
(
rk
(
mf (H)

))
+
∑
f∈F ′′

∑
k∈f
µ̄k=µ̄f

γk
(
rk
(
mf (H)

))
ρk
(
rk
(
mf (H)

)) ,

≥
∑
f∈F ′

1

H

∑
k∈f
µ̄k=µ̄f

γk
(
rk
(
mf (H)

))
+
∑
f∈F ′′

µ̄f

µ̄f − 1

(
1− 1

2|F|

)
1

H

∑
k∈f
µ̄k=µ̄f

γk
(
rk
(
mf (H)

))
,

=
∑
f∈F ′

∑
k∈f γk

(
rk
(
mf (H)

))
H

+
∑
f∈F ′′

µ̄f

µ̄f − 1

(
1− 1

2|F|

)∑
k∈f γk

(
rk
(
mf (H)

))
H

,

=
∑
f∈F ′

mf (H)− 1

mf (H)
+
∑
f∈F ′′

mf (H)− 1

mf (H)

µ̄f

µ̄f − 1

(
1− 1

2|F|

)
, using equation (22),

where the second line follows by log-convexity (hk ≥ γk for all k). When H goes to 0+, the

right-hand side term on the last line goes to

|F ′|+ |F ′′|
(

1− 1

2|F|

)
≥ |F| − 1

2
,

which is strictly greater than 1. Therefore, Ω(H) > 1 when H is small enough.

This concludes the proof of Theorem 1.
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