Recommended resources

Image may contain: Eyewear, Glasses, Wood, Book, Hardwood.

Acheson, D [Cognitive Neuroscience Compendium]. (22.04.2019). Introduction to Event-Related Potentials. [Video file]. Retrieved from https://www.youtube.com/watch?v=zDTsePeDlwo.

Bartels, J. et al. (2008). Neurotrophic Electrode: Method of assembly and implantation into human motor speech cortex. J Neurosci Methods, 174(2): 168- 176.

Blenkmann, A.O. et al. (2017). iElectrodes: A Comprehensive Open-Source Toolbox for Deapth and Subdural Grid Electrode Localization. Frontiers in Neuroinformatics, 11: Article 14.

Brinkmann, B.H. et al. (2009a). Multiscale Electrophysiology Format: An Open Open-source Electrophysiology Format Using Data Compression, Encryption, and Cyclic Redundancy Check. Conf Proc IEEE Eng Med Biol Soc. 2009: 7082- 7086.

Brinkmann, B.H. et al. (2009b). Large-scale Electrophysiology: Acquisition, Compression, Encryption, and Storage of Big Data. J Neursci Methods, 180(1): 185- 192.

Cohen, M.X. (2014). Analyzing Neural Time Series Data: Theory and Practice. Cambridge, MA: The MIT Press.

Dalal, S.S. et al. (2008). Localization of neurosurgically implanted electrodes via photograph–MRI–radiograph coregistration. J. Neurosci Methods, 174: 106-115.

Da Silva, F.L. (2013). EEG and MEG: Relevance to Neuroscience. Neuron, 80(5) : 1112-1128.

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 9-21.

Destexhe, A. & Bedard, C. (2013). Local field potential. Scholarpedia, 8(8): 10713. Retrieved from: http://www.scholarpedia.org/article/Local_field_potential.

Fieldtrip. (n.d.) Getting started with Neuralynx data. Retrieved from: http://www.fieldtriptoolbox.org/getting_started/neuralynx/

Fieldtrip. (2020). Analysis of human ECoG and sEEG recordings. Retrieved from: http://www.fieldtriptoolbox.org/tutorial/human_ecog/

Fox, K.C.R. et al. (2018). Intracranial electrophysiology of the human default network. Trends Cogn Sci., 22(4):307-324.

Gasser, T. & Molinari, L. (1996). The Analysis of the EEG. Stat Methods Med Res, 5(1): 69-99.

Groppe, D.M. et al. (2017). iELVis: An open source MATLAB toolbox for localizing and visualizing human intracranial electrode data. J. Neurosci Methods, 281: 40-48.

Henson, R.N. et al. (2019). Multimodal Integration of M/EEG and f/MRI Data in SPM12. Frontiers in Neuroscience, 13: 300.

Holdgraf, C. et al. (2019). iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Nat. Scientific Data, 6:102. https://doi.org/10.1038/s41597-019-0105-7.

Jerbi, K. et al. (2009). Saccade Related Gamma-Band Activity in Intracerebral EEG:Dissociating Neural from Ocular Muscle Activity. Brain Topography, 22(1):18- 23.

Kovach, C.K. et al. (2011). Manifestication of ocular-muscle EMG contamination in human intracranial recordings. NeuroImage, 54: 213-233.

Lachaux, J.P., Rudrauf, D. & Kahane, P. (2003). Intracranial EEG and human brain mapping. Journal of Physiology – Paris 97: 613-628.

Lachaux, J.P.(2012). High frequency neural activity and human cognition: Past, present and possible future of intracranial EEG. Prog Neurobiol, 98(3): 279-301.

Malik, A.S. & Amin, H.U. (2018). Designing EEG Experiments for Studying the Brain. Design Code and Example Datasets. Elsevier Academic Press. https://www.sciencedirect.com/book/9780128111406/designing-eegexperiments-for-studying-the-brain.

Maris, E., van Vugt, M., & Kahana, M. (2011). Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG. Neuroimage, 54: 836-850.

Mukamel, R. & Fried, I. (2012). Human Intracranial Recordings and Cognitive Neuroscience. Annu. Rev. Psychol., 63 :511-537.

Nejedly, P. et al. (2018). Intracerebral EEG Artifact Identification Using Convolutional Neural Networks. Neuroinformatics. https://doi.org/10.1007/s12021-018-9397-6

Nejedly, P. et al. (2020). Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals. Scientific Data, 7: 179. https://doi.org/10.1038/s41597-020-0532-5.

Oostenveld, R. et al. (2010). FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. First edition. Computational Intelligence and Neuroscience, Article ID 156869: 1-9. doi:10.1155/2011/156869

Parvizi, J. & Kastner, S. (2018). Promises and limitations of human intracranial electroencephalography. Nature Neuroscience, 21 : 474-483.

Stacey, W.C. et al. (2013). Potential for unreliable interpretation of EEG recorded with microelectrodes. Epilepsia, 54(8): 1391-1401.

St. Louis, E.K. & Frey, L.C. (2016). Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants. American Epilepsy Society. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK390346/.

Stolk, A. et al. (2018). Integrated analysis of anatomical and electrophysiological human intracranial data. Nat Protoc, 13(7): 1699-1723.

Wang, Y. et al. (2016). An Intracranial Electroencephalography (iEEG) Brain Function Mapping Tool with an Application to Epilepsy Surgery Evaluation. Front. Neuroinform. https://doi.org/10.3389/fninf.2016.00015

PREV

NEXT

By Elian E. Jentoft & Rene S. Skukies
Published Aug. 31, 2020 9:36 PM - Last modified Aug. 31, 2020 11:36 PM