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TODAY

Introduction to longitudinal data and LMM.
Plotting longitudinal data.
Basic two-level longitudinal

Fixed and random coef�cients

Non-linear and piecewise continuous change
Including predictor in the model

Time invariat predictors
Time varying predictors
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BOOKS

 

Several examples borrowed from Mirman (2014).
Lesa Hoffman has links to several full video courses in longitudinal
modelling on her homepage.

http://www.lesahoffman.com/

3 / 103

http://www.lesahoffman.com/


R RESOURCES

Fitting mixed models in R:
https://m-clark.github.io/mixed-models-with-R/introduction.html
https://rpsychologist.com/r-guide-longitudinal-lme-lmer

Books on R:
Cookbook for R: http://www.cookbook-r.com/
R for data science: https://r4ds.had.co.nz/

Online resources
R-bloggers; R news and tutorials contributed by hundreds of R bloggers.

(http://www.r-bloggers.com/)

Stackover�ow: question and answer site for programmers.
(http://stackover�ow.com/)
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MULTILEVEL TUTORIALS

To tutorials available here:

Clustered data: https://shinyibv02.uio.no/connect/#/apps/433caf55-e0da-477a-
920e-bc044ef5030f/access

Longitudinal analysis: https://shinyibv02.uio.no/connect/#/apps/bf3cac08-
66ca-45d0-a45c-9b9402aa6c84/access

5 / 103

https://shinyibv02.uio.no/connect/#/apps/433caf55-e0da-477a-920e-bc044ef5030f/access
https://shinyibv02.uio.no/connect/#/apps/bf3cac08-66ca-45d0-a45c-9b9402aa6c84/access


SECTION: INTRODUCING LONGITUDINAL ANALYSIS
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MULTILEVEL MODELS FOR CLUSTERED DATA (1)
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CLASSES 2
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CLASSES 3
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CLASSES 4
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TWO SIDES OF ALL MODELS

Models are an idealized account of:

�. How the expected valueis related to an independent variable (mean).
�. How people vary (variance).

Linear regression only models the mean value, not the variance.
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ASSUMPTIONS IN LINEAR MODELS

�. The relationship between X and Y is linear.
�. The error variance (around the regression line) is normally distributed and

is constant (i.e. the sd is the same) at every level of X.
�. The observations are independent.
�. The independent variables are measured without error.

Yi = b0 + b1 ⋅ Xi + ϵi ϵi ∼ N(0, σ2)

12 / 103



WHICH ASSUMTION IS REALLY IMPORTANT?

We often focus on the extent to which the residuals are normally
distributed, but in practise this rarely has a major impact on the standard
errors (or p-values).
Dependency in the data can render all p-values completely biased.
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Data can be nested within higher
order units.
Different variables are measured
at different levels.

Traditionally handeled by
aggregation or
disaggregation.

MULTILEVEL DATA STRUCTURES
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In longitudinal multilevel models,
observations are nested within
persons.

Level 1 units are individual
observations
Level 2 units are usually
individuals

People may be nested under
higher order units (therapists,
treatment centers, etc).

Time will be included as a level 1
predictor.

LONGITUDINAL DATA STRUCTURES
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WHAT ARE LONGITUDINAL MODELS?

Time course data are the result of repeated measurments at multiple (at
least two) time points.

These sorts of data are also called longitudinal.

Two key properties distinguish time course data from other kinds of data:

�. Groups of observations all come from one source (nested data).
�. The repeated measurements are related by a continuous variable,

usually that variable is time, but any continuous variable will do.
We will also look at other variables, like set-size.

For analyses we will use multilevel (mixed) models that include time course
data as a level-1 predictor.
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BENEFITS OF MULTILEVEL MODELS IN GENERAL

Flexibility in modelling dependency across observations
LMMs provide a �exible framework to model and account for various sources
of non-independence, reducing biased estimates and increasing the accuracy
of inferences.

Avoid choosing between individuals or groups as the unit of analysis
Cross-level interactions are uniquely possible in MLM.

Increased statistical power
By including random effects, LMMs can improve the precision of estimates
and increase statistical power compared to traditional regression models.

Generalizability
LMMs allow researchers to investigate both the average effect of predictors
and their variations across different levels, helping to generalize �ndings
across various contexts and populations.

Study variation between and within people
Ask more complex and interesting questions
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Handle dependency
Traditional analyses only designed to
handle dependency due to constant
mean differences.

Handles missing
Number of observations can vary
between individuals.

Flexible treatment of time
Measures can be taken at �xed or at
varying occasions.
No assumption that an equal amount of
time has elapsed.

Investigate within-person relationships
Between and within effects can differ,
even in direction.

BENEFITS OF MLM FOR LONGITUDINAL DATA
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POOLING

https://www.bayesrulesbook.com/chapter-15.html
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SECTION: PLOTTING LONGITUDINAL DATA
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PLOTTING LONGITUDINAL DATA

Plotting is an even more critical �rst step longitudinal analysis than cross-
sectional studies.

We will make the following classes of �gures:
Individual change curves.
Plots of group mean levels and CI/con�dence regions.
Strati�ed plots (assess interactions).

Why ggplot?

�. Plots are publication grade quality.
�. The syntax is �exible and powerful framework for visualizing data.
�. Summary statistics like means and standard errors can be computed while

plotting.
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INTRODUCTION TO GGPLOT2

ggplot2 is a powerful R package for data visualization
Built on the principles of the "Grammar of Graphics"

�rst assign variables in your data to properties of the graph. These
assignments or mappings are called the aesthetics of your graph. Then you
select “geometries,” or geoms — points, lines, bars, etc. — for those
aesthetics.

Create complex, multi-layered plots using a consistent syntax
Easily customizable and extensible
Widely used in data analysis and research
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SPAGHETTI PLOTS FOR LONGITUDINAL DATA

Visualize individual trajectories over time
Identify patterns and trends in the data
Assess variability between and within groups
Detect potential outliers or in�uential cases
Compare individual trajectories to the overall �xed effect of time
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GENERATING A SPAGHETTI PLOT WITH GGPLOT2

Below is the R-code used to generate the plot.

library(ggplot2)

# Create spaghetti plot
ggplot(data, aes(x = time, y = y, group = id, color = group)) +
  geom_line(alpha = 0.5) +
  geom_line(data = fixed_effect_data, aes(x = time, y = y, group = 1), color = "black", 
            size = 1.5, linetype = "solid") +
  labs(title = "Example Spaghetti Plot", x = "Time", y = "Outcome") +
  theme_minimal()

# Save plot to a file
ggsave("example_spaghetti_plot.png", width = 7, height = 5)
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SECTION: TIME-ONLY (UNCONDITIONAL) MODELS
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Multilevel longitudinal models permit
analyses at different levels:

Between-person variance:
Inter-individual variation.
Ex. Biological sex, ethnicity.

Within-person variance:
Intraindividual variation.
Ex. Sleep the previous night.

FEATURES OF LONGITUDINAL DATA

Relationsips observed at the within-
person level need not (and often will not) mirror those at the between-person
level of analysis.

Eg. resting heart rate vs. exercise.
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Within person change: Speci�c
type of within person variation,
that refers to any systematic
change that is expected as a
result of meaningful passage of
time.
Within person �uctuation:
Undirected variation over
repeated assesments seen in
contexts in which one would not
expect systematic change.

FEATURES OF LONGITUDINAL DATA (2)
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UNCONDITIONAL LONGITUDINAL MODELS

In unconditional longitudinal models, time is the only predictor.
Included as a level-1 variable.

Critical �rst questions:
What units should time be measured in?
What constitutes "time=0"?

E.g. If age, it is best to center age on another value than "0".

How do you expect development over time to be?
Linear, non.linear, abrupt/discontinuous?
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INTRODUCING IDEALIZED GROWTH CURVES
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Between person empty model Within person empty model

BETWEEN-PERSON AND WITHIN-PERSON EMPTY MODELS

Empty models partition the variance, but don't account for it.

yti = β0
Fixed

Intercept

+ ϵti
Error

yti = β0
Fixed

Intercept

+ U0i
Random
Intercept

+ ϵti
Error
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Level 2: 
Level 1: 

Composite: 

FIXED AND RANDOM EFFECTS

We instead argue that deviation from the grand mean is attributable to a
normally distributed residual at level 2. Now we can account for this
variance by estimating a parameter (variance of 𝑈_0𝑖) instead of estimating
the �xed effects of 49 dummy variables. Random effects are not designed to
make inferences between the speci�c variants included in the study (can’t
compare participant 1 to participant 50). Could we include a random effect
of time? This would require at least three measurements per person.

β0i = γ00 + U0i

yti = β0i + ϵti

yti = (γ00 + U0i) + ϵti

yti = β0 + u0i + ϵti
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Differences between individuals
could be handled by N-1 dummy
variables.

Many estimated parameters
and loss of power.

With MLM, clustering is
accounted for by only one
parameter, the variance of a
normal distribution.

WHY RANDOM INTERCEPT?
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MODEL 1: RANDOM INTERCEPT

Level 2: 
Level 1: 

Composite:

β0i = γ00 + U0i U0i ∼ N(0, σU0i)

yti = β0i + ϵti ϵti ∼ N(0, σϵ)

yti = ( γ00
Fixed

Intercept

+ U0i
Random
Intercept

) + ϵti
Error
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FIXED AND RANDOM EFFECTS

Multilevel (mixed) models contain two classes of coef�cients.

Fixed effects: The «structural» part of the model, spesifying the expected
conditional mean.

Empty model: Only intercepts are included.
Unconditional models: Intercepts + passage of time.
Conditional models: Intercepts + variables accounting for differences in the
passage of time.

Random effects: Coef�cients that specify the stochastic (error) part of the
model.

Describes how the residuals of the Y outcome are distributed and related
across the observations.
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MODEL 2: RANDOM INTERCEPT

Level 2: 
Level 1: 

Composite: 

β0i = γ00 + U0i U0i ∼ N(0, σU0i)

yti = β0i + ϵti ϵti ∼ N(0, σϵ)

yti = (γ00 + U0i) + ϵti
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INTRACLASS CORRELATION COEFFICIENT (ICC)

Measures the proportion of total variance in the outcome that is
attributable to the grouping structure (e.g., individuals within groups)
Ranges from 0 to 1:

0: No correlation between observations within the same group
1: Observations within the same group are identical

Important for assessing group-level effects in mixed models
A high ICC indicates a strong grouping effect and the need for a multilevel
or mixed model to account for the clustered data structure
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INTRACLASS CORRELATION COEFFICIENT (ICC) 2

 

ICC = =
BP variation

BP + WP variation

V ar(U0i)

V ar(U0i) + V ar(ϵti)
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MODEL 3: FIXED SLOPE, RANDOM INTERCEPT

Level 2: 
Level 2: 
Level 1: 

Composite: 

β0i = γ00 + U0i

β1i = γ10

yti = β0i + β1i ⋅ Timeti + ϵti

yti = (γ00 + U0i) + γ10 ⋅ Timeti + ϵti

yti = ( γ00
Fixed

Intercept

+ U0i
Random
Intercept

) + γ10
Fixed
Slope

⋅ Timeti + ϵti
Error 38 / 103



COMPARING LINEAR MIXED MODELS

Likelihood Ratio Tests:
Performed with the anova()  function.
Only valid under maximum likelihood (ML) estimation, not restricted
maximum likelihood (REML).

Information Criteria:
Akaike Information Criterion (AIC) can be calculated using the AIC()
function.

Pseudo :
Purpose: Assess the proportion of variance explained by the predictors in the
model, similar to  in linear regression.
Calculated separately for Level 1 and Level 2 effects.

Range: 0 to 1; higher values indicate better model �t.

Limitation: Not directly comparable to  in linear regression. Interpretation
should be cautious.

R2

R2

R2
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OVER VS. UNDERFITTING (SCYLLA OG CHARYBDIS)

Over�tting: Poor prediction as a result of learning too much from your data.
Under�tting: Poor prediction as a result of learning too little from your data.

You can always get better �t to your data by adding more predictors.
Every dataset contains both systematic and unsystematic variance (noise),
so overly complex models may �t well to the current data, but predict less
variance in new data.

https://xcelab.net/rm/statistical-rethinking/
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WHAT HAPPENS AS THE MODEL BECOMES TOO COMPLEX?

Over: The green curve is the true (generating) function. The red �ts better, but
adapts to a lot of the noise in the data.
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K-FOLD CROSS VALIDATION

Cross-validation involves partitioning the data into training and test
subsets.
The model is buildt based on the training sets, and evaluated on the test
sets.

Cornerstone in machine learning approaches.

(Introduction to statistical learning)
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K-FOLD KRYSSVALIDERING (2)

Notice:

�. It is easy to explain variance in the training data, but far more dif�cult to
explain it in (new) test data.

�. Initially, as the model grows in complexity, explained variance increases.
However, as it gets overly complex, explained variance in test data starts to
decrease.
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METODE 3: INFORMATION CRITERIA (AIC / BIC)

Information criteria (IC) is a class of statistics devised to strike the
optimalbetween over and under�tting.
The model with the lowest AIC/BIC value is chosen as the best one.

Non-nested models can be compared.
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MODEL 4: FIXED SLOPE, RANDOM INTERCEPT

Level 2: 
Level 2: 
Level 1: 

Composite: 

β0i = γ00 + U0i

β1i = γ10

yti = β0i + β1i ⋅ Timeti + ϵti

yti = (γ00 + U0i) + γ10 ⋅ Timeti + ϵti
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MODEL 5: RANDOM SLOPE, RANDOM INTERCEPT

Level 2: 
Level 2: 
Level 1: 

Composite:

β0i = γ00 + U0i

β1i = γ10 + U1i

yti = β0i + β1i ⋅ Timeti + ϵti

yti = ( γ00
Fixed

Intercept

+ U0i
Random
Intercept

) + ( γ10
Fixed
Slope

+ U1i
Random

Slope

) ⋅ Timeti + ϵti
Error 46 / 103



HOW DO THESE DIFFER?
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RANDOM EFFECTS CAN BE CORRELATED

 

Level 2: 
Level 2: 
Level 1: 

Composite: 

β0i = γ00 + U0i

β1i = γ10 + U1i

yti = β0i + β1i ⋅ Timeti + ϵti

G = [ V ar(U0i) Cov(U0i, U1i)

Cov(U0i, U1i) V ar(U1i)
]

yti = (γ00 + U0i) + (γ10 + U1i) ⋅ Timeti + ϵti 48 / 103



Impact on Interpretability:
Centering time can affect the
interpretability of the (�xed)
intercept.

Intercept-Slope Correlation:
The interpretation of any
(random) intercept-slope
correlation is conditional on
the location of the intercept.

Example
Centering at t=0  will result in
an estimated correlation less
than 0 ( < 0 ).
Centering at t=3.5  will result
in an estimated correlation
equal to 0 ( = 0 ).

SENSITIVITY OF THE INTERCEPT-SLOPE CORRELATION TO THE CENTERING OF TIME
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G AND R MATRICES

The model implied covariance matrix is a function of two matrices:
G is a covariance matrix for level-2 random coef�cients.
R is a covariance matrix for level-1 random coef�cients.

Usually the R matrix is diagonal, but some programs allow you to specify
a different structure for this matrix.
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CALCULATING THE IMPLIED COVARIANCE (1)

The implied covariance matrix is a function of both the G and R matrices.
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TECHNICAL DETAIL: CALCULATING THE IMPLIED COVARIANCE

 = 
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MODELLING NON-LINEAR CHANGE OVER TIME
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Change considered until now has
been purely linear.

General Approaches to Dealing
with Non-linearity

Polynomial models
Piecewise-discontinuous
models

Splines

MODELLING NON-LINEAR CHANGE OVER TIME
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USING POLYNOMIALS TO MOD NON-LINEAR CHANGE

Linear regression is more �exible than the name implies, and can be used
to model (some) non-linear relationships.
Traditionally polynomials used to model non-linear relationships.

Polynomial functions are only valid in a restricted range.
Intercept and linear terms must be included in the model for it to be
meaningful (regardless of signi�cance).

E(Y |X) = b0 + b1 ⋅ X + b2 ⋅ X2+. . . +bp ⋅ Xp
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MODEL 7: POLYNOMIAL CHANGE

Level 2: 
Level 2: 
Level 2: 
Level 1: 

Composite:

β0i = γ00 + U0i

β1i = γ10 + U1i

β1i = γ20 + U2i

yti = β0i + β1i ⋅ Timeti + β2i ⋅ Time2
ti + ϵti

yti = ( γ00
Fixed

Intercept

+ U0i
Random
Intercept

) + ( γ10
Fixed

Lin Slope

+ U1i
Random
Lin Slope

) ⋅ Timeti + ( γ20
Fixed

Quad Slope

+ U2i
Random

Quad Slope

) ⋅ Time2
ti + ϵti

Error56 / 103



CHOOSING POLYNOMIAL DEGREE IN LONGITUDINAL MODELS

Consider Data:
Think about the data in terms of the number of times the curve changes
direction (corresponding to the number of in�ection points).

Statistical Approach:
Include only and all of the polynomial orders that improve model �t.

Theoretical Approach:
Include only those terms for which the experimenter predicted an effect.
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ORTHOGONAL POLYNOMIALS

Natural Polynomials:
Allow testing for differences at "Time 0."
Useful when such differences need to be tested.

Orthogonal Polynomials:
Provide the same estimates as natural polynomials.
Uncorrelated, so p-values may differ (sometimes considerably).
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Splines allow for �exibility in
modeling complex, non-linear
relationships
They can capture local patterns
and smooth changes over time
Reduce over�tting compared to
high-order polynomials
Cubic splines are commonly used
for their smoothness and
continuity
Natural splines can impose
constraints to reduce extreme
behavior at the endpoints

SPLINES
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Better �t for discontinuous data:
More accurately capture
abrupt changes

Interpretability:
Coef�cients of piecewise
continuous models have
simple interpretations

Parsimonious representation:
May require fewer parameters
than high-degree polynomial

Avoid over�tting:
Less likely to over�t the data
compared to high-degree
polynomial

PIECEWISE LINEAR MODELS

60 / 103



PIECEWISE LINEAR MODELS: CODING

 

These two coding schemes only differ in the interpretation of the regression coef�cients.
In scheme 1 the two slope coef�cients represent the actual slope in the respective time period.

In scheme 2 the coef�cient for time 2 represents the deviation from the slope in period 1, + i.e.
if the estimate is 0 then the rate of change is the same in both periods.

https://rpsychologist.com/r-guide-longitudinal-lme-lmer#piecewise-growth-curve
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GETTING P-VALUES

P-values are not reported by default, as the number of degrees of freedom
is hard to calculate.
Some approximations can be made, for example using the lmerTest
package.

# P-values for individual coefficients
require(lmerTest)
m1 �� lmer(y ~  x | id), data=dt)
coef(summary(m1))

# Alternatively, confidence intervals
confint(vs_3) # Profile CI
confint(vs_3, method="boot", nsim=100) # Bootstrapped CI

# Alternatively, compare models with anova()
anova(m1,m2)
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REPORTING GROWTH CURVE RESULTS

Model selection:
Report the criteria used to select the best-�tting model, e.g., AIC, BIC, or
likelihood ratio tests.

Fixed effects:
Report the estimated coef�cients, standard errors, t-values, and p-values for
each �xed effect predictor.
Interpret the direction and magnitude of the relationships between the
predictors and the outcome variable.

Random effects:
Report the estimated variances and standard deviations for random
intercepts and slopes.
Interpret the amount of variability in the intercepts and slopes across the
different levels of the model.

Model �t:
Report goodness-of-�t statistics, such as pseudo R-squared or deviance
explained
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MODEL 8

Why is there random intercept variance?
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MODEL 8

Level 2: 
Level 2: 
Level 1: 

Composite: 

β0i = γ00 + γ01 ⋅ Groupi + U0i

β1i = γ10 + U1i

yti = β0i + β1i ⋅ Timeti + ϵti

yti = (γ00 + γ01 ⋅ Groupi + U0i) + (γ10 + U1i) ⋅ Timeti + ϵti
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MODEL 9

Level 2: 
Level 2: 
Level 1: 

Composite: 

β0i = γ00 + γ01 ⋅ Groupi + U0i

β1i = γ10 + γ11 ⋅ Groupi + U1i

yti = β0i + β1i ⋅ Timeti + ϵti

yti = (γ00 + γ01 ⋅ Groupi + U0i) + (γ10 + γ11 ⋅ Groupi + U1i) ⋅ Timeti + ϵti
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INFERENTIAL CONSEQUENCES OF INCLUDING RANDOM EFFECTS

Effect on t/p-values:
The impact on t/p-values of estimating random components depends on the
level.
Moving variance from Level 1 to Level 2 can provide more power to detect
Level 1 predictors.

Improved Model Fit:
Including random effects can help account for unobserved heterogeneity in
the data, leading to better model �t.

Generalizability:
Including random effects allows for more accurate generalizations to the
larger population.

Cautions:
Adding random effects can increase model complexity.
It is important to carefully consider the theoretical justi�cations for including
random effects in the model. 67 / 103



TECHINCAL ISSUES: PARAMETER ESTIMATION (ML VS. REML)

ML (Maximum Likelihood)
Estimates �xed and random effects simultaneously
Can result in biased estimates of random effect variances

Suitable for model selection and comparison

REML (Restricted Maximum Likelihood)
Estimates �xed effects and random effects separately
Provides unbiased estimates of random effect variances

Less suitable for model selection and comparison

Which to use?
For unbiased variance estimates, use REML
For model selection or comparison, use ML

Sometimes, both are used in a two-step process: REML to estimate variance
components and ML to compare models
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TECHINCAL ISSUES: STANDARDIZATION

Purpose: To compare the relative importance of predictors and facilitate
interpretation.

Procedure:

�. Standardize continuous predictor variables (center and scale)
�. Re�t the linear mixed model with standardized predictors
�. Interpret the standardized coef�cients as effect sizes

Interpretation:
Each standardized coef�cient represents the change in outcome variable (in
standard deviations) for a one standard deviation change in the predictor
Larger absolute values indicate stronger relationships between predictors
and the outcome variable

Considerations:
Only applicable to continuous predictor variables
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There no MLM statistic entirely
equivalent to R2 in ordinary
regression.

While R2 increases monothically
as independent variables are
added in linear regression, this
may not hold in multilevel
models.
in MLM we can calculate an of
explained variance at each level.

This is referred to as pseudo

R2, and can behave in unusual
ways.
Can decrease as predictor on
another level is included.

TECHINCAL ISSUES: PSEUDO R2
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EXAMPLE: MODELLING POPULARITY IN PUPILS
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SECTION: A CLOSER LOOK AT RANDOM EFFECTS
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KEEPING IT MAXIMAL

A full or maximal random effect structure is the case where all of the
factors that could hypothetically vary across individual observational units
are allowed to do so.

The general principle is keep it maximal (Barr et al., 2013): the random
effects should include as much of the structure of the data as possible.

m_1 �� lmer(Accuracy ~ (ot1+ot2)*TP + (ot1 | Subject), data=WordLearnEx, REML=FALSE)
m_2 �� lmer(Accuracy ~ (ot1+ot2)*TP + (ot1+ot2 | Subject), data=WordLearnEx, REML=FALSE)

Removing a time term from the random effects primarily reduces the standard
error of the corresponding �xed effect estimate, making more signi�cant.
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EXAMPLE: COGNITIVE PERFORMANCE AND AGE

Research question: Does cognitive performance decline with age and does
this decline rate vary between individuals?

Data structure:
Repeated measures of cognitive performance for each individual
Age as a time-varying predictor

Linear mixed model:
Random intercepts and slopes for age
Correlation between intercepts and slopes

Reason to Drop the Intercept-Slope Correlation

Hypothesis: Initial cognitive performance and rate of decline are unrelated.
Example: Individuals with high initial performance decline at the same rate
as those with low initial performance.

Model modi�cation: Set the correlation between intercepts and slopes to
zero. 74 / 103



HOW TO SPECIFY NON-CORRELATRED INTERCEPT AND SLOPE

m_corr �� lmer(y ~ time + (1 | id), data=dt)
m_noncorr �� lmer(y ~ time + (1 | id) + (0 + time | id), data=dt)

Reason to Drop the Intercept-Slope Correlation
Hypothesis: Initial cognitive performance and rate of decline are unrelated.

Example: Individuals with high initial performance decline at the same rate
as those with low initial performance.

Model modi�cation: Set the correlation between intercepts and slopes to
zero.

This enforces the hypothesis that initial performance and decline rate are
independent.

Interpretation: If the modi�ed model �ts the data well, it suggests that the
rate of cognitive decline is not dependent on initial performance levels.
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m_2��lmer(Accuracy ~ (ot1+ot2)*TP + (ot1+ot2 | Subject))

m_1��lmer(Accuracy ~ (ot1+ot2)*TP + (ot1 | Subject))

m_3��lmer(Accuracy ~ (ot1+ot2)*TP + 
                   (1 | Subject) + 
                   (0+ot1 | Subject) + 
                   (0+ot2 | Subject))

EFFECT OF OMITTING RANDOM COEFFICIENTS

G =
⎡
⎢
⎣

V ar(U0) Cov(U0, U1) Cov(U0, U2)

Cov(U0, U1) V ar(U1) Cov(U1, U2)

Cov(U0, U2) Cov(U1, U2) V ar(U2)

⎤
⎥
⎦

G =
⎡
⎢
⎣

V ar(U0) Cov(U0, U1) 0

Cov(U0, U1) V ar(U1) 0

0 0 0

⎤
⎥
⎦

G =
⎡
⎢
⎣

V ar(U0) 0 0

0 V ar(U1) 0

0 0 V ar(U2)

⎤
⎥
⎦
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POOLING

Depending upon the variation among clusters, which is learned from the data
as well, the model pools information across clusters. This pooling tends to
improve estimates about each cluster.

Complete pooling: :First, suppose you ignore the varying intercepts and just use
the overall mean across all clusters.

No pooling Estimate separate �xed effect in each cluster.

Partial pooling Multilevel approach. Extreme values are pulled towards an
overall average, and this is tronger for smaller groups.
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1. COMPLETE POOLING

This approach assumes the treatment has the same effect on everyone, ignoring
individual-speci�c variation. It estimates an average treatment effect across all
individuals.

Consequences:
Biased estimates: Complete pooling may yield biased treatment effect
estimates due to ignored individual variation.
Inaccurate inferences: Hypothesis tests and con�dence intervals may be
misleading, leading to incorrect conclusions.
Lack of personalization: No information about the treatment's effectiveness
for speci�c individuals, hindering tailored interventions.
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2. PARTIAL POOLING

This approach estimates separate effects for each individual while "borrowing
strength" from the group, typically using random effects or mixed models. It
allows for individual-speci�c treatment effects and considers the overall
population effect.

Consequences:
More accurate estimates: Partial pooling accounts for individual variation,
providing more accurate treatment effect estimates.
Improved inferences: Hypothesis tests and con�dence intervals are more
accurate, leading to reliable conclusions.
Personalized insights: Provides information on the treatment's effectiveness
for speci�c individuals, aiding personalized interventions.
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SHRINKAGE IN PARTIAL POOLING

Pooling data across clusters tends to shrink their deviation from the overall
mean levels.

Shrinkage effect on individual participant intercept and linear term
parameter estimates. For each participant, the arrow shows the change in
the parameter estimate from a model that treats participants as �xed
effects (open circles) to a model that treats participants as random effects
(�lled circles). The black vertical and horizontal lines indicate the
population-level �xed effect. 80 / 103



3. NO POOLING

This approach estimates separate effects for each individual without sharing
information between them, �tting separate models and ignoring potential
similarities.

Consequences:
Over�tting: No pooling may over�t the data, resulting in estimates that
don't generalize well.
Inef�cient data use: Not sharing information between individuals leads to
less ef�cient use of data and less precise estimates.
Interpretation challenges: Separate models for each individual make it hard
to draw overall conclusions about treatment effectiveness.
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CONSTRUCTING A LONGITUDINAL MODEL (HOFFMAN)

�. Building an unconditional model of change
Decide what your metric of time will be
Decide at what occasion time 0 should be located

�. Plot individual trajectories over time
What kind of change, if any, do you see on average?
Do you see individual differences in that pattern of change?

�. Fit a null model (random intercept)
Calculate the ICC. If it is close to 1.0, there is no longitudinal variation to
model.

�. Add level-1 Fixed predictors
�. Add level-2 Explanatory Variables
�. Examine Whether a Particular slope varies between groups
�. Add cross-level interactions to explain variation in the slope.

class: mainTopic, middle, center
WITHIN-PARTICIPANT EFFECTS
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SECTION: CATEGORICAL TIME INVARIANT PREDICTORS
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TIME VARYING AND TIME INVARIANT PREDICTORS

A predictor is time varying when it is measured at multiple points in time,
just as is the outcome variable.

In the context of education, a time-varying predictor might be the number of
hours in the previous 30 days a student has spent studying.
time-varying predictors will appear at level 1 because they are associated
with speci�c measurements

On the other hand, a predictor is time invariant when it is measured at only
one point in time, and its value does not change across measurement
occasions.

An example of this type of predictor would be gender,
whereas time-invariant predictors will appear at level 2 or higher, because
they are associated with the individual

Unless time-variying predictors are group-mean centered, BP and WP
variance may not be cleanly separated.
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TIME-VARYING AND TIME-INVARIANT PREDICTORS IN LONGITUDINAL MODELS

Time-varying predictors
A predictor is time varying when it is measured at multiple points in time,
just as is the outcome variable.
Change over time within individuals

Predict within-person �uctuations

Can be used to model individual trajectories

Need to consider potential lagged effects, autocorrelation, and time-
dependent confounders

Time-invariant predictors
A predictor is time invariant when it is measured at only one point in time,
and its value does not change across measurement occasions.
Do not change over time within individuals

Predict between-person differences

Can be used to model group differences in trajectories

Need to consider potential multicollinearity with other time-invariant
predictors
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SECTION: HIGHER ORDER LONGITUDINAL MODELS
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INTRODUCING HIGHER LEVEL VARIABILITY

Therapist 1

Patient 1.1 Patient 1.2

Therapist 2

Patient 2.1 Patient 2.2

Therapist 3

Patient 3.1 Patient 3.2

Measurement 1.1.1 Measurement 1.1.2 Measurement 1.2.1 Measurement 1.2.2
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THIRD ORDER LINEAR MIXED MODEL: DEPRESSION OVER TIME

Outcome: Depression score over time

Data structure:
Repeated measures of depression for each patient
Patients nested within therapists

Model components:

�. Fixed effects: Population-level effects of predictors (e.g., time, patient
characteristics, therapist characteristics)

�. Random effects: Individual-level variability in intercepts (baseline
depression) and slopes (depression change over time)

�. Third-level random effects: Therapist-level variability in intercepts and
slopes

Model interpretation:
Fixed effects describe the average relationships between predictors and
depression scores
Random effects capture the variability in depression scores and change over
time across patients
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L3 - MODEL 1

Level 3: 
Level 2: 
Level 1: 

Composite: 

γ00b = δ000 + V00b

β0ib = γ00b + U0ib

ytib = β0ib + ϵtib

ytib = δ000 + V00b + U0ib + ϵtib
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L3 - MODEL 2

Level 3: 
Level 2: 
Level 1: 

Composite: 

γ00b = δ000 + V00b

β0ib = γ00b + U0ib

ytib = β0ib + ϵtib

ytib = δ000 + V00b + U0ib + ϵtib
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L3 - MODEL 2

Level 3: 
Level 2: 
Level 1: 

Composite: 

γ00b = δ000 + V00b

β0ib = γ00b + U0ib

ytib = β0ib + ϵtib

ytib = δ000 + V00b + U0ib + ϵtib
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L3 - MODEL 3

Level 3: 
Level 2: 
Level 1: 

Composite: 

γ00b = δ000 + V00b

β0ib = γ00b + U0ib

ytib = β0ib + ϵtib

ytib = δ000 + V00b + U0ib + ϵtib
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L3 - MODEL 4

Level 3: 
Level 2: 
Level 2: 
Level 1: 

Composite: 

γ00b = δ000 + V00b

β0ib = γ00b + U0ib

β1ib = γ100

ytib = β0ib + β1ib ⋅ Time + ϵtib

ytib = δ000 + V00b + U0ib + ϵtib
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L3 - MODEL 5

Level 3: 
Level 2: 
Level 2: 
Level 1: 

Composite: 

γ00b = δ000 + V00b

β0ib = γ00b + U0ib

β1ib = γ100 + U1ib

ytib = β0ib + β1ib ⋅ Time + ϵtib

ytib = δ000 + V00b + U0ib + ϵtib
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L3 - MODEL 6

Level 3: 
Level 3: 
Level 2: 
Level 2: 
Level 1: 

Composite: 

γ00b = δ000 + V00b

γ10b = δ100 + V00b

β0ib = γ00b + U0ib

β1ib = γ100

ytib = β0ib + β1ib ⋅ Time + ϵtib

ytib = δ000 + V00b + U0ib + ϵtib
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GPA EXERCISE (1)
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GPA EXERCISE (2)
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LEVEL-3 EXERCISE (2)
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SECTION: TRANSFORMING DATA FROM WIDE TO LONG FORMAT
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WIDE VS. LONG FORMAT

 

Left: Wide format; each measure of the same variable is in separate column.
Right: Wide format; each measure of the same variable is in separate row.
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PIVOT_LONGER AND PIVOT_WIDER

The tidyverse is a collection of open source R packages that share an
underlying design philosophy, grammar, and data structures.

In the tidyverse approach to R syntax, these two functions are used to
transform a dataset from wide to long format.

pivot_longer()  makes datasets longer by increasing the number of rows and
decreasing the number of columns.

pivot_wider()  is the opposite of pivot_longer(): it makes a dataset wider by
increasing the number of columns and decreasing the number of rows.

See these pages for documentation and examples:
https://cran.r-project.org/web/packages/tidyr/vignettes/pivot.html
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CREATING A SYNTHETIC WIDE DATASET

library(tidyverse)
dt��tibble(
  id=1�20, male=sample(0�1, 20, replace=TRUE), 
  dep1=rnorm(20), dep2=rnorm(20), dep3=rnorm(20),
  anx1=rnorm(20), anx2=rnorm(20), anx3=rnorm(20)
  )

print(dt,n=10)

�� # A tibble: 20 x 8
��       id  male   dep1    dep2    dep3    anx1    anx2   anx3
��    <int> <int>  <dbl>   <dbl>   <dbl>   <dbl>   <dbl>  <dbl>
��  1     1     1 -0.709  0.0301  0.189   0.357   0.407   0.199
��  2     2     0 -1.10  -0.696  -0.0357  1.37   -0.0255  0.880
��  3     3     0 -1.06  -0.104  -0.315   0.226   0.585  -1.17 
��  4     4     1  0.490  1.42    0.0567 -0.182  -0.347   1.17 
��  5     5     1  0.149 -1.25    0.284  -0.354   0.0755  0.948
��  6     6     0  1.39  -0.828   0.392  -0.197   1.55    0.847
��  7     7     0 -1.41  -1.94   -2.02   -0.0964 -0.182   1.58 
��  8     8     0 -0.592 -0.356  -1.30    0.434  -0.600   0.352
��  9     9     0  1.03   0.359   0.0586  0.980   0.921   0.793
�� 10    10     1 -1.02   1.81    0.776   0.252   0.556  -0.589
�� # i 10 more rows
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PIVOT FROM WIDE TO LONG

dt_l ��
  dt %>% pivot_longer(
  cols=dep1:anx3,
  names_sep=3,
  names_to = c("disorder", "number")
  ) %>% pivot_wider(names_from="disorder") %>% 
  rename("wave"="number",
         "anxiety"="anx",
         "depression"="dep")

print(dt_l,n=10)

�� # A tibble: 60 x 5
��       id  male wave  depression anxiety
��    <int> <int> <chr>      <dbl>   <dbl>
��  1     1     1 1        -0.709   0.357 
��  2     1     1 2         0.0301  0.407 
��  3     1     1 3         0.189   0.199 
��  4     2     0 1        -1.10    1.37  
��  5     2     0 2        -0.696  -0.0255
��  6     2     0 3        -0.0357  0.880 
��  7     3     0 1        -1.06    0.226 
��  8     3     0 2        -0.104   0.585 
��  9     3     0 3        -0.315  -1.17  
�� 10     4     1 1         0.490  -0.182 
�� # i 50 more rows 103 / 103


